mlr3oml

tic CRAN Status Badge StackOverflow

mlr3oml enables downloading OpenML datasets, tasks, flows, runs, and collections and allows to convert them to the corresponding mlr3 object. Furthermore, you can also obtain the data and the resampling for a given OpenML task. Caching can be enabled by setting the option "mlr3oml.cache". Uploading to OpenML is currently not supported, use the OpenML package package for this.

Short Demo

library("mlr3")
library("mlr3oml")

# be less verbose
lgr::get_logger("mlr3oml")$set_threshold("warn")

# retrieve data set as task from OML
tsk("oml", data_id = 31)
## <TaskClassif:credit-g> (1000 x 21)
## * Target: class
## * Properties: twoclass
## * Features (20):
##   - fct (13): checking_status, credit_history, employment,
##     foreign_worker, housing, job, other_parties, other_payment_plans,
##     own_telephone, personal_status, property_magnitude, purpose,
##     savings_status
##   - int (7): age, credit_amount, duration, existing_credits,
##     installment_commitment, num_dependents, residence_since
# retrieve a regular task from OML
tsk("oml", task_id = 59)
## <TaskClassif:iris> (150 x 5)
## * Target: class
## * Properties: multiclass
## * Features (4):
##   - dbl (4): petallength, petalwidth, sepallength, sepalwidth
# retrieve resampling from OML
rsmp("oml", task_id = 59)
## <ResamplingCustom>: Custom Splits
## * Iterations: 10
## * Instantiated: TRUE
## * Parameters: list()
# R6 class for data sets
odata = OMLData$new(61) # or
odata = odt(61)

odata$name
## [1] "iris"
odata$nrow
## [1] 150
odata$ncol
## [1] 5
head(odata$data)
##    sepallength sepalwidth petallength petalwidth       class
## 1:         5.1        3.5         1.4        0.2 Iris-setosa
## 2:         4.9        3.0         1.4        0.2 Iris-setosa
## 3:         4.7        3.2         1.3        0.2 Iris-setosa
## 4:         4.6        3.1         1.5        0.2 Iris-setosa
## 5:         5.0        3.6         1.4        0.2 Iris-setosa
## 6:         5.4        3.9         1.7        0.4 Iris-setosa
backend = as_data_backend(odata)
backend
## <DataBackendDataTable> (150x6)
##  sepallength sepalwidth petallength petalwidth       class ..row_id
##          5.1        3.5         1.4        0.2 Iris-setosa        1
##          4.9        3.0         1.4        0.2 Iris-setosa        2
##          4.7        3.2         1.3        0.2 Iris-setosa        3
##          4.6        3.1         1.5        0.2 Iris-setosa        4
##          5.0        3.6         1.4        0.2 Iris-setosa        5
##          5.4        3.9         1.7        0.4 Iris-setosa        6
## [...] (144 rows omitted)
# list oml data sets with 5 features and 50 - 200 instances
tab = list_oml_data(number_features = 5, number_instances = c(50, 200))
head(tab[, .(data_id, name)])
##    data_id               name
## 1:      61               iris
## 2:     199           fruitfly
## 3:     214           baskball
## 4:     329         hayes-roth
## 5:     346               aids
## 6:     668 witmer_census_1980
# R6 class for tasks
otask = OMLTask$new(31) # or
otask = otsk(31)

task = as_task(otask)
task
## <TaskClassif:credit-g> (1000 x 21)
## * Target: class
## * Properties: twoclass
## * Features (20):
##   - fct (13): checking_status, credit_history, employment,
##     foreign_worker, housing, job, other_parties, other_payment_plans,
##     own_telephone, personal_status, property_magnitude, purpose,
##     savings_status
##   - int (7): age, credit_amount, duration, existing_credits,
##     installment_commitment, num_dependents, residence_since
resampling = as_resampling(otask)
resampling
## <ResamplingCustom>: Custom Splits
## * Iterations: 10
## * Instantiated: TRUE
## * Parameters: list()
otask$data
## <OMLData:31:credit-g> (1000x21)
##  * Default target: class
otask$name
## [1] "Task 31: credit-g (Supervised Classification)"
otask$nrow
## [1] 1000
otask$ncol
## [1] 21
otask$task
## NULL
otask$resampling
## NULL
# list first 10 oml tasks
tab = list_oml_tasks(limit = 10)
tab[, .(task_id, data_id, name)]
##     task_id data_id            name
##  1:       2       2          anneal
##  2:       3       3        kr-vs-kp
##  3:       4       4           labor
##  4:       5       5      arrhythmia
##  5:       6       6          letter
##  6:       7       7       audiology
##  7:       8       8 liver-disorders
##  8:       9       9           autos
##  9:      10      10           lymph
## 10:      11      11   balance-scale
# R6 class for flows
oflow = OMLFlow$new(100) # or
oflow = oflw(100)

oflow$dependencies
## [1] "Weka_3.7.5"
oflow$parameter
##     name data_type default_value
##  1:    A      flag              
##  2:    B      flag              
##  3:    C    option          0.25
##  4:    J      flag              
##  5:    L      flag              
##  6:    M    option             2
##  7:    N    option              
##  8:    O      flag              
##  9:    Q    option              
## 10:    R      flag              
## 11:    S      flag              
## 12:    U      flag
# non-executable pseudo learner
learner = as_learner(oflow, "regr")
learner
## <LearnerRegrOML100:oml.100>
## * Model: -
## * Parameters: list()
## * Packages: mlr3
## * Predict Types:  [response]
## * Feature Types: -
## * Properties: -
# R6Class for run

orun = OMLRun$new(538858) # o
orun = orn(538858)

orun$data
## <OMLData:952:prnn_fglass> (214x10)
##  * Default target: type
orun$task
## <OMLTask:3815>
##  * Type: Supervised Classification
##  * Data: prnn_fglass (id: 952; dim: 214x10)
##  * Target: type
##  * Estimation: crossvalidation (id: 1; repeats: 1, folds: 10)
orun$flow
## <OMLFlow:3364>
##  * Name: classif.boosting
##  * Dependencies: mlr_2.8, adabag_4.1, rpart_4.1.10
head(orun$prediction)
##    repeat. fold row_id             prediction              truth
## 1:       0    0     33     window_float_glass window_float_glass
## 2:       0    0     52     window_float_glass window_float_glass
## 3:       0    0     67     window_float_glass window_float_glass
## 4:       0    0     49     window_float_glass window_float_glass
## 5:       0    0     41     window_float_glass window_float_glass
## 6:       0    0      5 window_non-float_glass window_float_glass
##    confidence.containers confidence.tableware confidence.vehicle_glass
## 1:                     0                    0                        0
## 2:                     0                    0                        0
## 3:                     0                    0                        0
## 4:                     0                    0                        0
## 5:                     0                    0                        0
## 6:                     0                    0                        0
##    confidence.vehicle_headlamp_glass confidence.window_float_glass
## 1:                                 0                             1
## 2:                                 0                             1
## 3:                                 0                             1
## 4:                                 0                             1
## 5:                                 0                             1
## 6:                                 0                             0
##    confidence.window_non.float_glass
## 1:                                 0
## 2:                                 0
## 3:                                 0
## 4:                                 0
## 5:                                 0
## 6:                                 1
rr = as_resample_result(orun)
rr
## <ResampleResult> of 10 iterations
## * Task: prnn_fglass
## * Learner: oml.3364
## * Warnings: 0 in 0 iterations
## * Errors: 0 in 0 iterations
# R6 class for collection

ocol = OMLCollection$new(232) # or
ocol = ocl(232)

ocol$tasks
##    id          task     data                 task_type target  nrow ncol
## 1:  3 <OMLTask[25]> kr-vs-kp Supervised Classification  class  3196   37
## 2:  6 <OMLTask[25]>   letter Supervised Classification  class 20000   17
##    missing numeric symbolic binary     task_splits
## 1:       0       0       37     35 crossvalidation
## 2:       0      16        1      0 crossvalidation