
Package ‘mousetrap’
October 13, 2022

Type Package

Version 3.2.1

Date 2022-01-03

Title Process and Analyze Mouse-Tracking Data

Description Mouse-tracking, the analysis of mouse movements in computerized
experiments, is a method that is becoming increasingly popular in the
cognitive sciences. The mousetrap package offers functions for importing,
preprocessing, analyzing, aggregating, and visualizing mouse-tracking data.
An introduction into mouse-tracking analyses using mousetrap can be found
in Wulff, Kieslich, Henninger, Haslbeck, & Schulte-Mecklenbeck (2021)
<doi:10.31234/osf.io/v685r> (preprint: <https://psyarxiv.com/v685r>).

Maintainer Pascal J. Kieslich <pascal.kieslich@gmail.com>

URL https://github.com/pascalkieslich/mousetrap

BugReports https://github.com/pascalkieslich/mousetrap/issues

License GPL-3

Depends R (>= 3.1.0),

Imports utils, stats, pracma, dplyr (>= 0.5.0), tidyr, magrittr,
graphics, grDevices, ggplot2, scales, psych (>= 1.2.4), Rcpp
(>= 0.11.4), diptest, RColorBrewer, cstab, fastcluster,
parallel, fields, rlang, lifecycle

Suggests readbulk, testthat

LinkingTo Rcpp

Encoding UTF-8

LazyData TRUE

RoxygenNote 7.1.2

NeedsCompilation yes

Author Pascal J. Kieslich [aut, cre] (<https://orcid.org/0000-0002-0853-9364>),
Dirk U. Wulff [aut] (<https://orcid.org/0000-0002-4008-8022>),
Felix Henninger [aut] (<https://orcid.org/0000-0002-7730-9511>),
Jonas M. B. Haslbeck [aut],
Sarah Brockhaus [ctb]

1

https://doi.org/10.31234/osf.io/v685r
https://psyarxiv.com/v685r
https://github.com/pascalkieslich/mousetrap
https://github.com/pascalkieslich/mousetrap/issues
https://orcid.org/0000-0002-0853-9364
https://orcid.org/0000-0002-4008-8022
https://orcid.org/0000-0002-7730-9511

2 R topics documented:

Repository CRAN

Date/Publication 2022-01-03 10:40:02 UTC

R topics documented:
bezier . 3
bimodality_coefficient . 4
KH2017 . 5
KH2017_raw . 6
mousetrap . 7
mt_add_trajectory . 11
mt_add_variables . 12
mt_aggregate . 13
mt_aggregate_per_subject . 15
mt_align . 17
mt_align_start . 19
mt_align_start_end . 20
mt_angles . 22
mt_animate . 24
mt_average . 27
mt_bind . 29
mt_check_bimodality . 30
mt_check_resolution . 32
mt_cluster . 33
mt_cluster_k . 36
mt_count . 39
mt_derivatives . 40
mt_deviations . 42
mt_diffmap . 44
mt_distmat . 46
mt_example . 48
mt_example_raw . 49
mt_exclude_finish . 50
mt_exclude_initiation . 51
mt_export_long . 53
mt_heatmap . 54
mt_heatmap_ggplot . 56
mt_heatmap_raw . 58
mt_import_long . 60
mt_import_mousetrap . 62
mt_import_wide . 65
mt_length_normalize . 67
mt_map . 69
mt_measures . 72
mt_plot . 76
mt_plot_add_rect . 80
mt_plot_per_trajectory . 81

bezier 3

mt_plot_riverbed . 83
mt_prototypes . 85
mt_qeffect . 86
mt_remap_symmetric . 87
mt_resample . 89
mt_reshape . 91
mt_sample_entropy . 94
mt_scale_trajectories . 96
mt_spatialize . 97
mt_standardize . 99
mt_subset . 100
mt_time_normalize . 101
print.mt_heatmap_raw . 103
read_mt . 103
scale_within . 105

Index 107

bezier Create Bezier-curves using the Bernstein approximation.

Description

bezier creates 3-point Bezier-curves using the Bernstein approximation to simulate continuous
competition in mouse- and hand-trajectories.

Usage

bezier(x = c(0, 1, -1), y = c(0, 1.5, 1.5), w = 1, resol = 100)

Arguments

x a numeric vector giving the x-coordinates of exactly three Bezier-points. De-
faults to c(0,1,-1) matching the ’mt’ format in mt_align.

y a numeric vector giving the x-coordinates of exactly three Bezier-points. De-
faults to c(0,1.5,1.5) matching the ’mt’ format in mt_align.

w a numeric value or vector specifying one or several Bezier curves, with w govern-
ing the pull towards the middle point. Each entry in w creates one Bezier-curve.

resol a numeric value specifying the spatial resolution of the bezier curves. For ex-
ample, resol = 100 creates bezier curves comprised of 100 points each.

Value

A trajectory array containing the bezier curves.

Author(s)

Dirk U. Wulff

4 bimodality_coefficient

Examples

Generate range of Bezier-curves
bezier_curves <- bezier(w=seq(0,10,.1))

Plot curves
mt_plot(bezier_curves)

bimodality_coefficient

Calculate bimodality coefficient.

Description

Calculate the bimodality coefficient for a numeric vector as specified in Pfister et al. (2013).

Usage

bimodality_coefficient(x, na.rm = FALSE)

Arguments

x a numeric vector.

na.rm logical specifying whether missing values should be removed.

Details

The calculation of the bimodality coefficient involves calculating the skewness and kurtosis of the
distribution first. For this, the skew and kurtosi functions of the psych package are used. Note that
type is set to "2" for these functions in accordance with Pfister et al. (2013).

Value

A numeric value.

Author(s)

Pascal J. Kieslich

Felix Henninger

References

Pfister, R., Schwarz, K. A., Janczyk, M., Dale, R., & Freeman, J. B. (2013). Good things peak
in pairs: A note on the bimodality coefficient. Frontiers in Psychology, 4, 700. doi: 10.3389/
fpsyg.2013.00700

https://doi.org/10.3389/fpsyg.2013.00700
https://doi.org/10.3389/fpsyg.2013.00700

KH2017 5

See Also

skew for calculating skewness and kurtosis.

mt_check_bimodality for assessing bimodality using several methods in a mousetrap data object.

Examples

pfister_data_a <- rep(1:11, times=c(3,5,5,10,17,20,17,10,5,5,3))
bimodality_coefficient(pfister_data_a) #.34
pfister_data_b <- rep(1:11, times=c(2,26,14,6,2,0,2,6,14,26,2))
bimodality_coefficient(pfister_data_b) #.79

KH2017 Mouse-tracking dataset from Kieslich & Henninger (2017)

Description

A data object of class "mousetrap" with the imported and preprocessed mouse-tracking data from
Kieslich & Henninger (2017). More information about the study and raw data can be found in
KH2017_raw.

Usage

KH2017

Format

A mousetrap data object is a list containing at least the following objects:

• data: a data.frame containing the trial data (from which the mouse-tracking data columns
have been removed). More information about the content of the trial data in KH2017 can
be found in KH2017_raw. The rownames of data correspond to the trial identifier. For
convenience, the trial identifier is also stored in an additional column called "mt_id".

• trajectories: an array containing the raw mouse-tracking trajectories. The first dimension
represents the different trials and the dimension names (which can be accessed using row-
names) correspond to the trial identifier (the same identifier that is used as the rownames in
data). The second dimension corresponds to the samples taken over time which are included
in chronological order. The third dimension corresponds to the different mouse-tracking vari-
ables (timestamps, x-positions, y-positions) which are usually called timestamps, xpos, and
ypos.

Some functions in this package (e.g., mt_time_normalize and mt_average) add additional trajectory
arrays (e.g., tn_trajectories and av_trajectories) to the mousetrap data object. Other func-
tions modify the existing arrays (e.g., mt_derivatives adds distance, velocity, and acceleration to an
existing dataset). Finally mt_measures adds an additional data.frame with mouse-tracking measures
to it.

6 KH2017_raw

Details

The raw dataset (KH2017_raw) was filtered keeping only correctly answered trials. The filtered
dataset was imported using mt_import_mousetrap. Trajectories were then remapped using mt_remap_symmetric
so that all trajectories end in the top-left corner and their starting point was aligned to a common
value (0,0) using mt_align_start.

References

Kieslich, P. J., & Henninger, F. (2017). Mousetrap: An integrated, open-source mouse-tracking
package. Behavior Research Methods, 49(5), 1652-1667. doi: 10.3758/s134280170900z

Dale, R., Kehoe, C., & Spivey, M. J. (2007). Graded motor responses in the time course of catego-
rizing atypical exemplars. Memory & Cognition, 35(1), 15-28. doi: 10.3758/BF03195938

KH2017_raw Raw mouse-tracking dataset from Kieslich & Henninger (2017)

Description

Raw mouse-tracking dataset from Kieslich & Henninger (2017), an experiment using the material
and procedure of experiment 1 by Dale et al. (2007). A preprocessed (as opposed to raw) version
of the same data can be found in KH2017.

Usage

KH2017_raw

Format

A data.frame with 1140 rows and 19 variables. The data.frame is based on the combined raw data
that were created using read_opensesame from the readbulk library. For ease of use, unnecessary
columns were excluded.

The variables included relate to the item that was presented (Exemplar), the answer categories
(Category1 and Category2), the subject identifier (subject_nr), the subjects’ response (response),
the correctness of the response (response) as well as the mouse-tracking variables (timestamps_get_response,
xpos_get_response and ypos_get_response)

Each mouse-tracking variable contains a list of values (separated by ’, ’)

• one entry for each recorded position of the mouse. The position coordinates are given in pixels,
such that values of zero for both xpos_get_response and ypos_get_response indicate that
the cursor is located in the center of the screen. Both variables increase in value as the mouse
moves toward the bottom right. Timestamps are given in milliseconds.

https://doi.org/10.3758/s13428-017-0900-z
https://doi.org/10.3758/BF03195938
http://pascalkieslich.github.io/readbulk/

mousetrap 7

Details

The data stem from a study by Kieslich & Henninger (2017) which used the material and procedure
of experiment 1 by Dale et al. (2007). In this experiment, participants have to assign exemplars (e.g.,
"whale") to one of two categories (e.g., "fish" or "mammal") by clicking on the button corresponding
to the correct category. All exemplars and categories from the original study were translated to and
presented in German.

The data was collected in OpenSesame using the mousetrap plugin (Kieslich & Henninger, 2017).

Across the 19 trials of the experiment, 60 participants categorized 13 exemplars that were typical of
their category and 6 atypical exemplars for which this was not the case. For the atypical exemplars
(e.g., "whale"), the competing category ("fish") was selected to compete with the correct category
("mammal"). The hypothesis under investigation is whether participants’ mouse trajectories devi-
ate more towards the competing category for the atypical exemplars, indicating increased conflict
between the response options.

References

Kieslich, P. J., & Henninger, F. (2017). Mousetrap: An integrated, open-source mouse-tracking
package. Behavior Research Methods, 49(5), 1652-1667. doi: 10.3758/s134280170900z

Dale, R., Kehoe, C., & Spivey, M. J. (2007). Graded motor responses in the time course of catego-
rizing atypical exemplars. Memory & Cognition, 35(1), 15-28. doi: 10.3758/BF03195938

mousetrap Process and analyze mouse-tracking data

Description

The mousetrap package provides functions for importing, preprocessing, analyzing, aggregating,
and visualizing mouse-tracking data. In the following, a brief overview of the functions in this
package is given.

Read functions

Depending on the file format, one of the standard R functions for reading files into R can be used
(e.g., read.table or read.csv).

If raw data were collected using MouseTracker, the mousetrap package provides the read_mt func-
tion to read files in the ".mt" format.

If several raw data files should be read and merged, the read_bulk function from the readbulk pack-
age can be used (or the read_opensesame function, if data were collected using OpenSesame).

Import functions

The initial step to prepare data for analysis in the mousetrap package is to create a mousetrap data
object. Depending on the input format, one of the following functions can be used. A detailed
description (and example) of the resulting mousetrap data object can be found in mt_example.

https://osdoc.cogsci.nl/
https://github.com/pascalkieslich/mousetrap-os
https://doi.org/10.3758/s13428-017-0900-z
https://doi.org/10.3758/BF03195938
http://www.mousetracker.org/
http://pascalkieslich.github.io/readbulk/
https://osdoc.cogsci.nl/

8 mousetrap

mt_import_mousetrap imports mouse-tracking data that were recorded using the mousetrap plugin
for OpenSesame.

mt_import_wide imports mouse-tracking data saved in a wide format (e.g., data collected using
MouseTracker).

mt_import_long imports mouse-tracking data saved in a long format. (e.g., trajectories exported
using mt_export_long).

Geometric preprocessing functions

A number of functions are available that perform geometric preprocessing operations.

mt_remap_symmetric remaps mouse trajectories to one side (or one quadrant) of the coordinate
system.

mt_align is a general purpose function for aligning and rescaling trajectories. For specific opera-
tions, you can rely on one of the following functions.

mt_align_start aligns the start position of trajectories.

mt_align_start_end aligns all trajectories so that they share a common initial and final coordinate
(this is also sometimes referred to as "space-normalization").

Resampling and interpolation functions

A number of functions are available that perform resampling and interpolation operations.

mt_exclude_initiation excludes the initial phase of a trial without mouse movement.

mt_exclude_finish excludes a potential phase without mouse movement at the end of a trial.

mt_time_normalize performs time-normalization using equidistant time intervals, resulting in an
identical number of samples for all trajectories.

mt_resample resamples trajectories so that samples occur at constant intervals of a specified length.

mt_average averages trajectory coordinates (and related variables) for time bins of constant dura-
tion.

mt_length_normalize re-represents each trajectory spatially so that adjacent points on the trajectory
become equidistant to each other.

Data handling functions

A number of functions are available for data handling operations, such as filtering or adding of new
variables or trajectories.

mt_subset filters mouse-tracking data by trials, so that only those meeting the defined criteria are
included.

mt_add_variables adds new, self created variables to a trajectory array.

mt_add_trajectory adds a new trajectory to a trajectory array.

mt_bind joins two trajectory arrays.

https://github.com/pascalkieslich/mousetrap-os
https://osdoc.cogsci.nl/
http://www.mousetracker.org/

mousetrap 9

Analysis functions

A number of different analysis procedures and summary statistics for mouse trajectories have been
established in the existing literature. The following functions implement many of these approaches.

mt_derivatives calculates distance, velocity, and acceleration for trajectories.

mt_angles calculates movement angles for trajectories.

mt_deviations calculates the deviations from an idealized trajectory (straight line).

mt_measures calculates a set of mouse-tracking measures.

mt_sample_entropy calculates sample entropy.

mt_standardize standardizes mouse-tracking measures onto a common scale (separately for subsets
of the data, e.g., per participant).

mt_scale_trajectories provides different options for standardizing variables in a mouse trajectory
array.

mt_check_bimodality assesses the bimodality of mouse-tracking measure distributions.

mt_check_resolution checks the (temporal) logging resolution of raw trajectories.

mt_count counts the number of observations for each trajectory.

Cluster functions

A number of different functions for clustering trajectories is provided.

mt_distmat computes the dissimilarity/distance between each pair of trajectories.

mt_cluster performs trajectory clustering with a specified number of clusters.

mt_cluster_k estimates the optimal number of clusters using various methods.

mt_map maps trajectories onto a predefined set of prototype trajectories (a core set is provided in
mt_prototypes).

Reshaping, aggregation, and export functions

A number of helper functions are provided for aggregating, plotting, and exporting the multi-
dimensional mouse trajectory arrays.

mt_reshape is a general purpose reshaping and aggregation function for mousetrap data.

mt_aggregate aggregates mouse-tracking data per condition.

mt_aggregate_per_subject aggregates mouse-tracking data per (within subjects-) condition sepa-
rately for each subject.

mt_export_long exports mouse-tracking data in long format.

mt_export_wide exports mouse-tracking data in wide format.

Visualization functions

The following functions can be used for plotting trajectory data, e.g., individual and aggregated
trajectories or velocity profiles.

mt_plot plots individual trajectory data.

mt_plot_aggregate plots aggregated trajectory data.

10 mousetrap

mt_plot_add_rect adds rectangles to a trajectory plot.

mt_plot_riverbed plots the relative frequency of a selected variable across time.

mt_plot_per_trajectory creates a pdf with separate plots per trajectory.

mt_heatmap and mt_heatmap_ggplot plot trajectory heatmaps.

mt_diffmap for creating a difference-heatmap of two trajectory heatmap images.

mt_animate creates a gif trajectory animation.

Helper functions

bimodality_coefficient calculates the bimodality coefficient.

scale_within scales and centers variables within the levels of another variable.

bezier creates Bezier-curves using the Bernstein approximation.

Datasets

mt_example and mt_example_raw contain a mouse-tracking example dataset for demonstrations
using the mousetrap package.

KH2017 and KH2017_raw contain a mouse-tracking dataset from Kieslich & Henninger (2017).

Examples

Not run:
KH2017 <- mt_import_mousetrap(subset(KH2017_raw,correct==1))
KH2017 <- mt_remap_symmetric(KH2017)
KH2017 <- mt_align_start(KH2017)

End(Not run)

KH2017 <- mt_time_normalize(KH2017)
KH2017 <- mt_measures(KH2017)

mt_aggregate(
KH2017, use="measures",
use_variables=c("MAD", "AD"),
use2_variables="Condition",
subject_id="subject_nr"

)

mt_plot_aggregate(KH2017,
use="tn_trajectories",
x="xpos", y="ypos", color="Condition",
subject_id="subject_nr"

)

Not run:
mt_plot(KH2017,

use="tn_trajectories",
x="xpos", y="ypos", color="Condition"

)

mt_add_trajectory 11

End(Not run)

mt_add_trajectory Add new trajectory to trajectory array.

Description

Add a single new trajectory to trajectory array.

Usage

mt_add_trajectory(
data,
use = "trajectories",
save_as = use,
xpos = NULL,
ypos = NULL,
xypos = NULL,
id = "new"

)

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

use a character string specifying which trajectory data should be used.

save_as a character string specifying where the resulting trajectory data should be stored.

xpos a vector of x positions. Ignored, if xypos is provided.

ypos a vector of y positions. Ignored, if xypos is provided.

xypos a matrix, the first column corresponding to the x positions, the second to the y
positions.

id a character string specifying the identifier of the to be added trajectory.

Value

A mousetrap data object (see mt_example) where the new trajectory has been added. If the trajec-
tory array was provided directly as data, only the trajectory array will be returned.

Author(s)

Pascal J. Kieslich

Felix Henninger

12 mt_add_variables

Examples

Add additional prototype to mt_prototypes
mt_prototypes_ext <- mt_add_trajectory(mt_prototypes,

xpos = c(0,1,-1,1,-1), ypos = c(0,1.5,1.5,1.5,1.5), id = "dCoM3"
)

mt_add_variables Add new variables to trajectory array.

Description

Add new variables to the trajectory array (and remove potentially existing variables of the same
name). This is mostly a helper function used by other functions in this package (e.g., mt_deviations).
However, it can also be helpful if the user has calculated new variables for each logged coordinate
and wants to add them to an existing trajectory array.

Usage

mt_add_variables(data, use = "trajectories", save_as = use, variables)

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

use a character string specifying which trajectory data should be used.

save_as a character string specifying where the resulting trajectory data should be stored.

variables a list of matrices that each contain the data of one of the to be added variables.
In this case, the new variables with their values are added as a new entry in the
trajectory arrays third dimension. Alternatively, a character vector specifying
the name of the new variables that should be added to the trajectory array. In
this case, the new variables are filled with NAs.

Value

A mousetrap data object (see mt_example) where the new variables have been added to the trajec-
tory array. Depending on the input to variables, the values for the added variables are either NAs
or their actual values. If columns of the same name already existed, they have been removed. If the
trajectory array was provided directly as data, only the trajectory array will be returned.

Author(s)

Pascal J. Kieslich

Felix Henninger

mt_aggregate 13

Examples

Calculate new (arbitrary) variables for this example
... the sum of the x- and y-positions
xy_sum <- mt_example$trajectories[,,"xpos"] + mt_example$trajectories[,,"ypos"]
... the product of the x- and y-positions
xy_prod <- mt_example$trajectories[,,"xpos"] * mt_example$trajectories[,,"ypos"]

Add the new variables to the trajectory array
mt_example <- mt_add_variables(mt_example,

variables=list(xy_sum=xy_sum, xy_prod=xy_prod))

mt_aggregate Aggregate mouse-tracking data per condition.

Description

mt_aggregate is used for aggregating mouse-tracking measures (or trajectories) per condition.
One or several condition variables can be specified using use2_variables. Aggregation will be
performed separately for each level of the condition variables. mt_aggregate is a wrapper function
for mt_reshape.

Usage

mt_aggregate(
data,
use = "measures",
use_variables = NULL,
use2 = "data",
use2_variables = NULL,
subject_id = NULL,
trajectories_long = TRUE,
...

)

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

use a character string specifying which dataset should be aggregated. The corre-
sponding data are selected from data using data[[use]]. Usually, this value
corresponds to either "tn_trajectories" or "measures", depending on whether the
time-normalized trajectories or derived measures should be aggregated.

use_variables a character vector specifying the mouse-tracking variables to aggregate. If a
data.frame with mouse-tracking measures is provided as data, this corresponds
to the column names. If a trajectory array is provided, this argument should

14 mt_aggregate

specify the labels of respective array dimensions. If unspecified, all variables
will be aggregated.

use2 a character string specifying where the data containing the condition information
can be found. Defaults to "data" as data[["data"]] usually contains all non
mouse-tracking trial data. Alternatively, a data.frame can be provided directly.

use2_variables a character string (or vector) specifying the variables (in data[[use2]]) across
which the trajectories / measures will be aggregated. For each combination
of levels of the grouping variable(s), aggregation will be performed separately
using summarize_at.

subject_id an optional character string specifying the column that contains the subject iden-
tifier. If specified, aggregation will be performed within subjects first (i.e.,
within subjects for all available values of the grouping variables specified in
use2_variables).

trajectories_long

logical indicating if the reshaped trajectories should be returned in long or wide
format. If TRUE, every recorded position in a trajectory is placed in another row
(whereby the order of the positions is logged in the variable mt_seq). If FALSE,
every trajectory is saved in wide format and the respective positions are indexed
by adding an integer to the corresponding label (e.g., xpos_1, xpos_2, ...). Only
relevant if data[[use]] contains trajectories.

... additional arguments passed on to mt_reshape (such as subset).

Value

A data.frame containing the aggregated data.

Author(s)

Pascal J. Kieslich

Felix Henninger

See Also

mt_aggregate_per_subject for aggregating mouse-tracking measures and trajectories per subject.

summarize_at for aggregating data using the dplyr package.

Examples

Time-normalize trajectories
mt_example <- mt_time_normalize(mt_example)

Aggregate time-normalized trajectories per condition
average_trajectories <- mt_aggregate(mt_example,

use="tn_trajectories",
use2_variables="Condition"

)

mt_aggregate_per_subject 15

Calculate mouse-tracking measures
mt_example <- mt_measures(mt_example)

Aggregate measures per condition
average_measures <- mt_aggregate(mt_example,

use="measures", use_variables=c("MAD", "AD"),
use2_variables="Condition"

)

Aggregate measures per condition
first within subjects and then across subjects
average_measures <- mt_aggregate(mt_example,

use="measures", use_variables=c("MAD", "AD"),
use2_variables="Condition",
subject_id="subject_nr"

)

mt_aggregate_per_subject

Aggregate mouse-tracking data per condition separately for each sub-
ject.

Description

mt_aggregate_per_subject can be used for aggregating mouse-tracking measures (or trajecto-
ries) per condition separately for each subject. One or more condition variables can be specified
using use2_variables. Aggregation will be performed separately for each level of the condition
variables. mt_aggregate_per_subject is a wrapper function for mt_reshape.

Usage

mt_aggregate_per_subject(
data,
use = "measures",
use_variables = NULL,
use2 = "data",
use2_variables = NULL,
subject_id,
trajectories_long = TRUE,
...

)

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

16 mt_aggregate_per_subject

use a character string specifying which dataset should be aggregated. The corre-
sponding data are selected from data using data[[use]]. Usually, this value
corresponds to either "tn_trajectories" or "measures", depending on whether the
time-normalized trajectories or derived measures should be aggregated.

use_variables a character vector specifying the mouse-tracking variables to aggregate. If a
data.frame with mouse-tracking measures is provided as data, this corresponds
to the column names. If a trajectory array is provided, this argument should
specify the labels of respective array dimensions. If unspecified, all variables
will be aggregated.

use2 a character string specifying where the data containing the condition information
can be found. Defaults to "data" as data[["data"]] usually contains all non
mouse-tracking trial data. Alternatively, a data.frame can be provided directly.

use2_variables a character string (or vector) specifying the variables (in data[[use2]]) across
which the trajectories / measures will be aggregated. For each combination
of levels of the grouping variable(s), aggregation will be performed separately
using summarize_at.

subject_id a character string specifying which column contains the subject identifier.
trajectories_long

logical indicating if the reshaped trajectories should be returned in long or wide
format. If TRUE, every recorded position in a trajectory is placed in another row
(whereby the order of the positions is logged in the variable mt_seq). If FALSE,
every trajectory is saved in wide format and the respective positions are indexed
by adding an integer to the corresponding label (e.g., xpos_1, xpos_2, ...). Only
relevant if data[[use]] contains trajectories.

... additional arguments passed on to mt_reshape (such as subset).

Value

A data.frame containing the aggregated data.

Author(s)

Pascal J. Kieslich

Felix Henninger

See Also

mt_aggregate for aggregating mouse-tracking measures and trajectories per condition.

summarize_at for aggregating data using the dplyr package.

Examples

Time-normalize trajectories
mt_example <- mt_time_normalize(mt_example)

Aggregate time-normalized trajectories per condition
separately per subject

mt_align 17

average_trajectories <- mt_aggregate_per_subject(
mt_example,
use="tn_trajectories",
use2_variables="Condition",
subject_id="subject_nr"

)

Calculate mouse-tracking measures
mt_example <- mt_measures(mt_example)

Aggregate measures per condition
separately per subject
average_measures <- mt_aggregate_per_subject(

mt_example,
use="measures",
use_variables=c("MAD", "AD"),
use2_variables="Condition",
subject_id="subject_nr"

)

mt_align Align trajectories.

Description

mt_align aligns trajectories to a common start point, end point, and / or coordinate system.

Usage

mt_align(
data,
use = "trajectories",
save_as = use,
dimensions = c("xpos", "ypos"),
coordinates = "isotropic",
align_start = FALSE,
align_end = FALSE,
align_side = "no",
verbose = FALSE

)

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

use a character string specifying which trajectory data should be used.

18 mt_align

save_as a character string specifying where the resulting trajectory data should be stored.

dimensions a character string specifying which trajectory variables should be used. Can
be of length 2 or 3 for two-dimensional or three-dimensional alignment respec-
tively.

coordinates either a numeric vector of length 4 specifying the xstart, ystart, xend, yend co-
ordinates of the trajectory start and end points. Can also be isotropic (the
default) to preserve the coordinates of dim1 and dim2, isotropic-norm to set
the coordinates to c(0,0,-1,x) where x is chosen to preserve the aspect ratio
of dim1 and dim2, mt to set coordinates to c(0,0,-1,1.5), norm to set coordi-
nates to c(0,0,-1,1), and wide to set coordinates to c(0,0,-1,1.2). In the
three-dimensional case, coordinates is a vector of length 6.

align_start boolean specifying whether the start points of all trajectories should be aligned
to the position specified in coordinates. See Details.

align_end boolean specifying whether the end points of all trajectories should be aligned
to the position specified in coordinates. See Details.

align_side character string specifying whether all trajectories should be flipped to the left
side (left), the right side (right), or not at all (no). Assumes that first entry in
dimensions are the x positions.

verbose logical indicating whether function should report its progress.

Details

If align_start / align_end is FALSE, coordinates define the position of the average start / end
point across all trajectories.

Note that if the end points of trajectories are not aligned, coordinates refer to the hypothetical case
where all trajectories are mapped to one side.

If align_start / align_end is TRUE, the start / end point of each trajectory is set to the exact posi-
tion specified in coordinates. align_start and align_end can be set completely independently
of one another, i.e., one can align only end points, only start points, none, or both.

If align_start is set to "left" or "right" trajectories will be flipped to the lower or upper
spectrum of the first dimensions, respectively. If the first dimension is the x-coordinate this is
equivalent to flipping the trajectories to the left and right side, respectively.

Value

A mousetrap data object (see mt_example) with aligned trajectories. Per default, the dimensions
in the original trajectory array will be replaced. If a different trajectory array is specified using
save_as, a new trajectory array will be created (including only the aligned dimensions). If a trajec-
tory array was provided directly as data, only the aligned trajectories will be returned.

Author(s)

Dirk U. Wulff

mt_align_start 19

See Also

mt_align_start for aligning all trajectories to a common start position.

mt_align_start_end for aligning all trajectories so that they share a common initial and final coordi-
nate.

mt_remap_symmetric for remapping trajectories to one side (or one quadrant) of the coordinate
system.

Examples

mt_example <- mt_align(mt_example,
align_start = TRUE, align_end = TRUE,
coordinates = 'mt')

mt_align_start Align start position of trajectories.

Description

Adjust trajectories so that all trajectories have the same start position.

Usage

mt_align_start(
data,
use = "trajectories",
save_as = use,
dimensions = c("xpos", "ypos"),
start = c(0, 0),
verbose = FALSE

)

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

use a character string specifying which trajectory data should be used.

save_as a character string specifying where the resulting trajectory data should be stored.

dimensions a character vector specifying the dimensions in the trajectory array that should
be aligned.

start a numeric vector specifying the start values for each dimension, i.e., the values
the first recorded position should have in every trial. If NULL, trajectories are
aligned to the mean first position across all trials.

verbose logical indicating whether function should report its progress.

20 mt_align_start_end

Value

A mousetrap data object (see mt_example) with aligned trajectories. All other trajectory dimensions
not specified in dimensions (e.g., timestamps) will be kept as is in the resulting trajectory array. If
the trajectory array was provided directly as data, only the trajectory array will be returned.

Author(s)

Pascal J. Kieslich

Felix Henninger

See Also

mt_align_start_end for aligning the start and end position of trajectories.

mt_align as a general purpose function for aligning and rescaling trajectories.

mt_remap_symmetric for remapping trajectories.

Examples

Import raw trajectories for demonstration
mt_example <- mt_import_mousetrap(mt_example_raw)

Align trajectories to start coordinates (0,0)
mt_example <- mt_align_start(mt_example,

start=c(0,0))

Import raw trajectories for demonstration
mt_example <- mt_import_mousetrap(mt_example_raw)

Align trajectories to mean first coordinates
mt_example <- mt_align_start(mt_example,

start=NULL)

mt_align_start_end Align start and end position of trajectories.

Description

Adjust trajectories so that all trajectories have an identical start and end point. In some articles, this
is also referred to as space-normalization (e.g. Dale et al., 2007).

mt_align_start_end 21

Usage

mt_align_start_end(
data,
use = "trajectories",
save_as = use,
dimensions = c("xpos", "ypos"),
start = c(0, 0),
end = c(-1, 1),
verbose = FALSE

)

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

use a character string specifying which trajectory data should be used.

save_as a character string specifying where the resulting trajectory data should be stored.

dimensions a character vector specifying the dimensions in the trajectory array that should
be aligned.

start a numeric vector specifying the start values for each dimension, i.e., the values
the first recorded position should have in every trial. If NULL, trajectories are
aligned to the mean first position across all trials.

end a numeric vector specifying the end values for each dimension, i.e., the val-
ues the last recorded position should have in every trial. If NULL, trajecto-
ries are aligned to the mean last position across all trials. Note that in this
case trajectories should be remapped to one side before alignment (e.g., using
mt_remap_symmetric) so that the mean last position is meaningful.

verbose logical indicating whether function should report its progress.

Value

A mousetrap data object (see mt_example) with aligned trajectories. All other trajectory dimensions
not specified in dimensions (e.g., timestamps) will be kept as is in the resulting trajectory array. If
the trajectory array was provided directly as data, only the trajectory array will be returned.

Author(s)

Pascal J. Kieslich

Felix Henninger

References

Dale, R., Kehoe, C., & Spivey, M. J. (2007). Graded motor responses in the time course of catego-
rizing atypical exemplars. Memory & Cognition, 35(1), 15-28.

22 mt_angles

See Also

mt_align_start for aligning the start position of trajectories.

mt_align as a general purpose function for aligning and rescaling trajectories.

mt_remap_symmetric for remapping trajectories.

Examples

Align start and end positions to specific coordinates
mt_example <- mt_align_start_end(mt_example,

start=c(0,0), end=c(-1,1))

Import raw trajectories for demonstration
mt_example <- mt_import_mousetrap(mt_example_raw)

Remap trajectories
mt_example <- mt_remap_symmetric(mt_example)

Align trajectories to mean first and last coordinates
mt_example <- mt_align_start_end(mt_example,

start=NULL, end=NULL)

mt_angles Calculate movement angles.

Description

Calculate point-based and vertical-based angles for the points in the movement trajectory. Point-
based angles are the angle defined by three subsequent points on the trajectory. Vertical-based
angles are the angles between two subsequent points and the vertical axis.

Usage

mt_angles(
data,
use = "trajectories",
dimensions = c("xpos", "ypos"),
save_as = use,
na_replace = FALSE,
unit = "radian",
verbose = FALSE

)

mt_angles 23

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

use a character string specifying which trajectory data should be used.

dimensions a character string specifying which trajectory variables should be used. Must be
of length 2.

save_as a character string specifying where the resulting trajectory data should be stored.

na_replace logical specifying whether NAs in the angle values should be replaced using the
next existing angle value (see Details). Defaults to FALSE.

unit character specifying the unit for the angles. Default is "radian", alternative is
"degree".

verbose logical indicating whether function should report its progress.

Details

By default, angles are reported in radians, the alternative is degrees. For the first point in a trajectory,
the angle values are always not defined (NA).

For vertical-based angles (angle_v), positive values indicate a movement to the left of the vertical,
negative values to the right of the vertical. If there was no movement across two consecutive points,
angle_v is not defined and, by default, NA is returned. If na_replace is TRUE, the next existing
angle value is reported instead.

For point-based angles (angle_p), angles indicate changes of movement within three consecutive
time steps. The reported angle is always the smaller one. A value of pi (= 3.14...) (for radians)
or 180 (for degrees) indicates a constant movement direction, a value of 0 (both for radians and
degrees) a complete reversal. If there was no movement across two consecutive points, angle_p is
not defined and, by default, NA is returned. If na_replace is TRUE, the next existing angle value is
reported instead. angle_p is also not defined for the last point of the trajectory.

Value

A mousetrap data object (see mt_example) with point-based and vertical-based angles added as
additional variables to the trajectory array (called angle_p and angle_v). If a trajectory array was
provided directly as data, only the trajectory array will be returned.

Author(s)

Dirk U. Wulff

Examples

Calculate movement angles
mt_example <- mt_angles(mt_example)

Calculate movement angles (in degree)
and replace NAs with next existing value
mt_example <- mt_angles(mt_example,

24 mt_animate

unit="degree", na_replace=TRUE)

mt_animate Create gif trajectory animation.

Description

[Experimental]
mt_animate animates trajectories using the animation package. Note that this function has beta
status.

Usage

mt_animate(
data,
use = "trajectories",
dimensions = c("xpos", "ypos"),
timestamps = "timestamps",
filename = "trajectory_animation.gif",
xres = 1000,
seconds = 3,
framerate = 24,
speed = 0.5,
density = 3,
jitter = TRUE,
remove = FALSE,
bg = "black",
col = "white",
lwd = 1,
loop = FALSE,
bounds = NULL,
norm = FALSE,
upscale = 1,
decay = 10,
max_intensity = 5,
discard_images = TRUE,
im_path = NULL,
parallel = TRUE,
verbose = FALSE

)

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

mt_animate 25

use a character string specifying which trajectory data should be used.

dimensions a character vector specifying the two dimensions in the trajectory array that
contain the mouse positions. Usually (and by default), the first value in the
vector corresponds to the x-positions (xpos) and the second to the y-positions
(ypos).

timestamps a character string specifying the trajectory dimension containing the timestamps.
If NULL linearly increasing timestamps are assumed, producing a perfectly con-
stant timestamp interval.

filename character string specifying the path and filename of the resulting .gif. If the
extension of filename is not .gif, .gif is added at the end. Must not contain
spaces.

xres numeric specifying the resolution of the .gif file.

seconds numeric specifying the duration of the .gif file.

framerate numeric specifying the framerate of the .gif file. Defaults to 24 implying smooth
non-discrete frame transitions for the human eye.

speed numeric specifying the speed of the trajectories with regard to their original ve-
locity profile. I.e., a value of .5 shows trajectories in half of the original veloci-
ties, whereas a value of 2 shows trajectories in double of the original velocities.

density integer specifying the number of trajectories to be added each frame. I.e., if
density = 10, seconds = 10, framerate = 24 and speed = .5 then the anima-
tion will show 10 x 10 x 24 x .5 = 1200 trajectories.

jitter logical specifying whether the density should be jittered. If TRUE, density
varies according to rgeom (1/density).

remove logical specifying whether trajectories that reached their end points should be
removed from the rest of the animation. Defaults to FALSE implying that all
finished trajectories remain visible.

bg character string specifying the background color.

col character string specifying the foreground color, i.e., the color used to draw the
trajectories.

lwd numeric specifying the line width of the trajectories.

loop logical specifying whether gif should be looped. If FALSE (the default), the last
frame will remain visible after the animation is finished. If TRUE, the gif will
infinitely repeat itself.

bounds numeric vector specifying the xleft, xright, ybottom, and ytop limits of the an-
imation canvas. Defaults to NULL in which case the animation canvas is set to
include all existing trajectory points, irrespective of how extreme they may be.

norm logical specifying whether the trajectories should be remapped to the mt-space.
See mt_align. Note that aligning often requires that that all trajectories are
flipped to one side first (see mt_remap_symmetric).

upscale numeric specifying a scaling factor for the animation resolution. E.g, upscale
= 2 implies that the x-resolution in .gif file is 2*xres.

decay numeric defining a within-trajectory gradient of color intensity. Specifically,
values larger than 1 will give more recent movements higher color intensities
than movements that lie longer in the past, and vice versa.

26 mt_animate

max_intensity numeric specifying the maximum color intensity. A value of, e.g., 5, implies
that color intensity is limited to 5 overlapping trajectories. I.e., a point at which
4 trajectories overlap will in that case have a smaller color intensity than a point
at which 5 trajectories overlap, but there will be no difference between the latter
and a point at which 6 trajectories overlap. If decay is unequal 1, this metric
refers to the most intense color point within the trajectory.

discard_images logical specifying whether the temporary folder containing the temporary .png
images should be deleted. Defaults to TRUE.

im_path character string specifying the location of ImageMagick’s convert function. If
NULL, the convert function is expected in '/usr/local/bin/convert', the de-
fault location for Linux and OSX operating systems. The location has to be
specified explicitly for Windows (see Details and Examples).

parallel logical specifying whether the temporary .png images should be created using
parallel processing (uses clusterApplyLB). Process will be run on the maximum
number of available cores (as determined by detectCores).

verbose logical indicating whether function should report its progress.

Details

mt_animate produces a .gif file showing a continuous stream of animated trajectories. The func-
tion first produces a series of .png images, which then are combined into a .gif animation using
ImageMagick (see https://www.imagemagick.org/).

In order to run this function, ImageMagick must be installed (download from https://www.imagemagick.
org/). Under Unix systems (Linux and Apple’s OSX) the function will look for ImageMagick using
its default installation path. Alternatively, the location of ImageMagick’s convert function can be
provided using the im_path argument. Under Windows, im_path must always be specified explic-
itly (e.g., it might look something like this im_path = "C:/Program Files/ImageMagick-7.0.5-Q16/convert.exe").

During the animation trajectories are sampled from the data without replacement. The function
stops when it reaches the last trajectory contained in data.

By default, mt_animate animates trajectories using the original timestamps. Timestamps are ex-
pected to be expressed in milliseconds. By setting timestamps = NULL, the function can also assume
timestamps to be regular, i.e., of constant interval, in this case the longest duration is set to exactly
one second.

In order to create high-resolution (large) animations in a relatively short time increase upscale in
favor of xres. However, note that this will decrease the sharpness of the image.

In order to increase or decrease the overall color intensity decrease or increase the max_intensity,
respectively.

Author(s)

Dirk U. Wulff

Examples

Not run:
Preprocess trajectory data
mt_example <- mt_align_start(mt_example)

https://www.imagemagick.org/
https://www.imagemagick.org/
https://www.imagemagick.org/

mt_average 27

mt_example <- mt_remap_symmetric(mt_example)

Create animated trajectory gif
(under Linux / OSX)
mt_animate(mt_example,filename = "MyMovie.gif")

Increase duration and density while decreasing speed
mt_animate(mt_example, filename = "MyMovie2.gif",

seconds = 10, speed = .3, density = 10)

Create animated trajectory gif
(under Windows - ImageMagick version specific example)
mt_animate(mt_example,filename = "MyMovie.gif",

im_path = "C:/Program Files/ImageMagick-7.0.5-Q16/convert.exe")

End(Not run)

mt_average Average trajectories across intervals.

Description

Average trajectory data across specified intervals (e.g., constant time intervals). For every specified
dimension in the trajectory array (by default, every dimension, i.e., x- and y-position, possibly also
velocity and acceleration etc.), the mean value for the respective interval is calculated (see Details
for information regarding the exact averaging procedure).

Usage

mt_average(
data,
use = "trajectories",
save_as = "av_trajectories",
dimensions = "all",
av_dimension = "timestamps",
intervals = NULL,
interval_size = 100,
max_interval = NULL,
verbose = FALSE

)

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

28 mt_average

use a character string specifying which trajectory data should be used.

save_as a character string specifying where the resulting trajectory data should be stored.

dimensions a character vector specifying the dimensions in the trajectory array that should
be averaged. By default ("all"), all trajectory dimensions will be averaged.

av_dimension a character string specifying which values should be used for determining the
intervals for averaging ("timestamps" by default).

intervals an optional numeric vector. If specified, these values are taken as the borders of
the intervals (interval_size and max_interval are ignored).

interval_size an integer specifying the size of the constant dimension interval.

max_interval an integer specifying the upper limit of the last dimension value that should be
included (therefore, it should be a multiple of the interval_size). If specified,
only values will be used for averaging where the dimension values are smaller
than max_interval. If unspecified (the default), all values will be included.

verbose logical indicating whether function should report its progress.

Details

For each interval, it is first determined which of the values lie within the respective interval of the
dimension used for averaging (e.g., timestamps). Intervals are left-open, right-closed (e.g., if values
are averaged across constant timestamps of 100 ms, a timestamp of 1200 would be included in
the interval 1100-1200 while a timestamp of 1300 would be included in the interval 1200-1300).
Then, all values for which the corresponding average dimension values lie within the interval are
averaged.

In case the last interval is not fully covered (e.g., if the last timestamp has the value 1250), values
for the corresponding interval (1200-1300) will be computed based on the average of the values up
to the last existing value.

Note that mt_average assumes that the trajectory variables are recorded with a constant sampling
rate (i.e., with a constant difference in the timestamps). If the sampling rate varies considerably,
mt_resample should be called before averaging to arrive at equally spaced timestamps. The sam-
pling rate can be investigated using mt_check_resolution.

If average velocity and acceleration are of interest, mt_derivatives should be called before averaging.

Value

A mousetrap data object (see mt_example) with an additional array (by default called av_trajectories)
that contains the average trajectory data per dimension interval. If a trajectory array was provided
directly as data, only the average trajectories will be returned.

For the dimension values used for averaging (specified in av_dimension), the mid point of the
respective interval is reported, which is helpful for plotting the trajectory data later on. However,
this value does not necessarily correspond to the empirical mean of the dimension values in the
interval.

Author(s)

Pascal J. Kieslich

Felix Henninger

mt_bind 29

See Also

mt_derivatives for calculating velocity and acceleration.

mt_resample for resampling trajectories using a constant time interval.

Examples

mt_example <- mt_derivatives(mt_example)

average trajectories across 100 ms intervals
mt_example <- mt_average(mt_example, save_as="av_trajectories",

interval_size=100)

average time-normalized trajectories across specific intervals
of the time steps
mt_example <- mt_time_normalize(mt_example)
mt_example <- mt_average(mt_example,

use="tn_trajectories", save_as="av_tn_trajectories",
av_dimension = "steps", intervals = c(0.5,33.5,67.5,101.5))

mt_bind Join two trajectory arrays

Description

Join two trajectory arrays. This function is mainly used internally, but can be helpful in those
(relatively rare) occasions where additional processed trajectory data should be added to another
trajectory array.

Usage

mt_bind(trajectories1, trajectories2, verbose = FALSE)

Arguments

trajectories1 a trajectory array (see mt_example).

trajectories2 a trajectory array (see mt_example).

verbose logical indicating whether function should report its progress.

Value

A trajectory array.

Author(s)

Pascal J. Kieslich

Felix Henninger

30 mt_check_bimodality

Examples

trajectories_combined <- mt_bind(
mt_example$trajectories,
mt_prototypes

)

mt_check_bimodality Assess bimodality of mouse-tracking measure distributions.

Description

Assess bimodality of the distribution of mouse-tracking measures using the bimodality coefficient
and Hartigan’s dip statistic (see Details). If bimodality should be assessed separately for different
conditions, the corresponding variables can be specified under grouping_variables.

Usage

mt_check_bimodality(
data,
use = "measures",
use_variables = NULL,
methods = c("BC", "HDS"),
B = 2000,
grouping_variables = NULL,
...

)

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details).

use a character string specifying which data should be used. By default, points to
the measures data.frame created using mt_measures.

use_variables a vector specifying for which mouse-tracking measures bimodality should be
assessed.

methods a character string (or vector) specifying which methods should be used for as-
sessing bimodality (see Details).

B an integer specifying the number of replicates used in the Monte Carlo test (only
relevant if "HDS_sim" is included in methods, see Details).

grouping_variables

a character string (or vector) specifying one or more variables in data[["data"]].
If specified, bimodality will be assessed separately for each level of the variable.
If unspecified (the default), bimodality is checked across all trials.

... additional arguments passed on to mt_reshape (such as subset).

mt_check_bimodality 31

Details

Different methods have been suggested for assessing the bimodality of mouse-tracking measure
distributions, each of which has advantages and disadvantages (see Freeman & Dale, 2013).

Hehman et al. (2015) focus on two specific methods (bimodality coefficient and Hartigan’s dip
statistic) which are implemented here.

If methods include BC, the bimodality coefficient is calculated using the bimodality_coefficient
function in this package. According to Freeman and Ambady (2010), a distribution is considered
bimodal if BC > 0.555.

Note that MouseTracker (Freeman & Ambady, 2010) standardizes variables within each subject
before computing the BC. This is also possible here using mt_standardize (see Examples).

If methods include HDS, Hartigan’s dip statistic is calculated using the dip.test function of the
diptest package. The corresponding p value (computed via linear interpolation) is returned.

If methods include HDS_sim, Hartigan’s dip statistic is calculated using the dip.test function with
the additional argument simulate.p.values=TRUE. In this case, the p value is computed from a
Monte Carlo simulation of a uniform distribution with B (default: 2000) replicates.

Value

A list of several data.frames. Each data.frame contains the value returned by the respective method
for assessing bimodality (see Details) - separately per condition (specified in the row dimension)
and measure (specified in the column dimension).

Author(s)

Pascal J. Kieslich

Felix Henninger

References

Freeman, J. B., & Ambady, N. (2010). MouseTracker: Software for studying real-time mental
processing using a computer mouse-tracking method. Behavior Research Methods, 42(1), 226-241.

Freeman, J. B., & Dale, R. (2013). Assessing bimodality to detect the presence of a dual cognitive
process. Behavior Research Methods, 45(1), 83-97.

Hehman, E., Stolier, R. M., & Freeman, J. B. (2015). Advanced mouse-tracking analytic techniques
for enhancing psychological science. Group Processes & Intergroup Relations, 18(3), 384-401.

See Also

bimodality_coefficient for more information about the bimodality coefficient.

dip.test for more information about Hartigan’s dip test.

Examples

Calculate measures
mt_example <- mt_measures(mt_example)

32 mt_check_resolution

Assess bimodality for untransformed variables
mt_check_bimodality(mt_example,

use_variables=c("MAD", "AD"))

Standardize variables per participant
mt_example <- mt_standardize(mt_example,

use_variables=c("MAD", "AD"), within="subject_nr")

Assess bimodality for standardized variables
mt_check_bimodality(mt_example,

use_variables=c("z_MAD", "z_AD"))

Assess bimodality with simulated p values for HDS
mt_check_bimodality(mt_example,

use_variables=c("z_MAD", "z_AD"),
methods=c("BC", "HDS_sim"))

Assess bimodality per condition
mt_check_bimodality(mt_example,

use_variables=c("z_MAD", "z_AD"),
grouping_variables="Condition")

mt_check_resolution Check logging resolution by looking at timestamp differences.

Description

mt_check_resolution computes the timestamp differences as a measure of the logging resolution.
It provides various descriptive statistics to check the logging resolution.

Usage

mt_check_resolution(
data,
use = "trajectories",
timestamps = "timestamps",
desired = NULL,
digits = NULL

)

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

use a character string specifying which trajectory data should be used.

timestamps a character string specifying the trajectory dimension containing the timestamps.

mt_cluster 33

desired an optional integer. If specified, additional statistics are computed concerning
the (relative) frequencies with which exactly the desired timestamp difference
(with tolerance 1e-12) occurred.

digits an optional integer. If specified, timestamps will be rounded before performing
any checks. Potentially useful if timestamps are recorded with submillisecond
precision.

Details

If mouse-tracking experiments are conducted using the mousetrap plug-ins for OpenSesame, the
logging resolution can be specified explicitly in the experiment under "Logging resolution", which
corresponds to the delay (in milliseconds) between recordings of the mouse position. By default,
mouse positions are recorded every 10 ms (corresponding to a 100 Hz sampling rate). As the
actual resolution achieved depends on the performance of the hardware, it makes sense to check the
logging resolution using mt_check_resolution. Note that delays smaller than the specified delay
typically result from mouse clicks in the experiment.

Value

A list with various descriptive statistics. For convenience, the relative frequencies are rounded to 4
decimal places.

Author(s)

Pascal J. Kieslich

Felix Henninger

Examples

mt_check_resolution(mt_example)

mt_cluster Cluster trajectories.

Description

Performs trajectory clustering. It first computes distances between each pair of trajectories and then
applies off-the-shelf clustering tools to explain the resulting dissimilarity matrix using a predefined
number of clusters.

34 mt_cluster

Usage

mt_cluster(
data,
use = "ln_trajectories",
save_as = "clustering",
dimensions = c("xpos", "ypos"),
n_cluster = 5,
method = "hclust",
weights = rep(1, length(dimensions)),
pointwise = TRUE,
minkowski_p = 2,
hclust_method = "ward.D",
kmeans_nstart = 10,
na_rm = FALSE,
cluster_output = FALSE,
verbose = FALSE

)

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

use a character string specifying which trajectory data should be used.

save_as a character string specifying where the resulting data should be stored.

dimensions a character vector specifying which trajectory variables should be used. Can be
of length 2 or 3, for two-dimensional or three-dimensional trajectories respec-
tively.

n_cluster an integer specifying the number of clusters to estimate.

method character string specifying the clustering procedure. Either hclust (the default)
or kmeans.

weights numeric vector specifying the relative importance of the variables specified in
dimensions. Defaults to a vector of 1s implying equal importance. Technically,
each variable is rescaled so that the standard deviation matches the correspond-
ing value in weights. To use the original variables, set weights = NULL.

pointwise boolean specifying the way in which dissimilarity between the trajectories is
measured. If TRUE (the default), mt_distmat measures the average dissimilarity
and then sums the results. If FALSE, mt_distmat measures dissimilarity once
(by treating the various points as independent dimensions). This is only relevant
if method is "hclust". See mt_distmat for further details.

minkowski_p an integer specifying the distance metric for the cluster solution. minkowski_p
= 1 computes the city-block distance, minkowski_p = 2 (the default) computes
the Euclidian distance, minkowski_p = 3 the cubic distance, etc. Only relevant
if method is "hclust". See mt_distmat for further details.

hclust_method character string specifying the linkage criterion used. Passed on to the method
argument of hclust. Default is set to ward.D. Only relevant if method is "hclust".

mt_cluster 35

kmeans_nstart integer specifying the number of reruns of the kmeans procedure. Larger num-
bers minimize the risk of finding local minima. Passed on to the nstart argu-
ment of kmeans. Only relevant if method is "kmeans".

na_rm logical specifying whether trajectory points containing NAs should be removed.
Removal is done column-wise. That is, if any trajectory has a missing value at,
e.g., the 10th recorded position, the 10th position is removed for all trajectories.
This is necessary to compute distance between trajectories.

cluster_output logical. If FALSE (the default), the mousetrap data object with the cluster assign-
ments is returned (see Value). If TRUE, the output of the cluster method (kmeans
or hclust) is returned directly.

verbose logical indicating whether function should report its progress.

Details

mt_cluster uses off-the-shelf clustering tools, i.e., hclust and kmeans, for cluster estimation. Clus-
ter estimation using hclust relies on distances computed by mt_distmat.

Mouse trajectories often occur in distinct, qualitative types (see Wulff et al., 2019; Wulff et al.,
2021). Common trajectory types are linear trajectories, mildly and strongly curved trajctories, and
single and multiple change-of-mind trials (see also mt_map). mt_cluster can tease these types
apart.

mt_cluster uses hclust or kmeans to explain the distances between every pair of trajectories using
a predefined number of clusters. If method is "hclust", mt_cluster computes the dissimiliarity
matrix for all trajectory pairs using mt_distmat. If method is "kmeans", this is done internally by
kmeans.

We recommend setting method to hclust using ward.D as the linkage criterion (via hclust_method).
Relative to kmeans, the other implemented clustering method, and other linkage criteria, this setup
handles the skewed distribution cluster sizes and trajectory outliers found in the majority of datasets
best.

For clustering trajectories, it is often useful that the endpoints of all trajectories share the same direc-
tion, e.g., that all trajectories end in the top-left corner of the coordinate system (mt_remap_symmetric
or mt_align can be used to achieve this). Furthermore, it is recommended to use length normalized
trajectories (see mt_length_normalize; Wulff et al., 2019).

Value

A mousetrap data object (see mt_example) with an additional data.frame added to it (by default
called clustering) that contains the cluster assignments. If a trajectory array was provided directly
as data, only the clustering data.frame will be returned.

Author(s)

Dirk U. Wulff

Jonas M. B. Haslbeck

36 mt_cluster_k

References

Wulff, D. U., Haslbeck, J. M. B., Kieslich, P. J., Henninger, F., & Schulte-Mecklenbeck, M. (2019).
Mouse-tracking: Detecting types in movement trajectories. In M. Schulte-Mecklenbeck, A. Küh-
berger, & J. G. Johnson (Eds.), A Handbook of Process Tracing Methods (pp. 131-145). New York,
NY: Routledge.

Wulff, D. U., Haslbeck, J. M. B., & Schulte-Mecklenbeck, M. (2021). Measuring the (dis-)continuous
mind: What movement trajectories reveal about cognition. Manuscript in preparation.

See Also

mt_distmat for more information about how the distance matrix is computed when the hclust method
is used.

mt_cluster_k for estimating the optimal number of clusters.

Examples

Length normalize trajectories
KH2017 <- mt_length_normalize(KH2017)

Cluster trajectories
KH2017 <- mt_cluster(KH2017, use="ln_trajectories")

Plot clustered trajectories
mt_plot(KH2017,use="ln_trajectories",

use2="clustering",facet_col="cluster")

mt_cluster_k Estimate optimal number of clusters.

Description

Estimates the optimal number of clusters (k) using various methods.

Usage

mt_cluster_k(
data,
use = "ln_trajectories",
dimensions = c("xpos", "ypos"),
kseq = 2:15,
compute = c("stability", "gap", "jump", "slope"),
method = "hclust",
weights = rep(1, length(dimensions)),
pointwise = TRUE,
minkowski_p = 2,
hclust_method = "ward.D",

mt_cluster_k 37

kmeans_nstart = 10,
n_bootstrap = 10,
model_based = FALSE,
n_gap = 10,
na_rm = FALSE,
verbose = FALSE

)

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

use a character string specifying which trajectory data should be used.

dimensions a character vector specifying which trajectory variables should be used. Can be
of length 2 or 3, for two-dimensional or three-dimensional trajectories respec-
tively.

kseq a numeric vector specifying set of candidates for k. Defaults to 2:15, implying
that all values of k within that range are compared using the metrics specified in
compute.

compute character vector specifying the to be computed measures. Can be any subset of
c("stability","gap","jump","slope").

method character string specifying the type of clustering procedure for the stability-
based method. Either hclust or kmeans.

weights numeric vector specifying the relative importance of the variables specified in
dimensions. Defaults to a vector of 1s implying equal importance. Technically,
each variable is rescaled so that the standard deviation matches the correspond-
ing value in weights. To use the original variables, set weights = NULL.

pointwise boolean specifying the way in which dissimilarity between the trajectories is
measured. If TRUE (the default), mt_distmat measures the average dissimilarity
and then sums the results. If FALSE, mt_distmat measures dissimilarity once
(by treating the various points as independent dimensions). This is only relevant
if method is "hclust". See mt_distmat for further details.

minkowski_p an integer specifying the distance metric for the cluster solution. minkowski_p
= 1 computes the city-block distance, minkowski_p = 2 (the default) computes
the Euclidian distance, minkowski_p = 3 the cubic distance, etc. Only relevant
if method is "hclust". See mt_distmat for further details.

hclust_method character string specifying the linkage criterion used. Passed on to the method
argument of hclust. Default is set to ward.D. Only relevant if method is "hclust".

kmeans_nstart integer specifying the number of reruns of the kmeans procedure. Larger num-
bers minimize the risk of finding local minima. Passed on to the nstart argu-
ment of kmeans. Only relevant if method is "kmeans".

n_bootstrap an integer specifying the number of bootstrap comparisons used by stability.
See cStability.

38 mt_cluster_k

model_based boolean specifying whether the model-based or the model-free should be used
by stability, when method is kmeans. See cStability and Haslbeck & Wulff
(2020).

n_gap integer specifying the number of simulated datasets used by gap. See Tibshirani
et al. (2001).

na_rm logical specifying whether trajectory points containing NAs should be removed.
Removal is done column-wise. That is, if any trajectory has a missing value at,
e.g., the 10th recorded position, the 10th position is removed for all trajectories.
This is necessary to compute distance between trajectories.

verbose logical indicating whether function should report its progress.

Details

mt_cluster_k estimates the number of clusters (k) using four commonly used k-selection methods
(specified via compute): cluster stability (stability), the gap statistic (gap), the jump statistic
(jump), and the slope statistic (slope).

Cluster stability methods select k as the number of clusters for which the assignment of objects to
clusters is most stable across bootstrap samples. This function implements the model-based and
model-free methods described by Haslbeck & Wulff (2020). See references.

The remaining three methods select k as the value that optimizes the gap statistic (Tibshirani,
Walther, & Hastie, 2001), the jump statistic (Sugar & James, 2013), and the slope statistic (Fu-
jita, Takahashi, & Patriota, 2014), respectively.

For clustering trajectories, it is often useful that the endpoints of all trajectories share the same direc-
tion, e.g., that all trajectories end in the top-left corner of the coordinate system (mt_remap_symmetric
or mt_align can be used to achieve this). Furthermore, it is recommended to use length normalized
trajectories (see mt_length_normalize; Wulff et al., 2019).

Value

A list containing two lists that store the results of the different methods. kopt contains the estimated
k for each of the methods specified in compute. paths contains the values for each k in kseq as
computed by each of the methods specified in compute. The values in kopt are optima for each of
the vectors in paths.

Author(s)

Dirk U. Wulff

Jonas M. B. Haslbeck

References

Haslbeck, J. M. B., & Wulff, D. U. (2020). Estimating the Number of Clusters via a Corrected
Clustering Instability. Computational Statistics, 35, 1879–1894.

Wulff, D. U., Haslbeck, J. M. B., Kieslich, P. J., Henninger, F., & Schulte-Mecklenbeck, M. (2019).
Mouse-tracking: Detecting types in movement trajectories. In M. Schulte-Mecklenbeck, A. Küh-
berger, & J. G. Johnson (Eds.), A Handbook of Process Tracing Methods (pp. 131-145). New York,
NY: Routledge.

mt_count 39

Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a data set via
the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(2),
411-423.

Sugar, C. A., & James, G. M. (2013). Finding the number of clusters in a dataset. Journal of the
American Statistical Association, 98(463), 750-763.

Fujita, A., Takahashi, D. Y., & Patriota, A. G. (2014). A non-parametric method to estimate the
number of clusters. Computational Statistics & Data Analysis, 73, 27-39.

See Also

mt_distmat for more information about how the distance matrix is computed when the hclust method
is used.

mt_cluster for performing trajectory clustering with a specified number of clusters.

Examples

Not run:
Length normalize trajectories
KH2017 <- mt_length_normalize(KH2017)

Find k
results <- mt_cluster_k(KH2017, use="ln_trajectories")

Retrieve results
results$kopt
results$paths

End(Not run)

mt_count Count number of observations.

Description

Count number of observations per trial for a specified dimension (or several) in the trajectory array.
This is mostly a helper function used by other functions in this package.

Usage

mt_count(data, use = "trajectories", save_as = "measures", dimensions = "xpos")

40 mt_derivatives

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

use a character string specifying which trajectory data should be used.

save_as a character string specifying where the resulting trajectory data should be stored.

dimensions a character vector specifying the name of the dimension(s) that should be used
for counting the number of observations. If several dimensions are specified, the
number of complete observations are reported.

Value

A mousetrap data object (see mt_example).

If a data.frame with label specified in save_as (by default "measures") already exists, the number
of observations (called nobs) are added as additional column. If not, an additional data.frame will
be added.

If a trajectory array was provided directly as data, only a named character vector will be returned.

Author(s)

Pascal J. Kieslich

Examples

Retrieve vector that counts number of observations
mt_count(mt_example$trajectories)

mt_derivatives Calculate distance, velocity, and acceleration.

Description

Calculate distance traveled, velocity, and acceleration for each logged position. Distance is calcu-
lated as the Euclidean distance between successive coordinates, and velocity as distance covered
per time interval. The acceleration denotes the difference in absolute velocity, again normalized per
time.

Usage

mt_derivatives(
data,
use = "trajectories",
save_as = use,
dimensions = c("xpos", "ypos"),
timestamps = "timestamps",

mt_derivatives 41

prefix = "",
absolute = FALSE,
return_delta_time = FALSE,
verbose = FALSE

)

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

use a character string specifying which trajectory data should be used.

save_as a character string specifying where the resulting trajectory data should be stored.

dimensions a character vector specifying across which dimension(s) distances, velocity, and
acceleration are calculated. By default (c("xpos","ypos")), they are calcu-
lated across both x and y dimensions. Alternatively, only one dimension can be
specified, e.g., "xpos" or "ypos".

timestamps a character string specifying the trajectory dimension containing the timestamps.

prefix an optional character string that is added as a prefix to the to be created new
trajectory dimensions.

absolute logical indicating if absolute values for distances and velocities should be re-
ported. Only relevant if a single dimension is specified in dimensions (see
Details).

return_delta_time

logical indicating if the timestamp differences should be returned as well (as
"delta_time").

verbose logical indicating whether function should report its progress.

Details

Distances, velocities and acceleration are computed as follows:

The first entry in each respective vector is always zero. Each subsequent entry thus represents the
Euclidean distance traveled since the previous recorded set of coordinates and the velocity with
which the movement between both samples took place. Thus, both distance and velocity represent
the intervening period between the previous sample and the one with which the numeric value is
saved.

The acceleration, by contrast, denotes the change in absolute velocity between two adjacent periods.
Because of this, it is shifted forward to best match the actual time point at which the acceleration
was measured. Because there will always be one less value computed for acceleration than for
velocity, the final value in the acceleration vector has been padded with an NA.

If the distance is calculated across both horizontal and vertical (x and y) dimensions, distance and
velocity is always positive (or 0). If only one dimension is used, by default (absolute=FALSE),
increases in x (or y) values result in positive distances and velocity values, decreases in negative
distances and velocity values. If absolute=TRUE, absolute values for distance and velocity are
reported.

42 mt_deviations

Value

A mousetrap data object (see mt_example) with Euclidian distance, velocity, and acceleration added
as additional variables to the trajectory array (called dist, vel, and acc, if no prefix was specified).
If the trajectory array was provided directly as data, only the trajectory array will be returned.

Author(s)

Pascal J. Kieslich

Felix Henninger

See Also

mt_average for averaging trajectories across constant time intervals.

mt_measures for calculating per-trial mouse-tracking measures.

Examples

Calculate derivatives looking at movement
across both dimensions
mt_example <- mt_derivatives(mt_example)

Calculate derivatives only looking at movement along x dimension
reporting absolute values for distance and velocity
mt_example <- mt_derivatives(mt_example,

dimensions="xpos", absolute=TRUE)

mt_deviations Calculate deviations from idealized trajectory.

Description

Calculate the idealized trajectory and the perpendicular deviations of the actual trajectory from it
for each logged position.

Usage

mt_deviations(
data,
use = "trajectories",
save_as = use,
dimensions = c("xpos", "ypos"),
start_ideal = NULL,
end_ideal = NULL,
prefix = "",
verbose = FALSE

)

mt_deviations 43

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

use a character string specifying which trajectory data should be used.
save_as a character string specifying where the resulting trajectory data should be stored.
dimensions a character vector specifying the two dimensions in the trajectory array that

contain the mouse positions. By default (c("xpos","ypos")), the x- and y-
positions are used.

start_ideal an optional vector specifying the start position (see Example). If specified, this
position will be used as the starting point of the idealized trajectory (instead of
the actual starting point).

end_ideal an optional vector specifying the end position (see Example). If specified, this
position will be used as the end point of the idealized trajectory (instead of the
actual end point).

prefix an optional character string that is added as a prefix to the to be created new
trajectory dimensions.

verbose logical indicating whether function should report its progress.

Details

The idealized trajectory is defined as the straight line connecting the start and end point of the
actual trajectory (e.g., Freeman & Ambady, 2010). The deviation for each position is calculated as
the perpendicular deviation of the actual trajectory from the idealized trajectory.

If a deviation occurs above the direct path, this is denoted by a positive value. If it occurs below the
direct path, this is denoted by a negative value. This assumes that the complete movement in the
trial was from bottom to top (i.e., the end point has a higher y-position than the start points). In case
the movement was from top to bottom, mt_deviations automatically flips the signs. Note that the
second dimension specified in dimensions is used for determining all this.

Value

A mousetrap data object (see mt_example) where the positions of the idealized trajectory (by default
called xpos_ideal and ypos_ideal) and the perpendicular deviations of the actual trajectory from
the idealized trajectory (by default called dev_ideal) have been added as additional variables to
the trajectory array. If the trajectory array was provided directly as data, only the trajectory array
will be returned.

Author(s)

Pascal J. Kieslich

Felix Henninger

References

Freeman, J. B., & Ambady, N. (2010). MouseTracker: Software for studying real-time mental
processing using a computer mouse-tracking method. Behavior Research Methods, 42(1), 226-241.

44 mt_diffmap

See Also

mt_measures for calculating per-trial mouse-tracking measures.

Examples

Calculate deviations from idealized trajectory
(straight line connecting the start and end point of each trial)
mt_example <- mt_deviations(mt_example)

Calculate deviations from idealized trajectory with
constant start and end points across trials
mt_example <- mt_deviations(mt_example,

start_ideal=c(0,0), end_ideal=c(-665,974))

mt_diffmap Creates a difference-heatmap of two trajectory heatmap images.

Description

[Experimental]

mt_diffmap creates a difference-heatmap of the trajectory data using gaussian smoothing. Note
that this function has beta status.

Usage

mt_diffmap(
x,
y = NULL,
condition = NULL,
use = "trajectories",
dimensions = c("xpos", "ypos"),
use2 = "data",
filename = NULL,
bounds = NULL,
xres = 500,
upscale = 4,
smooth_radius = 10,
colors = c("#00863F", "#000000", "#FF1900"),
n_shades = 1000,
plot = TRUE,
...,
verbose = TRUE

)

mt_diffmap 45

Arguments

x an object of class mousetrap), a trajectory object of class array, or an object of
class mt_heatmap_raw (as created by mt_heatmap_raw).

y an object of class mousetrap), a trajectory object of class array, or an object
of class mt_heatmap_raw (as created by mt_heatmap_raw). The class of y must
match the class of x, unless y is NULL.

condition either a character value specifying which variable codes the two conditions (in
x[[use2]]) that should be compared - or a vector matching the number of tra-
jectories in x[[use]] that has exactly two levels. mt_diffmap will create a
difference-heatmap comparing all trajectories between the two conditions. If
condition is specified, y will be ignored (unless x and y are of class heatmap_raw).

use a character string specifying which trajectory data should be used.

dimensions a character vector specifying the trajectory variables used to create the heatmap.
The first two entries are used as x and y-coordinates, the third, if provided, will
be added as color information.

use2 an optional character string specifying where the data that contain the condition
variable can be found. Defaults to "data" as x[["data"]] usually contains all
non mouse-tracking trial data.

filename a character string giving the name of the file. If NULL (the default), the R standard
device is used for plotting. Otherwise, the plotting device is inferred from the
file extension. Only supports devices tiff, png, pdf.

bounds numeric vector specifying the corners (xmin, ymin, xmax, ymax) of the plot
region. By default (bounds = NULL), bounds are determined based on the data
input.

xres an integer specifying the number of pixels along the x-dimension. An xres
of 1000 implies an 1000*N px, where N is determined so that the trajectories
aspect ratio is preserved (provided the bounds are unchanged).

upscale a numeric value by which the output resolution of the image is increased or
decreased. Only applies if device is one of tiff, png, or pdf.

smooth_radius a numeric value specifying the standard deviation of the gaussian smoothing. If
zero, smoothing is omitted.

colors a character vector specifying the colors used to color cases of image1 > image2,
image1 ~ image2, image1 < image2, respectively. Note that the colors are used
in that specific order. Defaults to c("#00863F", "#FFFFFF", "#FF1900") which
specifies a green-black-red color gradient.

n_shades integer specifying the number of shades for the color gradient between the first
and second, and the second and third color in colors.

plot logical specifying whether resulting image should be plotted (plot = TRUE, the
default). If (plot = FALSE), an object of class mt_object_raw is returned.

... arguments passed to mt_heatmap_raw.

verbose logical indicating whether function should report its progress.

46 mt_distmat

Details

mt_diffmap takes two objects that either contain trajectory heatmaps or from which trajectory
heatmaps can be computed. Difference-heatmaps are constructed analogously to mt_heatmap_raw.

Author(s)

Dirk U. Wulff
Pascal J. Kieslich

References

Wulff, D. U., Haslbeck, J. M. B., Kieslich, P. J., Henninger, F., & Schulte-Mecklenbeck, M. (2019).
Mouse-tracking: Detecting types in movement trajectories. In M. Schulte-Mecklenbeck, A. Küh-
berger, & J. G. Johnson (Eds.), A Handbook of Process Tracing Methods (pp. 131-145). New York,
NY: Routledge.
Kieslich, P. J., Henninger, F., Wulff, D. U., Haslbeck, J. M. B., & Schulte-Mecklenbeck, M. (2019).
Mouse-tracking: A practical guide to implementation and analysis. In M. Schulte-Mecklenbeck, A.
Kühberger, & J. G. Johnson (Eds.), A Handbook of Process Tracing Methods (pp. 111-130). New
York, NY: Routledge.

See Also

mt_heatmap and mt_heatmap_ggplot for plotting trajectory heatmaps.

Examples

mt_diffmap(KH2017, condition="Condition",
xres=400, smooth_radius=6, n_shades=5)

mt_distmat Compute distance matrix.

Description

Computes the point- or vector-wise dissimilarity between each pair of trajectories.

Usage

mt_distmat(
data,
use = "ln_trajectories",
save_as = "distmat",
dimensions = c("xpos", "ypos"),
weights = rep(1, length(dimensions)),
pointwise = TRUE,
minkowski_p = 2,
na_rm = FALSE

)

mt_distmat 47

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

use a character string specifying which trajectory data should be used.

save_as a character string specifying where the resulting data should be stored.

dimensions a character vector specifying which trajectory variables should be used. Can be
of length 2 or 3 for two-dimensional or three-dimensional trajectories respec-
tively.

weights numeric vector specifying the relative importance of the variables specified in
dimensions. Defaults to a vector of 1s implying equal importance. Technically,
each variable is rescaled so that the standard deviation matches the correspond-
ing value in weights. To use the original variables, set weights = NULL.

pointwise boolean specifying the way dissimilarity between the trajectories is measured
(see Details). If TRUE (the default), mt_distmat measures the average dissimi-
larity and then sums the results. If FALSE, mt_distmat measures dissimilarity
once (by treating the various points as independent dimensions).

minkowski_p an integer specifying the distance metric. minkowski_p = 1 computes the city-
block distance, minkowski_p = 2 (the default) computes the Euclidian distance,
minkowski_p = 3 the cubic distance, etc.

na_rm logical specifying whether trajectory points containing NAs should be removed.
Removal is done column-wise. That is, if any trajectory has a missing value at,
e.g., the 10th recorded position, the 10th position is removed for all trajectories.
This is necessary to compute distance between trajectories.

Details

mt_distmat computes point- or vector-wise dissimilarities between pairs of trajectories. Point-
wise dissimilarity refers to computing the distance metric defined by minkowski_p for every point
of the trajectory and then summing the results. That is, if minkowski_p = 2 the point-wise dis-
similarity between two trajectories, each defined by a set of x and y coordinates, is calculated as
sum(sqrt((x_i-x_j)^2 + (y_i-y_j)^2)). Vector-wise dissimilarity, on the other hand refers to
computing the distance metric once for the entire trajectory. That is, vector-wise dissimilarity is
computed as sqrt(sum((x_i-x_j)^2 + (y_i-y_j)^2)).

Value

A mousetrap data object (see mt_example) with an additional object added (by default called
distmat) containing the distance matrix. If a trajectory array was provided directly as data, only
the distance matrix will be returned.

Author(s)

Dirk U. Wulff

Jonas M. B. Haslbeck

48 mt_example

Examples

Length normalize trajectories
mt_example <- mt_length_normalize(mt_example)

Compute distance matrix
mt_example <- mt_distmat(mt_example, use="ln_trajectories")

mt_example A mousetrap data object.

Description

A data object of class "mousetrap" with example data created by importing mt_example_raw and
applying basic post-processing.

Usage

mt_example

Format

A mousetrap data object is a list containing at least the following objects:

• data: a data.frame containing the trial data (from which the mouse-tracking data columns
have been removed). More information about the content of the trial data in mt_example can
be found in mt_example_raw. The rownames of data correspond to the trial identifier. For
convenience, the trial identifier is also stored in an additional column called "mt_id".

• trajectories: an array containing the raw mouse-tracking trajectories. The first dimension
represents the different trials and the dimension names (which can be accessed using row-
names) correspond to the trial identifier (the same identifier that is used as the rownames in
data). The second dimension corresponds to the samples taken over time which are included
in chronological order. The third dimension corresponds to the different mouse-tracking vari-
ables (timestamps, x-positions, y-positions) which are usually called timestamps, xpos, and
ypos.

Some functions in this package (e.g., mt_time_normalize and mt_average) add additional trajectory
arrays (e.g., tn_trajectories and av_trajectories) to the mousetrap data object. Other func-
tions modify the existing arrays (e.g., mt_derivatives adds distance, velocity, and acceleration to an
existing dataset). Finally mt_measures adds an additional data.frame with mouse-tracking measures
to it.

Details

The raw data set was imported using mt_import_mousetrap. Trajectories were then remapped using
mt_remap_symmetric so that all trajectories end in the top-left corner and their starting point was
aligned using mt_align_start to a common value (0,0).

mt_example_raw 49

mt_example_raw Raw mouse-tracking dataset for demonstrations of the mousetrap
package

Description

An exemplary mouse-tracking dataset collected OpenSesame using the mousetrap plugin (Kieslich
& Henninger, 2017). A preprocessed (as opposed to raw) version of the same data can be found in
mt_example.

Usage

mt_example_raw

Format

A data.frame with 38 rows and 19 variables. The data.frame is based on the combined raw data
that were created using read_opensesame from the readbulk library. For ease of use, unnecessary
columns were excluded.

The variables included relate to the item that was presented (Exemplar), the answer categories
(Category1 and Category2), the subject identifier (subject_nr) the subjects’ response (response_get_response),
as well as the mouse-tracking variables (timestamps_get_response, xpos_get_response and
ypos_get_response). Besides, a number of additional variables are included, e.g., some variables
relating to the general settings of the experiment (e.g., the width and height of the screen in pixels).

Each mouse-tracking variable contains a list of values (separated by ’, ’)

• one entry for each recorded position of the mouse. The position coordinates are given in pixels,
such that values of zero for both xpos_get_response and ypos_get_response indicate that
the cursor is located in the center of the screen. Both variables increase in value as the mouse
moves toward the bottom right. Timestamps are given in milliseconds.

Details

The data stem from a study based on experiment 1 by Dale et al. (2007). In this experiment, partic-
ipants have to assign exemplars (e.g., "shark") to one of two categories (e.g., "fish" or "mammal")
by clicking on the button corresponding to the correct category. All exemplars and categories were
translated to and presented in German.

Across the 19 trials of the experiment, participants categorized 13 exemplars that were typical of
their category and 6 atypical exemplars for which this was not the case. For the atypical exemplars
(e.g., "whale"), the competing category ("fish") was selected to compete with the correct category
("mammal"). The hypothesis under investigation is whether participants’ mouse trajectories devi-
ate more towards the competing category for the atypical exemplars, indicating increased conflict
between the response options.

Please note that mt_example_raw should only be used for exploring the features of the mousetrap
package and not for any substantive analysis.

https://osdoc.cogsci.nl/
https://github.com/pascalkieslich/mousetrap-os
http://pascalkieslich.github.io/readbulk/

50 mt_exclude_finish

References

Kieslich, P. J., & Henninger, F. (2017). Mousetrap: An integrated, open-source mouse-tracking
package. Behavior Research Methods, 49(5), 1652-1667. doi: 10.3758/s134280170900z

Dale, R., Kehoe, C., & Spivey, M. J. (2007). Graded motor responses in the time course of catego-
rizing atypical exemplars. Memory & Cognition, 35(1), 15-28. doi: 10.3758/BF03195938

mt_exclude_finish Exclude phase without mouse movement at end of trial.

Description

Exclude a potential phase at the end of a trial where the mouse was not moved. The corresponding
samples (x- and y-positions and timestamps) in the trajectory data will be removed.

Usage

mt_exclude_finish(
data,
use = "trajectories",
save_as = use,
dimensions = c("xpos", "ypos"),
timestamps = "timestamps",
verbose = FALSE

)

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

use a character string specifying which trajectory data should be used.

save_as a character string specifying where the resulting trajectory data should be stored.

dimensions a character vector specifying the dimensions in the trajectory array that contain
the mouse positions.

timestamps a character string specifying the trajectory dimension containing the timestamps.

verbose logical indicating whether function should report its progress.

Details

mt_exclude_finish removes all samples (except the first) at the end of the trial during which the
mouse was not moved compared to its final position. It returns only x- and y-positions as well as
timestamps.

Please note that this operation may result in changes in several mouse-tracking measures, for exam-
ple, the response time (RT).

https://doi.org/10.3758/s13428-017-0900-z
https://doi.org/10.3758/BF03195938

mt_exclude_initiation 51

Value

A mousetrap data object (see mt_example) from which a potential phase without mouse movement
at the end of the trial was removed. If the trajectory array was provided directly as data, only the
trajectory array will be returned.

Author(s)

Pascal J. Kieslich

Dirk U. Wulff

See Also

mt_exclude_initiation for removing a potential initial phase without mouse movement.

Examples

mt_example <- mt_exclude_finish(mt_example,
save_as="mod_trajectories")

mt_exclude_initiation Exclude initial phase without mouse movement.

Description

Exclude the initial phase in a trial where the mouse was not moved. The corresponding samples (x-
and y-positions and timestamps) in the trajectory data will be removed.

Usage

mt_exclude_initiation(
data,
use = "trajectories",
save_as = use,
dimensions = c("xpos", "ypos"),
timestamps = "timestamps",
reset_timestamps = TRUE,
verbose = FALSE

)

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

use a character string specifying which trajectory data should be used.

save_as a character string specifying where the resulting trajectory data should be stored.

52 mt_exclude_initiation

dimensions a character vector specifying the dimensions in the trajectory array that contain
the mouse positions.

timestamps a character string specifying the trajectory dimension containing the timestamps.

reset_timestamps

logical indicating whether the timestamps should be reset after removing the
initial phase without movement (see Details).

verbose logical indicating whether function should report its progress.

Details

mt_exclude_initiation removes all samples (x- and y-positions as well as timestamps) at the
beginning of the trial during which the mouse was not moved from its initial position. The last
unchanged sample is retained in the data.

If reset_timestamps == TRUE (the default), it subtracts the last timestamp before a movement
occurs from all timestamps , so that the series of timestamps once more begin with zero. If the
argument is set to FALSE, the values of the timestamps are unchanged.

Please note that resetting the timestamps will result in changes in several mouse-tracking measures,
notably those which report timestamps (e.g., MAD_time). Typically, however, these changes are
desired when using this function.

Value

A mousetrap data object (see mt_example) from which the initial phase without mouse movement
was removed. If the trajectory array was provided directly as data, only the trajectory array will be
returned.

Author(s)

Pascal J. Kieslich

Felix Henninger

See Also

mt_measures for calculating the initiation time.

mt_exclude_finish for removing a potential phase without mouse movement at the end of the trial.

Examples

mt_example <- mt_exclude_initiation(mt_example,
save_as="mod_trajectories")

mt_export_long 53

mt_export_long Export mouse-tracking data.

Description

mt_export_long and mt_export_wide can be used for exporting mouse-tracking data from a
mousetrap data object in long or wide format. If desired, additional data (stored in data[[use2]])
can be merged with the trajectory data before export. mt_export_long and mt_export_wide are
wrapper functions for mt_reshape.

Usage

mt_export_long(
data,
use = "trajectories",
use_variables = NULL,
use2 = "data",
use2_variables = NULL,
...

)

mt_export_wide(
data,
use = "trajectories",
use_variables = NULL,
use2 = "data",
use2_variables = NULL,
...

)

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

use a character string specifying which data should be exported. The corresponding
data are selected from data using data[[use]]. Usually, this value corresponds
to either "trajectories" or "tn_trajectories", depending on whether the raw or the
time-normalized trajectories should be exported.

use_variables a character vector specifying which mouse-tracking variables should be ex-
ported. This corresponds to the labels of the trajectory array dimensions. If
unspecified, all variables will be exported.

use2 an optional character string specifying where the other trial data can be found.
Defaults to "data" as data[["data"]] usually contains all non mouse-tracking
trial data. Alternatively, a data.frame can be provided directly.

54 mt_heatmap

use2_variables an optional character string (or vector) specifying the variables (in data[[use2]])
that should be merged with the data.

... additional arguments passed on to mt_reshape (such as subset).

Value

A data.frame containing the exported data.

Functions

• mt_export_long: Export mouse-tracking data in long format

• mt_export_wide: Export mouse-tracking data in wide format

Author(s)

Pascal J. Kieslich

Felix Henninger

See Also

mt_import_long for importing mouse-tracking data saved in a long format.

mt_import_wide for importing mouse-tracking data saved in a wide format.

Examples

Export data in long format
(and include information about condition and subject_nr)
mt_data_long <- mt_export_long(mt_example,

use2_variables=c("subject_nr","Condition"))

Export data in wide format
(and include information about condition and subject_nr)
mt_data_wide <- mt_export_wide(mt_example,

use2_variables=c("subject_nr","Condition"))

mt_heatmap Plot trajectory heatmap.

Description

[Experimental]

mt_heatmap plots high resolution raw trajectory maps. Note that this function has beta status.

mt_heatmap 55

Usage

mt_heatmap(
x,
use = "trajectories",
dimensions = c("xpos", "ypos"),
filename = NULL,
...,
upscale = 1,
plot_dims = FALSE,
verbose = TRUE

)

Arguments

x usually an object of class mousetrap. Alternatively, a trajectory array or an
object of class mt_heatmap_raw.

use a character string specifying which trajectory data should be used.

dimensions a character vector specifying the trajectory variables used to create the heatmap.
The first two entries are used as x and y-coordinates, the third, if provided, will
be added as color information.

filename a character string giving the name of the file. If NULL (the default), the R standard
device is used for plotting. Otherwise, the plotting device is inferred from the
file extension. Only supports devices tiff, png, pdf.

... arguments passed to mt_heatmap_raw.

upscale a numeric value by which the output resolution of the image is increased or
decreased. Only applies if device is one of tiff, png, or pdf.

plot_dims adds the coordinates of the four image corners to the plot. Helps setting bounds.

verbose logical indicating whether function should report its progress.

Details

mt_heatmap wraps mt_heatmap_raw and provides direct plotting output in tiff, png, pdf, or R’s
default window output. For further details on how the trajectory heatmaps are constructed, see
mt_heatmap_raw.

Author(s)

Dirk U. Wulff

References

Wulff, D. U., Haslbeck, J. M. B., Kieslich, P. J., Henninger, F., & Schulte-Mecklenbeck, M. (2019).
Mouse-tracking: Detecting types in movement trajectories. In M. Schulte-Mecklenbeck, A. Küh-
berger, & J. G. Johnson (Eds.), A Handbook of Process Tracing Methods (pp. 131-145). New York,
NY: Routledge.

Kieslich, P. J., Henninger, F., Wulff, D. U., Haslbeck, J. M. B., & Schulte-Mecklenbeck, M. (2019).
Mouse-tracking: A practical guide to implementation and analysis. In M. Schulte-Mecklenbeck, A.

56 mt_heatmap_ggplot

Kühberger, & J. G. Johnson (Eds.), A Handbook of Process Tracing Methods (pp. 111-130). New
York, NY: Routledge.

See Also

mt_heatmap_ggplot for plotting a trajectory heatmap using ggplot2.

mt_diffmap for plotting trajectory difference-heatmaps.

Examples

mt_heatmap(KH2017, xres=500, n_shades=5, mean_image=0.2)

mt_heatmap_ggplot Plot trajectory heatmap using ggplot.

Description

[Experimental]
mt_heatmap_ggplot plots high resolution raw trajectory maps. Note that this function has beta
status.

Usage

mt_heatmap_ggplot(
data,
use = "trajectories",
dimensions = c("xpos", "ypos"),
use2 = "data",
facet_row = NULL,
facet_col = NULL,
...

)

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

use a character string specifying which trajectory data should be used.

dimensions a character vector specifying the trajectory variables used to create the heatmap.
The first two entries are used as x and y-coordinates, the third, if provided, will
be added as color information.

use2 an optional character string specifying where the data that contain the variables
used for faceting can be found (in case these arguments are specified). Defaults
to "data" as data[["data"]] usually contains all non mouse-tracking trial data.

mt_heatmap_ggplot 57

facet_row an optional character string specifying a variable in data[[use2]] that should
be used for (row-wise) faceting.

facet_col an optional character string specifying a variable in data[[use2]] that should
be used for (column-wise) faceting.

... arguments passed to mt_heatmap_raw.

Details

mt_heatmap_ggplot wraps mt_heatmap_raw and returns a ggplot object containing the plot. In
contrast to mt_heatmap_plot plots created by mt_heatmap_ggplot can be extended using ggplot’s
+ operator. For further details on how the trajectory heatmaps are constructed, see mt_heatmap_raw.

Author(s)

Pascal J. Kieslich

Felix Henninger

Dirk U. Wulff

References

Wulff, D. U., Haslbeck, J. M. B., Kieslich, P. J., Henninger, F., & Schulte-Mecklenbeck, M. (2019).
Mouse-tracking: Detecting types in movement trajectories. In M. Schulte-Mecklenbeck, A. Küh-
berger, & J. G. Johnson (Eds.), A Handbook of Process Tracing Methods (pp. 131-145). New York,
NY: Routledge.

Kieslich, P. J., Henninger, F., Wulff, D. U., Haslbeck, J. M. B., & Schulte-Mecklenbeck, M. (2019).
Mouse-tracking: A practical guide to implementation and analysis. In M. Schulte-Mecklenbeck, A.
Kühberger, & J. G. Johnson (Eds.), A Handbook of Process Tracing Methods (pp. 111-130). New
York, NY: Routledge.

See Also

mt_heatmap for plotting a trajectory heatmap using base plots.

mt_diffmap for plotting trajectory difference-heatmaps.

Examples

mt_heatmap_ggplot(KH2017, xres=500, n_shades=5, mean_image=0.2)

58 mt_heatmap_raw

mt_heatmap_raw Creates high-resolution heatmap of trajectory data.

Description

[Experimental]
mt_heatmap_raw creates a high-resolution heatmap image of the trajectory data using gaussian
smoothing. Note that this function has beta status.

Usage

mt_heatmap_raw(
data,
use = "trajectories",
dimensions = c("xpos", "ypos"),
variable = NULL,
bounds = NULL,
xres = 1000,
upsample = 1,
norm = FALSE,
colors = c("black", "blue", "white"),
n_shades = c(1000, 1000),
smooth_radius = 1.5,
low_pass = 200,
auto_enhance = TRUE,
mean_image = 0.15,
mean_color = 0.25,
aggregate_lwd = 0,
aggregate_col = "black",
n_trajectories = NULL,
seed = NULL,
verbose = TRUE

)

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

use a character string specifying which trajectory data should be used.

dimensions a character vector specifying the trajectory variables used to create the heatmap.
The first two entries are used as x and y-coordinates, the third, if provided, will
be added as color information.

variable boolean or numeric vector matching the number of trajectories that if provided
will be used as color information. variable is only considered when length(dimensions)
< 3.

mt_heatmap_raw 59

bounds numeric vector specifying the corners (xmin, ymin, xmax, ymax) of the plot
region. By default (bounds = NULL), bounds are determined based on the data
input.

xres an integer specifying the number of pixels along the x-dimension. An xres
of 1000 implies an 1000*N px, where N is determined so that the trajectories
aspect ratio is preserved (provided the bounds are unchanged).

upsample a numeric value by which the number of points used to represent individual
trajectories are increased or decreased. Values of smaller than one will improve
speed but also introduce a certain level of granularity.

norm a logical specifying whether the data should be warped into standard space. If
norm = TRUE, this overrules bounds.

colors a character vector specifying two or three colors used to color the background,
the foreground (trajectories), and the values of a third dimension (if specified).

n_shades an integer specifying the number of shades for the color gradient between the
first and second, and the second and third color in colors.

smooth_radius a numeric value specifying the standard deviation of the gaussian smoothing. If
zero, smoothing is omitted.

low_pass an integer specifying the allowed number of counts per pixel. This arguments
limits the maximum pixel color intensity.

auto_enhance boolean. If TRUE (the default), the image is adjusted so that the mean color
intensity matches mean_image and mean_color.

mean_image a numeric value between 0 and 1 specifying the average foreground color inten-
sity across the entire image. Defaults to 0.1.

mean_color a numeric value between 0 and 1 specifying the average third dimension’s color
intensity across the entire image. Defaults to 0.1. Only relevant if a third dimen-
sion is specified in colors.

aggregate_lwd an integer specifying the width of the aggregate trajectory. If aggregate_lwd is
0 (the default), the aggregate trajectory is omitted.

aggregate_col a character value specifying the color of the aggregate trajectory.

n_trajectories an optional integer specifying the number of trajectories used to create the im-
age. By default, all trajectories are used. If n_trajectories is specified and
smaller than the number of trajectories in the trajectory array, then n_trajectories
are randomly sampled.

seed an optional integer specifying the seed used for the trajectory sampling.

verbose logical indicating whether function should report its progress.

Details

To create the image, mt_heatmap_raw takes the following steps. First, the function maps the trajec-
tory points to a pixel space with x ranging from 1 to xres and y ranging from 1 to xres divided by the
ratio of x and y’s value range. Second, the function counts and normalizes the number of trajectory
points occupying each of the x,y-pixels to yield image intensities between 0 and 1. Third, the func-
tion smooths the image using an approximative guassian approach governed by smooth_radius,

60 mt_import_long

which controls the dispersion of the gaussian smoothing. Fourth, the function automatically en-
hances the image (unless auto_enhance = FALSE) using a non-linear transformation in order to
yield a desired mean_image intensity. Fifth, the function translates the image intensity into color
using the colors specified in colors. Finally, the function returns the image data in a long format
containing the x, y, and color information.

mt_heatmap_raw also offers the possibility to overlay the heatmap with an additional variable,
such as for instance velocity, so that both the density of mouse trajectories and the information of
the additional variable are visible. In order to do this, specify a third variable label in dimensions
and control its appearance using the color and mean_color arguments.

Value

An object of class mt_object_raw containing in a matrix format the image’s pixel information, the
aggregate trajectory, and the colors.

Author(s)

Dirk U. Wulff

References

Wulff, D. U., Haslbeck, J. M. B., Kieslich, P. J., Henninger, F., & Schulte-Mecklenbeck, M. (2019).
Mouse-tracking: Detecting types in movement trajectories. In M. Schulte-Mecklenbeck, A. Küh-
berger, & J. G. Johnson (Eds.), A Handbook of Process Tracing Methods (pp. 131-145). New York,
NY: Routledge.

Kieslich, P. J., Henninger, F., Wulff, D. U., Haslbeck, J. M. B., & Schulte-Mecklenbeck, M. (2019).
Mouse-tracking: A practical guide to implementation and analysis. In M. Schulte-Mecklenbeck, A.
Kühberger, & J. G. Johnson (Eds.), A Handbook of Process Tracing Methods (pp. 111-130). New
York, NY: Routledge.

See Also

mt_heatmap and mt_heatmap_ggplot for plotting trajectory heatmaps.

mt_diffmap for plotting trajectory difference-heatmaps.

mt_import_long Import mouse-tracking data saved in long format.

Description

mt_import_long receives a data.frame in which mouse-tracking data are stored in long format, i.e.,
where one row contains the logging data (timestamp, x- and y-position etc.) at one specific point in
the trial. This is, for example, the case when exporting the trajectory data from the mousetrap pack-
age using mt_export_long. From this data.frame, mt_import_long creates a mousetrap data object
containing the trajectories and additional data for further processing within the mousetrap package.
Specifically, it returns a list that includes the trajectory data as an array (called trajectories),
and all other data as a data.frame (called data). This data structure can then be passed on to other
functions within this package (see mousetrap for an overview).

mt_import_long 61

Usage

mt_import_long(
raw_data,
xpos_label = "xpos",
ypos_label = "ypos",
zpos_label = NULL,
timestamps_label = "timestamps",
add_labels = NULL,
mt_id_label = "mt_id",
mt_seq_label = "mt_seq",
reset_timestamps = TRUE,
verbose = TRUE

)

Arguments

raw_data a data.frame in long format, containing the raw data.

xpos_label a character string specifying the column containing the x-positions.

ypos_label a character string specifying the column containing the y-positions.

zpos_label an optional character string specifying the column containing the z-positions.
timestamps_label

a character string specifying the column containing the timestamps. If no times-
tamps are found in the data, a timestamps variable with increasing integers will
be created (assuming equidistant time steps).

add_labels a character vector specifying columns containing additional mouse-tracking vari-
ables.

mt_id_label a character string (or vector) specifying the name of the column that provides
a unique ID for every trial (the trial identifier). If more than one variable name
is provided, a new ID variable will be created by combining the values of each
variable. The trial identifier will be set as the rownames of the resulting trajec-
tories and trial data, and additionally be stored in the column "mt_id" in the trial
data.

mt_seq_label a character string specifying the column that indicates the order of the logged
coordinates within a trial. If no column of the specified name is found in the
data.frame, the coordinates will be imported in the order in which they were
stored in raw_data.

reset_timestamps

logical indicating if the first timestamp should be subtracted from all timestamps
within a trial. Default is TRUE as it is recommended for all following analyses in
mousetrap.

verbose logical indicating whether function should report its progress.

Details

The default arguments are set so that no adjustments have to be made when importing a data.frame
that was created using mt_export_long.

62 mt_import_mousetrap

The coordinates are ordered according to the values in the column provided in the mt_seq_label
parameter (mt_seq by default). If the corresponding column does not exist, the coordinates will be
imported in the order in which they were stored in the raw_data.

If no timestamps are found in the data, mt_import_long automatically creates a timestamps vari-
able with increasing integers (starting with 0) assuming equally spaced sampling intervals.

Value

A mousetrap data object (see mt_example).

Author(s)

Pascal J. Kieslich

Felix Henninger

See Also

mt_import_mousetrap and mt_import_wide for importing mouse-tracking data in other formats.

Examples

Create data in long format for test purposes
mt_data_long <- mt_export_long(mt_example,

use2_variables=c("subject_nr","Condition"))

Import the data using mt_import_long
mt_data <- mt_import_long(mt_data_long)

Not run:
Import a hypothetical dataset that contains the
custom mouse-tracking variables angle and velocity
mt_data <- mt_import_long(exp_data,

add_labels= c("angle", "velocity"))

End(Not run)

mt_import_mousetrap Import mouse-tracking data recorded using the mousetrap plug-ins in
OpenSesame.

Description

mt_import_mousetrap accepts a data.frame of (merged) raw data from a mouse-tracking experi-
ment implemented in OpenSesame using the mousetrap plugin (Kieslich & Henninger, 2017). From
this data.frame, mt_import_mousetrap creates a mousetrap data object containing the trajectories
and additional data for further processing within the mousetrap package. Specifically, it returns

https://osdoc.cogsci.nl/
https://github.com/pascalkieslich/mousetrap-os

mt_import_mousetrap 63

a list that includes the trajectory data as an array (called trajectories), and all other data as a
data.frame (called data). This data structure can then be passed on to other functions within this
package (see mousetrap for an overview).

Usage

mt_import_mousetrap(
raw_data,
xpos_label = "xpos",
ypos_label = "ypos",
timestamps_label = "timestamps",
mt_id_label = NULL,
split = ",",
duplicates = "remove_first",
unordered = "warn",
reset_timestamps = TRUE,
digits = NULL,
verbose = FALSE

)

Arguments

raw_data a data.frame containing the raw data.

xpos_label a character string specifying the name of the column(s) in which the x-positions
are stored (see Details).

ypos_label a character string specifying the name of the column(s) in which the y-positions
are stored (see Details).

timestamps_label

a character string specifying the name of the column(s) in which the timestamps
are stored (see Details).

mt_id_label an optional character string (or vector) specifying the name of the column that
provides a unique ID for every trial (the trial identifier). If unspecified (the
default), an ID variable will be generated. If more than one variable name is
provided, a new ID variable will be created by combining the values of each
variable. The trial identifier will be set as the rownames of the resulting trajec-
tories and trial data, and additionally be stored in the column "mt_id" in the trial
data.

split a character string indicating how the different timestamps and coordinates within
a trial are separated.

duplicates a character string indicating how duplicate timestamps within a trial are handled
(see Details).

unordered a character string indicating how unordered (i.e., non-monotonically increasing)
timestamps within a trial are handled (see Details).

reset_timestamps

logical indicating if the first timestamp should be subtracted from all timestamps
within a trial. Default is TRUE as it is recommended for all following analyses in
mousetrap.

64 mt_import_mousetrap

digits an optional integer. If specified, timestamps will be rounded. Potentially useful
if timestamps are recorded with submillisecond precision.

verbose logical indicating whether function should report its progress.

Details

When working with mouse-tracking data that were recorded using the mousetrap plug-ins for
OpenSesame, usually only the raw_data need to be provided. All other arguments have sensible
defaults.

If the relevant timestamps, x-positions, and y-positions are each stored in one variable, a character
string specifying (parts of) the respective column name needs to be provided. In this case, the
column names are extracted using grep to find the column that starts with the respective character
string (in OpenSesame these will typically contain the name of the item that was used to record
them, such as xpos_get_response). This means that the exact column names do not have to be
provided - as long as only one column starts with the respective character string (otherwise, the
exact column names have to be provided).

If several variables contain the timestamps, x-positions, and y-positions within a trial (e.g., xpos_part1
and xpos_part2), a vector of the exact column names has to be provided (e.g., xpos_label=c("xpos_part1","xpos_part2")).
mt_import_mousetrap will then merge all raw data in the order with which the variable labels have
been specified. If one variable contains NAs or an empty string in a trial, these cases will be ignored
(this covers the special case that, e.g., xpos_part2 is only relevant for some trials and contains NAs
in the other trials).

duplicates allows for different options to handle duplicate timestamps within a trial:

• remove_first: First timestamp and corresponding x-/y-positions are removed (the default).

• remove_last: Last timestamp and corresponding x-/y-positions are removed.

• ignore: Duplicates are kept.

unordered allows for different options to handle unordered, that is, non-monotonically increasing
timestamps within a trial:

• warn: A warning is issued if unordered timestamps are encountered in a trial (the default).

• remove: Unordered timestamps within a trial are removed. This means that any timestamp that
is smaller than its predecessor will be removed along with the corresponding x-/y-position.

• ignore: Unordered timestamps are kept and no warning is issued.

Value

A mousetrap data object (see mt_example).

If mouse-tracking data were recorded using the mousetrap plug-ins for OpenSesame, the unit of the
timestamps is milliseconds.

Author(s)

Pascal J. Kieslich

Felix Henninger

mt_import_wide 65

References

Kieslich, P. J., & Henninger, F. (2017). Mousetrap: An integrated, open-source mouse-tracking
package. Behavior Research Methods, 49(5), 1652-1667. doi: 10.3758/s134280170900z

See Also

read_opensesame from the readbulk library for reading and combining raw data files that were
collected with OpenSesame.

mt_import_wide and mt_import_long for importing mouse-tracking data from other sources.

Examples

mt_data <- mt_import_mousetrap(mt_example_raw)

mt_import_wide Import mouse-tracking data saved in wide format.

Description

mt_import_wide receives a data.frame where mouse-tracking data are stored in wide format, i.e.,
where one row contains the data of one trial and every recorded mouse position and variable is saved
in a separate variable (e.g., X_1, X_2, ..., Y_1, Y_2, ...). This is, e.g., the case when collecting data
using MouseTracker (Freeman & Ambady, 2010). From this data.frame, mt_import_wide creates
a mousetrap data object containing the trajectories and additional data for further processing within
the mousetrap package. Specifically, it returns a list that includes the trajectory data as an array
(called trajectories), and all other data as a data.frame (called data). This data structure can
then be passed on to other functions within this package (see mousetrap for an overview).

Usage

mt_import_wide(
raw_data,
xpos_label = "X",
ypos_label = "Y",
zpos_label = NULL,
timestamps_label = "T",
add_labels = NULL,
mt_id_label = NULL,
pos_sep = "_",
pos_ids = NULL,
reset_timestamps = TRUE,
verbose = TRUE

)

https://doi.org/10.3758/s13428-017-0900-z
http://www.mousetracker.org/

66 mt_import_wide

Arguments

raw_data a data.frame containing the raw data.

xpos_label a character string specifying the core of the column labels containing the x-
positions (e.g., "X" for "X_1", "X_2", ...).

ypos_label a character string specifying the core of the column labels containing the y-
positions (e.g., "Y" for "Y_1", "Y_2", ...).

zpos_label a character string specifying the core of the column labels containing the z-
positions.

timestamps_label

an optional character string specifying the core of the column labels containing
the timestamps. If no timestamps are found in the data, a timestamps variable
with increasing integers will be created (assuming equidistant time steps).

add_labels a character vector specifying the core of columns containing additional mouse-
tracking variables.

mt_id_label an optional character string (or vector) specifying the name of the column that
provides a unique ID for every trial (the trial identifier). If unspecified (the
default), an ID variable will be generated. If more than one variable name is
provided, a new ID variable will be created by combining the values of each
variable. The trial identifier will be set as the rownames of the resulting trajec-
tories and trial data, and additionally be stored in the column "mt_id" in the trial
data.

pos_sep a character string indicating the character that connects the core label and the
position, (e.g., "_" for "X_1", "Y_1", ...).

pos_ids the vector of IDs used for indexing the x-coordinates, y-coordinates etc. (e.g.,
1:101 for time-normalized trajectories from MouseTracker). If unspecified (the
default), column labels for the respective variable will be extracted using grep
(see Details).

reset_timestamps

logical indicating if the first timestamp should be subtracted from all timestamps
within a trial. Default is TRUE as it is recommended for all following analyses in
mousetrap.

verbose logical indicating whether function should report its progress.

Details

mt_import_wide is designed to import mouse-tracking data saved in a wide format. The defaults
are set so that usually only the raw_data need to be provided when data have been collecting using
MouseTracker (Freeman & Ambady, 2010) and have been read into R using read_mt.

If no pos_ids are provided, column labels for the respective variable (e.g., x-positions) are ex-
tracted using grep returning all variables that start with the respective character string (e.g., "X_" if
xpos_label="X" and pos_sep="_").

If no timestamps are found in the data, mt_import_wide automatically creates a timestamps vari-
able with increasing integers (starting with 0) assuming equally spaced sampling intervals.

mt_length_normalize 67

Value

A mousetrap data object (see mt_example).

Author(s)

Pascal J. Kieslich

Felix Henninger

References

Freeman, J. B., & Ambady, N. (2010). MouseTracker: Software for studying real-time mental
processing using a computer mouse-tracking method. Behavior Research Methods, 42(1), 226-241.

See Also

read_mt for reading raw data that was collected using MouseTracker (Freeman & Ambady, 2010)
and stored as a file in the ".mt" format.

mt_import_mousetrap and mt_import_long for importing mouse-tracking data in other formats.

Examples

Create data in wide format for test purposes
mt_data_wide <- mt_export_wide(mt_example,

use2_variables=c("subject_nr", "Condition"))

Import the data using mt_import_wide
mt_data <- mt_import_wide(mt_data_wide,

xpos_label="xpos", ypos_label="ypos",
timestamps_label="timestamps")

mt_length_normalize Length normalize trajectories.

Description

Re-represent each trajectory spatially using a constant number of points so that adjacent points on
the trajectory become equidistant to each other.

Usage

mt_length_normalize(
data,
use = "trajectories",
dimensions = c("xpos", "ypos"),
save_as = "ln_trajectories",
n_points = 20

)

68 mt_length_normalize

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

use a character string specifying which trajectory data should be used.

dimensions a character string specifying which trajectory variables should be used. Can be
of length 2 or 3 for two-dimensional or three-dimensional data.

save_as a character string specifying where the resulting trajectory data should be stored.

n_points an integer or vector of integers specifying the number of points used to represent
the spatially rescaled trajectories. If a single integer is provided, the number of
points will be constant across trajectories. Alternatively, a vector of integers can
provided that specify the number of points for each trajectory individually.

Details

mt_length_normalize is used to emphasize the trajectories’ shape. Usually, the vast majority of
points of a raw or a time-normalized trajectory lie close to the start and end point. mt_length_normalize
re-distributes these points so that the spatial distribution is uniform across the entire trajectory.
mt_length_normalize is mainly used to improve the results of clustering (in particular mt_cluster)
and visualization.

Value

A mousetrap data object (see mt_example) with an additional array (by default called ln_trajectories)
containing the length normalized trajectories. If a trajectory array was provided directly as data,
only the length normalized trajectories will be returned.

Author(s)

Dirk U. Wulff

Jonas M. B. Haslbeck

Examples

KH2017 <- mt_length_normalize(data=KH2017,
dimensions = c('xpos','ypos'),
n_points = 20)

mt_map 69

mt_map Map trajectories to prototypes.

Description

mt_map maps trajectories onto a predefined set of prototype trajectories. It first computes distances
between the trajectories and each of the supplied trajectory types and then assigns each trajectory
to the prototype that produced the smallest distance.

Usage

mt_map(
data,
use = "ln_trajectories",
save_as = "prototyping",
dimensions = c("xpos", "ypos"),
prototypes = mousetrap::mt_prototypes,
weights = rep(1, length(dimensions)),
pointwise = TRUE,
na_rm = FALSE,
minkowski_p = 2,
use2 = "data",
grouping_variables = NULL

)

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

use a character string specifying which trajectory data should be used.

save_as a character string specifying where the resulting data should be stored.

dimensions a character vector specifying which trajectory variables should be used. Can be
of length 2 or 3 for two-dimensional or three-dimensional trajectories respec-
tively.

prototypes a trajectory array containing the prototypes the trajectories are mapped to. As a
starting point, the trajectories stored in mt_prototypes can be used. See Details
and Examples for selecting prototypes and creating new ones.

weights numeric vector specifying the relative importance of the variables specified in
dimensions. Defaults to a vector of 1s implying equal importance. Technically,
each variable is rescaled so that the standard deviation matches the correspond-
ing value in weights. To use the original variables, set weights = NULL.

pointwise boolean specifying the way dissimilarity between the trajectories is measured
(see Details). If TRUE (the default), mt_distmat measures the average dissimi-
larity and then sums the results. If FALSE, mt_distmat measures dissimilarity
once (by treating the various points as independent dimensions).

70 mt_map

na_rm logical specifying whether trajectory points containing NAs should be removed.
Removal is done column-wise. That is, if any trajectory has a missing value at,
e.g., the 10th recorded position, the 10th position is removed for all trajectories.
This is necessary to compute distance between trajectories.

minkowski_p an integer specifying the distance metric. minkowski_p = 1 computes the city-
block distance, minkowski_p = 2 (the default) computes the Euclidian distance,
minkowski_p = 3 the cubic distance, etc.

use2 an optional character string specifying where the data that contain the variables
used for grouping can be found (in case grouping_variables are specified).
Defaults to "data" as data[["data"]] usually contains all non mouse-tracking
trial data.

grouping_variables

a character string (or vector) specifying one or more variables in use2. If spec-
ified, prototypes will be rescaled separately to match the coordinate system of
the trajectories for each level of the variable(s). If unspecified (the default), the
prototypes are rescaled in the same way across all trajectories.

Details

Mouse trajectories often occur in distinct, qualitative types (see Wulff et al., 2019; Wulff et al.,
2021). Common trajectory types are linear trajectories, mildly and strongly curved trajectories, and
single and multiple change-of-mind trials. mt_map allows to map trajectories to a predefined set of
trajectory types.

First, mt_map adjusts prototypes to match the coordinate system of the trajectories specified by use.
Next, mt_map computes the distances between each trajectory and each of the supplied prototypes
(see mt_distmat) and then assigns each trajectory to the closest prototype (i.e., the prototype that
produced the smallest distance).

Mapping trajectories to prototypes requires that the endpoints of all trajectories (and added proto-
types) share the same direction, i.e., that all trajectories end in the top-left corner of the coordinate
system (mt_remap_symmetric or mt_align can be used to achieve this). Furthermore, it is recom-
mended to use length normalized trajectories (see mt_length_normalize; Wulff et al., 2019).

Value

A mousetrap data object (see mt_example) with an additional data.frame (by default called prototyping)
that contains the best fitting prototype for each trajectory (the number of the prototype is specified
under prototype, the label of the prototype under prototype_label) and the distance of the tra-
jectory to the best fitting prototype (min_dist). If a trajectory array was provided directly as data,
only the data.frame containing the results will be returned.

Author(s)

Dirk U. Wulff

Jonas M. B. Haslbeck

Pascal J. Kieslich

mt_map 71

References

Wulff, D. U., Haslbeck, J. M. B., Kieslich, P. J., Henninger, F., & Schulte-Mecklenbeck, M. (2019).
Mouse-tracking: Detecting types in movement trajectories. In M. Schulte-Mecklenbeck, A. Küh-
berger, & J. G. Johnson (Eds.), A Handbook of Process Tracing Methods (pp. 131-145). New York,
NY: Routledge.

Wulff, D. U., Haslbeck, J. M. B., & Schulte-Mecklenbeck, M. (2021). Measuring the (dis-)continuous
mind: What movement trajectories reveal about cognition. Manuscript in preparation.

Examples

Length normalize trajectories
KH2017 <- mt_length_normalize(KH2017)

Map trajectories onto standard prototype set
KH2017 <- mt_map(KH2017,

use="ln_trajectories")

Plot prototypes
mt_plot(mt_prototypes,facet_col="mt_id") +

ggplot2::facet_grid(.~factor(mt_id,levels=unique(mt_id)))

Plot trajectories per assigned prototype
mt_plot(KH2017,use="ln_trajectories",

use2="prototyping",facet_col="prototype_label")

Map trajectories onto reduced prototype set
KH2017 <- mt_map(KH2017,

use="ln_trajectories",
prototypes=mt_prototypes[c("straight","curved","cCoM"),,],
save_as="prototyping_red")

Map trajectories onto extended prototype set

Add additional prototypes
mt_prototypes_ext <- mt_add_trajectory(mt_prototypes,

xpos = c(0,1,-1,1,-1), ypos = c(0,1.5,1.5,1.5,1.5), id = "dCoM3"
)
mt_prototypes_ext <- mt_add_trajectory(mt_prototypes_ext,

xpos = c(0,0,-1), ypos = c(0,1.5,1.5), id = "neutral"
)

Map trajectories
KH2017 <- mt_map(KH2017,

use="ln_trajectories", prototypes=mt_prototypes_ext,
save_as="prototyping_ext")

72 mt_measures

mt_measures Calculate mouse-tracking measures.

Description

Calculate a number of mouse-tracking measures for each trajectory, such as minima, maxima,
and flips for each dimension, and different measures for curvature (e.g., MAD, AD, and AUC). Note
that some measures are only returned if distance, velocity and acceleration are calculated using
mt_derivatives before running mt_measures. More information on the different measures can be
found in the Details and Values sections.

Usage

mt_measures(
data,
use = "trajectories",
save_as = "measures",
dimensions = c("xpos", "ypos"),
timestamps = "timestamps",
flip_threshold = 0,
hover_threshold = NULL,
hover_incl_initial = TRUE,
initiation_threshold = 0,
verbose = FALSE

)

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

use a character string specifying which trajectory data should be used.

save_as a character string specifying where the calculated measures should be stored.

dimensions a character vector specifying the two dimensions in the trajectory array that
contain the mouse positions. Usually (and by default), the first value in the
vector corresponds to the x-positions (xpos) and the second to the y-positions
(ypos).

timestamps a character string specifying the trajectory dimension containing the timestamps.

flip_threshold a numeric value specifying the distance that needs to be exceeded in one di-
rection so that a change in direction counts as a flip. If several thresholds are
specified, flips will be returned in separate variables for each threshold value
(the variable name will be suffixed with the threshold value).

hover_threshold

an optional numeric value. If specified, hovers (and hover_time) will be cal-
culated as the number (and total time) of periods without movement in a trial

mt_measures 73

(whose duration exceeds the value specified in hover_threshold). If several
thresholds are specified, hovers and hover_time will be returned in separate
variables for each threshold value (the variable name will be suffixed with the
threshold value).

hover_incl_initial

logical indicating if the calculation of hovers should include a potential initial
phase in the trial without mouse movements (this initial phase is included by
default).

initiation_threshold

a numeric value specifying the distance from the start point of the trajectory
that needs to be exceeded for calculating the initiation time. By default, it is 0,
meaning that any movement counts as movement initiation.

verbose logical indicating whether function should report its progress.

Details

Note that some measures are only returned if distance, velocity and acceleration are calculated using
mt_derivatives before running mt_measures. Besides, the meaning of these measures depends on
the values of the arguments in mt_derivatives.

If the deviations from the idealized response trajectory have been calculated using mt_deviations
before running mt_measures, the corresponding data in the trajectory array will be used. If not,
mt_measures will calculate these deviations automatically.

The calculation of most measures can be deduced directly from their definition (see Value). For
several more complex measures, a few details are provided in the following.

The signed maximum absolute deviation (MAD) is the maximum perpendicular deviation from the
straight path connecting start and end point of the trajectory (e.g., Freeman & Ambady, 2010). If
the MAD occurs above the direct path, this is denoted by a positive value. If it occurs below the direct
path, this is denoted by a negative value. This assumes that the complete movement in the trial
was from bottom to top (i.e., the end point has a higher y-position than the start point). In case the
movement was from top to bottom, mt_measures automatically flips the signs. Both MD_above and
MD_below are also reported separately.

The average deviation (AD) is the average of all deviations across the trial. Note that AD ignores the
timestamps when calculating this average. This implicitly assumes that the time passed between
each recording of the mouse is the same within each individual trajectory. If the AD is calculated
using raw data that were obtained with an approximately constant logging resolution (sampling
rate), this assumption is usually justified (mt_check_resolution can be used to check this). Alterna-
tively, the AD can be calculated based on time-normalized trajectories; these can be computed using
mt_time_normalize which creates equidistant time steps within each trajectory.

The AUC represents the area under curve, i.e., the geometric area between the actual trajectory and
the direct path. Areas above the direct path are added and areas below are subtracted. The AUC is
calculated using the polyarea function from the pracma package.

Note that all time related measures (except idle_time and hover_time) are reported using the
timestamp metric as present in the data. To interpret the timestamp values as time since tracking
start, the assumption has to be made that for each trajectory the tracking started at timestamp 0 and
that all timestamps indicate the time passed since tracking start. Therefore, all timestamps should
be reset during data import by subtracting the value of the first timestamp from all timestamps

74 mt_measures

within a trial (assuming that the first timestamp corresponds to the time when tracking started).
Timestamps are reset by default when importing the data using one of the mt_import functions
(e.g., mt_import_mousetrap). Note that initiation_time is defined as the last timestamp before
the initiation_threshold was crossed.

Value

A mousetrap data object (see mt_example) where an additional data.frame has been added (by
default called "measures") containing the per-trial mouse-tracking measures. Each row in the
data.frame corresponds to one trajectory (the corresponding trajectory is identified via the row-
names and, additionally, in the column "mt_id"). Each column in the data.frame corresponds to one
of the measures. If a trajectory array was provided directly as data, only the measures data.frame
will be returned.

The following measures are computed for each trajectory (the labels relating to x- and y-positions
will be adapted depending on the values specified in dimensions). Please note that additional
information is provided in the Details section.

mt_id Trial ID (can be used for merging measures data.frame with other trial-level
data)

xpos_max Maximum x-position

xpos_min Minimum x-position

ypos_max Maximum y-position

ypos_min Minimum y-position

MAD Signed Maximum absolute deviation from the direct path connecting start and
end point of the trajectory (straight line). If the MAD occurs above the direct path,
this is denoted by a positive value; if it occurs below, by a negative value.

MAD_time Time at which the maximum absolute deviation was reached first

MD_above Maximum deviation above the direct path

MD_above_time Time at which the maximum deviation above was reached first

MD_below Maximum deviation below the direct path

MD_below_time Time at which the maximum deviation below was reached first

AD Average deviation from direct path

AUC Area under curve, the geometric area between the actual trajectory and the direct
path where areas below the direct path have been subtracted

xpos_flips Number of directional changes along x-axis (exceeding the distance specified in
flip_threshold)

ypos_flips Number of directional changes along y-axis (exceeding the distance specified in
flip_threshold)

xpos_reversals Number of crossings of the y-axis

ypos_reversals Number of crossings of the x-axis

RT Response time, time at which tracking stopped
initiation_time

Time at which first mouse movement was initiated

mt_measures 75

idle_time Total time without mouse movement across the entirety of the trial

hover_time Total time of all periods without movement in a trial (whose duration exceeds
the value specified in hover_threshold)

hovers Number of periods without movement in a trial (whose duration exceeds the
value specified in hover_threshold)

total_dist Total distance covered by the trajectory

vel_max Maximum velocity

vel_max_time Time at which maximum velocity occurred first

vel_min Minimum velocity

vel_min_time Time at which minimum velocity occurred first

acc_max Maximum acceleration

acc_max_time Time at which maximum acceleration occurred first

acc_min Minimum acceleration

acc_min_time Time at which minimum acceleration occurred first

Author(s)

Pascal J. Kieslich

Felix Henninger

References

Kieslich, P. J., Henninger, F., Wulff, D. U., Haslbeck, J. M. B., & Schulte-Mecklenbeck, M. (2019).
Mouse-tracking: A practical guide to implementation and analysis. In M. Schulte-Mecklenbeck, A.
Kühberger, & J. G. Johnson (Eds.), A Handbook of Process Tracing Methods (pp. 111-130). New
York, NY: Routledge.

Freeman, J. B., & Ambady, N. (2010). MouseTracker: Software for studying real-time mental
processing using a computer mouse-tracking method. Behavior Research Methods, 42(1), 226-241.

See Also

mt_sample_entropy for calculating sample entropy.

mt_standardize for standardizing the measures per subject.

mt_check_bimodality for checking bimodality of the measures using different methods.

mt_aggregate and mt_aggregate_per_subject for aggregating the measures.

inner_join for merging data using the dplyr package.

Examples

mt_example <- mt_derivatives(mt_example)
mt_example <- mt_deviations(mt_example)
mt_example <- mt_measures(mt_example)

Merge measures with trial data
mt_example_results <- dplyr::inner_join(

76 mt_plot

mt_example$data, mt_example$measures,
by="mt_id")

mt_plot Plot trajectory data.

Description

mt_plot can be used for plotting a number of individual trajectories. mt_plot_aggregate can be
used for plotting aggregated trajectories. The color and linetype can be varied depending on a set of
condition variables using the color and linetype arguments. If the x and y arguments are varied,
this function can also be used for plotting velocity and acceleration profiles.

Usage

mt_plot(
data,
use = "trajectories",
use2 = "data",
x = "xpos",
y = "ypos",
color = NULL,
linetype = NULL,
alpha = NA,
size = 0.5,
facet_row = NULL,
facet_col = NULL,
wrap_var = NULL,
wrap_ncol = NULL,
points = FALSE,
return_type = "plot",
mt_id = "mt_id",
only_ggplot = NULL,
...

)

mt_plot_aggregate(
data,
use = "trajectories",
use2 = "data",
x = "xpos",
y = "ypos",
color = NULL,
linetype = NULL,
alpha = NA,
size = 0.5,

mt_plot 77

facet_row = NULL,
facet_col = NULL,
wrap_var = NULL,
wrap_ncol = NULL,
points = FALSE,
return_type = "plot",
subject_id = NULL,
only_ggplot = NULL,
...

)

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

use a character string specifying which trajectories should be plotted. The corre-
sponding trajectories are selected from data using data[[use]]. Usually, this
value corresponds to either "trajectories", "tn_trajectories" or "av_trajectories",
depending on whether the raw, time-normalized or averaged trajectories should
be plotted.

use2 a character string specifying where the data that contain the variables used for
determining the color and linetype can be found (in case these arguments
are specified). Defaults to "data" as data[["data"]] usually contains all non
mouse-tracking trial data.

x a character string specifying which dimension in the trajectory array should be
displayed on the x-axis (defaults to xpos).

y a character string specifying which dimension in the trajectory array should be
displayed on the y-axis (defaults to ypos).

color an optional character string specifying which variable in data[[use2]] should
be used for coloring the trajectories.

linetype an optional character string specifying which variable in data[[use2]] should
be used for varying the linetype of the trajectories.

alpha an optional numeric value between 0 and 1 that can be used to make the plotted
lines (and points) semitransparent.

size an optional numeric value that can be used to vary the width of the plotted tra-
jectory lines.

facet_row an optional character string specifying a variable in data[[use2]] that should
be used for (row-wise) faceting.

facet_col an optional character string specifying a variable in data[[use2]] that should
be used for (column-wise) faceting.

wrap_var an optional character string specifying variable(s) in data[[use2]] that should
be used for wrapping.

wrap_ncol an optional integer specifying the number of columns if wrapping is used.

points logical. If TRUE, points will be added to the plot using geom_point.

78 mt_plot

return_type a character string specifying which type of object should be returned. If "plot"
(the default), a new ggplot is created and the trajectories are plotted using geom_path.
If "mapping", only the ggplot object containing the mapping but without any ge-
oms is returned. If "geoms", only the geoms are returned, which allows adding
the plotted trajectories to an existing ggplot.

mt_id a character string specifying the internal label used for the trial identifier (passed
on to the group aesthetic). Only relevant for mt_plot.

only_ggplot Deprecated. Please use return_type instead.
... additional arguments passed on to mt_reshape (such as subset).
subject_id a character string specifying which column contains the subject identifier. Only

relevant for mt_plot_aggregate. If specified, aggregation will be performed
within subjects first. Note that aggregation will be performed separately for
each level, including all subjects for whom data are available.

Details

mt_plot internally uses mt_reshape for reshaping trajectories into a long format. Next, it creates
a ggplot object using the ggplot function of the ggplot2 package. The aes mappings are taken
from the function arguments for x, y etc.; in addition, the group mapping is set to the internal trial
identifier (by default called "mt_id").

If return_type == "plot" (the default), a new ggplot is created and the trajectories are plotted
using the geom_path function of the ggplot2 package. If return_type == "mapping", the ggplot
object is returned without layers, which can be used to further customize the plot (see Examples). If
return_type == "geoms", only the geoms are returned, which allows adding the plotted trajectories
to an existing ggplot (e.g., adding aggregate trajectories on top of the individual trajectories, see
Examples).

mt_plot_aggregate works similarly, but uses mt_aggregate for reshaping and aggregating trajec-
tories prior to plotting.

Please note that this function is intended as a quick and easy solution for visualizing mouse tra-
jectories. For additional flexibility, we recommend that mt_reshape or mt_aggregate be used in
conjunction with ggplot to create custom visualizations.

Functions

• mt_plot: Plot individual trajectory data
• mt_plot_aggregate: Plot aggregated trajectory data

Author(s)

Pascal J. Kieslich

Felix Henninger

See Also

mt_plot_add_rect for adding rectangles representing the response buttons to the plot.

mt_plot_riverbed for plotting the relative frequency of a selected variable across time.

mt_plot_per_trajectory for individually plotting all trajectories as individual pdf files.

mt_plot 79

Examples

Plot individual example trajectories

Time-normalize trajectories
mt_example <- mt_time_normalize(mt_example)

Plot all time-normalized trajectories
varying the color depending on the condition
mt_plot(mt_example, use="tn_trajectories",

color="Condition")

... setting alpha < 1 for semi-transparency
mt_plot(mt_example, use="tn_trajectories",

color="Condition", alpha=.2)

... with custom colors
mt_plot(mt_example, use="tn_trajectories",

color="Condition") +
ggplot2::scale_color_brewer(type="qual")

Create separate plots per Condition
mt_plot(mt_example, use="tn_trajectories",

facet_col="Condition")

Create customized plot by setting the return_type option to "mapping"
to setup an empty plot. In a next step, a geom is added.
In this example, only points are plotted.
mt_plot(mt_example, use="tn_trajectories",

color="Condition", return_type="mapping") +
ggplot2::geom_point()

Plot velocity profiles based on the averaged trajectories
varying the color depending on the condition
mt_example <- mt_derivatives(mt_example)
mt_example <- mt_average(mt_example, interval_size=100)
mt_plot(mt_example, use="av_trajectories",

x="timestamps", y="vel", color="Condition")

Plot aggregate trajectories for KH2017 data

Time-normalize trajectories
KH2017 <- mt_time_normalize(KH2017)

Plot aggregated time-normalized trajectories per condition
mt_plot_aggregate(KH2017, use="tn_trajectories",

color="Condition")

... first aggregating trajectories within subjects
mt_plot_aggregate(KH2017, use="tn_trajectories",

color="Condition", subject_id="subject_nr")

80 mt_plot_add_rect

... adding points for each position to the plot
mt_plot_aggregate(KH2017, use="tn_trajectories",

color="Condition", points=TRUE)

Not run:

Create combined plot of individual and aggregate trajectories
by first plotting the individual trajectories using mt_plot.
In a next step, the aggregate trajectories are added using the
mt_plot_aggregate function with the return_type argument set to "geom".
mt_plot(KH2017, use="tn_trajectories", color="Condition", alpha=.05) +

mt_plot_aggregate(KH2017, use="tn_trajectories",
color="Condition", return_type="geom", size=2)

End(Not run)

mt_plot_add_rect Add rectangles to trajectory plot.

Description

mt_plot_add_rect adds one or several rectangles to a mousetrap plot. These buttons usually cor-
respond to the borders of the buttons in the mouse-tracking experiment. It is specifically designed
so that the arguments from the mousetrap_response plugin in OpenSesame can be used.

Usage

mt_plot_add_rect(rect, color = "black", fill = NA, ...)

Arguments

rect a data.frame or matrix with one row per box. For each rectangle, the x-position
(x), y-position (y), width (w), and height (h) needs to be provided. If columns
are not labeled, the order x, y, w, h is assumed.

color argument passed on to geom_rect. Specifies the color of the border of the rect-
angles.

fill argument passed on to geom_rect. Specifies the color of the interior of the rect-
angles. If NA (the default), rectangles are unfilled.

... additional arguments passed on to geom_rect.

Details

mt_plot_add_rect internally uses geom_rect of the ggplot2 package for plotting.

Author(s)

Pascal J. Kieslich

Felix Henninger

mt_plot_per_trajectory 81

See Also

mt_plot for plotting trajectory data.

Examples

Load ggplot2
library(ggplot2)

Import, flip, and time-normalize raw trajectories
mt_example <- mt_import_mousetrap(mt_example_raw)
mt_example <- mt_remap_symmetric(mt_example,remap_xpos="no")
mt_example <- mt_time_normalize(mt_example)

Create rectangles matrix
rectangles <- matrix(

(The matrix is n x 4, and contains
all relevant data for every button,
(i.e. x, y, width and height values)
in separate rows)
c(
-840, 525, 350, -170,
840, 525, -350, -170

),
ncol=4, byrow=TRUE)

Plot all time-normalized trajectories
varying the color depending on the condition
and add rectangles
mt_plot(mt_example,

use="trajectories",
x="xpos", y="ypos", color="Condition"

) + mt_plot_add_rect(rect=rectangles)

mt_plot_per_trajectory

Create PDF with separate plots per trajectory.

Description

mt_plot_per_trajectory creates a PDF file with separate plots per trajectory. This PDF can be
used for inspecting individual trajectories. Note that plotting all trajectories can be time-consuming,
especially for raw trajectories. If the appropriate x and y arguments are inserted, this function can
also be used for plotting velocity and acceleration profiles.

82 mt_plot_per_trajectory

Usage

mt_plot_per_trajectory(
file,
data,
use = "trajectories",
x = "xpos",
y = "ypos",
xlim = NULL,
ylim = NULL,
axes_exact = FALSE,
points = FALSE,
rect = NULL,
color = "black",
fill = NA,
verbose = FALSE,
...

)

Arguments

file a character string specifying the name of the PDF file. Passed on to pdf.

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

use a character string specifying which trajectories should be plotted. The corre-
sponding trajectories are selected from data using data[[use]]. Usually, this
value corresponds to either "trajectories", "tn_trajectories" or "av_trajectories",
depending on whether the raw, time-normalized or averaged trajectories should
be plotted.

x a character string specifying which dimension in the trajectory array should be
displayed on the x-axis (defaults to xpos).

y a character string specifying which dimension in the trajectory array should be
displayed on the y-axis (defaults to ypos).

xlim optional argument specifying the limits for the x axis (passed on to coord_cartesian).
If not specified (the default), sensible axis limits will be computed.

ylim optional argument specifying the limits for the y axis (passed on to coord_cartesian).
If not specified (the default), sensible axis limits will be computed.

axes_exact logical. If TRUE, axes will be set without offset exactly at the limits of the x and
y axes (which can be specified using xlim and ylim]).

points logical. If TRUE, points will be added to the plot using geom_point.

rect optional argument passed on to mt_plot_add_rect. If specified, rectangles (usu-
ally representing the response buttons) will be plotted for each trajectory plot.

color optional argument passed on to mt_plot_add_rect. Only relevant if rect is spec-
ified.

mt_plot_riverbed 83

fill optional argument passed on to mt_plot_add_rect. Only relevant if rect is spec-
ified.

verbose logical indicating whether function should report its progress.

... additional arguments passed on to pdf.

Details

mt_plot_per_trajectory creates a PDF using pdf. Next, it plots all trajectories individually using
mt_plot. Every plot is labeled using the rownames of the trajectories.

Author(s)

Pascal J. Kieslich

Felix Henninger

See Also

mt_plot for plotting trajectory data.

Examples

Not run:
mt_plot_per_trajectory(mt_example,

file="trajectories.pdf",
use="trajectories")

End(Not run)

mt_plot_riverbed Plot density of mouse positions across time steps.

Description

mt_plot_riverbed creates a plot showing the distribution of one trajectory variable (e.g., the x-
positions or velocity) per time step.

Usage

mt_plot_riverbed(
data,
use = "tn_trajectories",
y = "xpos",
y_range = NULL,
y_bins = 250,
facet_row = NULL,
facet_col = NULL,

84 mt_plot_riverbed

facet_data = "data",
grid_colors = c("gray30", "gray10"),
na.rm = FALSE

)

Arguments

data mousetrap data object containing the data to be plotted.

use character string specifying the set of trajectories to use in the plot. The steps of
this set will constitute the x axis. Defaults to ’tn_trajectories’, which results in
time steps being plotted on the x axis.

y variable in the mousetrap data object to be plotted on the output’s y dimension.
Defaults to ’xpos’, the cursor’s x coordinate.

y_range numerical vector containing two values that represent the upper and lower ends
of the y axis. By default, the range is calculated from the data provided.

y_bins number of bins to distribute along the y axis (defaults to 250).

facet_row an optional character string specifying a variable in data[[facet_data]] that
should be used for (row-wise) faceting. If specified, separate riverbed plots for
each level of the variable will be created.

facet_col an optional character string specifying a variable in data[[facet_data]] that
should be used for (column-wise) faceting. If specified, separate riverbed plots
for each level of the variable will be created.

facet_data a character string specifying where the (optional) data containing the faceting
variables can be found.

grid_colors a character string or vector of length 2 specifying the grid color(s). If a single
value is provided, this will be used as the grid color. If a vector of length 2 is
provided, the first value will be used as the color for the major grid lines, the
second value for the minor grid lines. If set to NA, no grid lines are plotted.

na.rm logical specifying whether missing values should be removed. This is not done
by default, because generally riverbed plots are generated from preprocess tra-
jectories (e.g., time-normalized trajectories) that all have the same length (i.e.,
the same number of steps).

Details

This function plots the relative frequency of the values of a trajectory variable separately for each
of a series of time steps. This type of plot has been used in previous research to visualize the
distribution of x-positions per time step (e.g., Scherbaum et al., 2010).

mt_plot_riverbed usually is applied to time-normalized trajectory data as all trajectories must
contain the same number of values (if na.rm=FALSE, the default).

Author(s)

Felix Henninger

Pascal J. Kieslich

mt_prototypes 85

References

Scherbaum, S., Dshemuchadse, M., Fischer, R., & Goschke, T. (2010). How decisions evolve: The
temporal dynamics of action selection. Cognition, 115(3), 407-416.

Scherbaum, S., & Kieslich, P. J. (2018). Stuck at the starting line: How the starting procedure
influences mouse-tracking data. Behavior Research Methods, 50(5), 2097–2110.

See Also

mt_plot for plotting trajectory data.

mt_time_normalize for time-normalizing trajectories.

Examples

Time-normalize trajectories
KH2017 <- mt_time_normalize(KH2017)

Create riverbed plot for all trials
mt_plot_riverbed(KH2017)

Not run:
Create separate plots for typical and atypical trials
mt_plot_riverbed(mt_example, facet_col="Condition")

Create riverbed plot for all trials with custom x and y axis labels
mt_plot_riverbed(mt_example) +

ggplot2::xlab("Time step") + ggplot2::ylab("X coordinate")

Note that it is also possible to replace the
default scale for fill with a custom scale
mt_plot_riverbed(mt_example, facet_col="Condition") +

ggplot2::scale_fill_gradientn(colours=grDevices::heat.colors(9),
name="Frequency", trans="log", labels=scales::percent)

End(Not run)

mt_prototypes Mouse trajectory prototypes.

Description

A core set of five mouse trajectory prototypes including the ’straight’ trajectory, the mildly curved
trajectory, the continuous change-of-mind trajectory, the discrete change-of-mind trajectory, and the
double discrete change-of-mind trajectory.

Usage

mt_prototypes

86 mt_qeffect

Format

An object of class array of dimension 5 x 100 x 2.

Details

Mouse- and hand-trajectories often occur in types (Wulff, Haslbeck, & Schulte-Mecklenbeck, 2017).
In such cases, movement trajectory data should be analyzed in terms of discrete type assignments.
To this end mt_map can be used to map mouse- or hand-trajectory to the closest of several prede-
fined prototypes. mt_prototypes provides a core set of prototypes that has been shown to represent
well a large fraction of empirical movement trajectories.

To tailor the set of prototypes to a given study, mt_prototypes can be extended using mt_add_trajectory.

References

Wulff, D. U., Haslbeck, J. M. B., Schulte-Mecklenbeck, M. (2018). Measuring the (dis-)continuous
mind: What movement trajectories reveal about cognition. Manuscript in preparation.

mt_qeffect Create quantile-effect plot

Description

[Experimental]

Function in beta and currently only for internal purposes.

Usage

mt_qeffect(
data,
compare,
use = "measures",
measure = "MAD",
direction = "upward",
n_steps = 100,
return_data = FALSE,
...

)

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

compare either a vector, the label of a variable in , or a mousetrap object.

use a character string specifying which trajectory data should be used.

mt_remap_symmetric 87

measure a character value specifying the variable used to calculate the effect between

direction a character value.

n_steps an integer.

return_data boolean.

... additional arguments passed on to points.

Value

Nothing, when image is plotted using an external device. Otherwise an object of class mt_object_raw
containing in a matrix format the image’s pixel information.

Author(s)

Dirk U. Wulff

Examples

Plot regular heatmap
#SpiveyEtAl2005 = mt_import_long(SpiveyEtAl2005_raw,'x','y',NULL,'t',
#mt_id_label = c('ptp','trial'))
#heatmap = mt_heatmap_raw(SpiveyEtAl2005,xres = 2000)
#mt_heatmap(heatmap,file = NULL)

compute measures
#SpiveyEtAl2005 = mt_measures(SpiveyEtAl2005)

Plot heatmap using velocity
#mt_heatmap(SpiveyEtAl2005)

mt_remap_symmetric Remap mouse trajectories.

Description

Remap all trajectories to one side (or one quadrant) of the coordinate system. In doing so, mt_remap_symmetric
assumes a centered coordinate system and a symmetric design of the response buttons (see Details).

Usage

mt_remap_symmetric(
data,
use = "trajectories",
save_as = use,
dimensions = c("xpos", "ypos"),
remap_xpos = "left",
remap_ypos = "up"

)

88 mt_remap_symmetric

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

use a character string specifying which trajectory data should be used.

save_as a character string specifying where the resulting trajectory data should be stored.

dimensions a character vector specifying the two dimensions in the trajectory array that
contain the mouse positions, the first value corresponding to the x-positions, the
second to the y-positions.

remap_xpos character string indicating the direction in which to remap values on the x axis. If
set to "left" (as per default), trajectories with an endpoint on the right (i.e. with a
positive x-value) will be remapped to the left. The alternatives are "right" which
has the reverse effect, and "no", which disables remapping on the horizontal
dimension.

remap_ypos character string defining whether tracks directed downwards on the y axis should
be remapped so that they end with a positive y value. This will be performed if
this parameter is set to "up" (which is the default), and the reverse occurs if the
parameter is set to "down". If it is set to "no", y-values remain untouched.

Details

When mouse trajectories are compared across different conditions, it is typically desirable that the
endpoints of the trajectories share the same direction (e.g., diagonally up and left). This way, the
trajectories can be compared regardless of the button they were directed at.

mt_remap_symmetric can be used to achieve this provided that two assumptions hold:

First, this function assumes a centered coordinate system, i.e. the coordinate system is centered
on the screen center. This is the case when the data is produced by the mousetrap plug-ins in
OpenSesame.

Second, it assumes that the response buttons in the mouse-tracking experiment are symmetric, in
that they all are equally distant from the screen center.

Value

A mousetrap data object (see mt_example) with remapped trajectories. If the trajectory array was
provided directly as data, only the trajectory array will be returned.

Author(s)

Pascal J. Kieslich

Felix Henninger

Examples

Remap trajectories so that all trajectories
end in the top-left corner
mt_example <- mt_import_mousetrap(mt_example_raw)

mt_resample 89

mt_example <- mt_remap_symmetric(mt_example)

Only flip trajectories vertically so that all
trajectories end in the upper half of the screen
mt_example <- mt_import_mousetrap(mt_example_raw)
mt_example <- mt_remap_symmetric(mt_example,

remap_xpos="no", remap_ypos="up")

mt_resample Resample trajectories using a constant time interval.

Description

Resample trajectory positions using a constant time interval. If no timestamp that represents an
exact multiple of this time interval is found, linear interpolation is performed using the two adjacent
timestamps.

Usage

mt_resample(
data,
use = "trajectories",
save_as = "rs_trajectories",
dimensions = c("xpos", "ypos"),
timestamps = "timestamps",
step_size = 10,
exact_last_timestamp = TRUE,
constant_interpolation = NULL,
verbose = FALSE

)

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

use a character string specifying which trajectory data should be used.

save_as a character string specifying where the resulting trajectory data should be stored.

dimensions a character vector specifying the dimensions in the trajectory array that should
be resampled. If "all", all trajectory dimensions except the timestamps will be
resampled.

timestamps a character string specifying the trajectory dimension containing the timestamps.

step_size an integer specifying the size of the constant time interval. The unit corresponds
to the unit of the timestamps.

90 mt_resample

exact_last_timestamp

logical indicating if the last timestamp should always be appended (which is the
case by default). If FALSE, the last timestamp is only appended if it is a multiple
of the step_size.

constant_interpolation

an optional integer. If specified, constant instead of linear interpolation will
be performed for all adjacent timestamps whose difference exceeds the number
specified for constant_interpolation. The unit corresponds to the unit of the
timestamps.

verbose logical indicating whether function should report its progress.

Details

mt_resample can be used if the number of logged positions in a trial should be reduced. mt_resample
achieves this by artificially decreasing the resolution with which the positions were recorded. For
example, if mouse positions were recorded every 10 ms in an experiment, but one was only inter-
ested in the exact mouse position every 50 ms, mt_resample with step_size=50 could be used. In
this case, only every fifth sample would be kept.

In addition, mt_resample can be used to only retain values for specific timestamps across trials
(e.g., if for each trial the position of the mouse exactly 250 ms and 500 ms after onset of the trial
are of interest). In case that a trial does not contain samples at the specified timestamps, linear
interpolation is performed using the two adjacent timestamps.

If a number is specified for constant_interpolation, constant instead of linear interpolation will
be performed for all adjacent timestamps whose difference exceeds this number. Specifically, a
period without mouse movement will be assumed starting at the respective timestamp until the next
timestamp

• constant_interpolation/2.

Note that mt_resample does not average across time intervals. For this, mt_average can be used.

Value

A mousetrap data object (see mt_example) with an additional array (by default called rs_trajectories)
containing the resampled trajectories. If a trajectory array was provided directly as data, only the
resampled trajectories will be returned.

Author(s)

Pascal J. Kieslich

Felix Henninger

See Also

approx for information about the function used for linear interpolation.

mt_average for averaging trajectories across constant time intervals.

mt_time_normalize for time-normalizing trajectories.

mt_reshape 91

Examples

mt_example <- mt_resample(mt_example,
save_as="rs_trajectories",
step_size=50)

mt_reshape General-purpose reshape and aggregation function for mousetrap
data.

Description

mt_reshape is the general function used in the mousetrap package for filtering, merging, reshap-
ing, and aggregating mouse-tracking measures or trajectories in combination with other trial data.
Several additional (wrapper) functions for more specific purposes (cf. "See Also") are available.

Usage

mt_reshape(
data,
use = "trajectories",
use_variables = NULL,
use2 = "data",
use2_variables = NULL,
subset = NULL,
subject_id = NULL,
aggregate = FALSE,
aggregate_subjects_only = FALSE,
.funs = "mean",
trajectories_long = TRUE,
convert_df = TRUE,
mt_id = "mt_id",
mt_seq = "mt_seq",
aggregation_function = NULL

)

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

use a character string specifying which data should be reshaped. The corresponding
data are selected from data using data[[use]]. Usually, this value corresponds
to either "trajectories", "tn_trajectories", or "measures", depending on whether
the analysis concerns raw trajectories, time-normalized trajectories, or derived
measures.

92 mt_reshape

use_variables a character vector specifying which mouse-tracking variables should be reshaped.
Corresponds to the column names in case a data.frame with mouse-tracking
measures is provided. Corresponds to the labels of the array dimensions in case
a trajectory array is provided. If unspecified, all variables will be reshaped.

use2 an optional character string specifying where the other trial data can be found.
Defaults to "data" as data[["data"]] usually contains all non mouse-tracking
trial data. Alternatively, a data.frame can be provided directly.

use2_variables an optional character string (or vector) specifying the variables (in data[[use2]])
that should be merged with the data. If aggregate==TRUE, the trajectories / mea-
sures will be aggregated separately for each of the levels of these variables using
summarize_at.

subset a logical expression (passed on to subset) indicating elements or rows to keep.
If specified, data[[use2]] will be subsetted using this expression, and, after-
wards, data[[use]] will be filtered accordingly.

subject_id an optional character string specifying which column contains the subject iden-
tifier in data[[use2]]. If specified and aggregate==TRUE, aggregation will be
performed within subjects first.

aggregate logical indicating whether data should be aggregated. If use2_variables are
specified, aggregation will be performed separately for each of the levels of the
use2_variables.

aggregate_subjects_only

logical indicating whether data should only be aggregated per subject (if subject_id
is specified and aggregate==TRUE).

.funs the aggregation function(s) passed on to summarize_at. By default, the mean is
calculated.

trajectories_long

logical indicating if the reshaped trajectories should be returned in long or wide
format. If TRUE, every recorded position in a trajectory is placed in another row
(whereby the order of the positions is logged in the variable mt_seq). If FALSE,
every trajectory is saved in wide format and the respective positions are indexed
by adding an integer to the corresponding label (e.g., xpos_1, xpos_2, ...). Only
relevant if data[[use]] contains trajectories.

convert_df logical indicating if the reshaped data should be converted to a data.frame
using as.data.frame. This will drop potentially existing additional classes
(such as tbl_df) that result from the internally used dplyr functions for data
grouping and aggregation. As these additional classes might - on rare occasions
- cause problems with functions from other packages, the reshaped data are
converted to "pure" data.frames by default.

mt_id a character string specifying the name of the column that will contain the trial
identifier in the reshaped data. The values for the trial identifier correspond to
the rownames of data[[use]] and data[[use2]].

mt_seq a character string specifying the name of the column that will contain the inte-
gers indicating the order of the mouse positions per trajectory in the reshaped
data. Only relevant if data[[use]] contains trajectories and trajectories_long==TRUE.

aggregation_function

Deprecated. Please use .funs instead.

mt_reshape 93

Details

mt_reshape uses the rownames of data[[use]] and data[[use2]] for merging the trajectories /
measures and the trial data. For convenience (and for trajectories in long format also of necessity),
an additional column (labelled as specified in the mt_id argument) is added to the reshaped data
containing the rownames as trial identifier.

The main purpose of this function is to reshape the trajectory data into a two-dimensional data.frame,
as this format is required for many further analyses and plots in R.

Besides, it should aid the user in combining data contained in different parts of the mousetrap
data object, e.g., a condition variable stored in data[["data"]] with trajectory data stored in
data[["trajectories"]] (or mouse-tracking measures stored in data[["measures"]]).

Finally, it offers the possibility to aggregate trajectories and measures for different conditions and/or
subjects.

The package also includes several functions that wrap mt_reshape and serve specific purposes.
They are often easier to use, and thus recommended over mt_reshape unless the utmost flexibility
is required. These functions are described in the section "See Also".

Note also that many merging, reshaping, and aggregation procedures can be performed directly by
using some of the basic R functions, e.g., merge and aggregate, or through the R packages dplyr or
reshape2, if desired.

Value

A data.frame containing the reshaped data.

Author(s)

Pascal J. Kieslich

Felix Henninger

See Also

mt_aggregate for aggregating mouse-tracking measures and trajectories.

mt_aggregate_per_subject for aggregating mouse-tracking measures and trajectories per subject.

mt_export_long for exporting mouse-tracking data in long format.

mt_export_wide for exporting mouse-tracking data in wide format.

inner_join for merging data and summarize_at for aggregating data using the dplyr package.

Examples

Time-normalize trajectories
mt_example <- mt_time_normalize(mt_example)

Reshape time-normalized trajectories data into long format
adding Condition variable
trajectories_long <- mt_reshape(mt_example,
use="tn_trajectories",
use2_variables="Condition"

94 mt_sample_entropy

)

Reshape time-normalized trajectories data into wide format
only keeping xpos and ypos
and adding Condition variable
trajectories_wide <- mt_reshape(mt_example,

use="tn_trajectories", use_variables = c("xpos","ypos"),
use2_variables = "Condition",
trajectories_long = FALSE
)

mt_sample_entropy Calculate sample entropy.

Description

Calculate sample entropy for each trajectory as a measure of the complexity of movements along
one specific dimension.

Usage

mt_sample_entropy(
data,
use = "tn_trajectories",
save_as = "measures",
dimension = "xpos",
m = 3,
r = NULL,
use_diff = TRUE,
verbose = FALSE

)

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

use a character string specifying which trajectory data should be used.

save_as a character string specifying where the calculated measures should be stored.

dimension a character string specifying the dimension based on which sample entropy
should be calculated. By default (xpos), the x-positions are used.

m an integer passed on to the sample entropy function (see Details).

r a numeric value passed on to the sample entropy function (see Details).

use_diff logical indicating if the differences of the dimension values should be computed
before calculating sample entropy (which is done by default, see Details).

verbose logical indicating whether function should report its progress.

mt_sample_entropy 95

Details

mt_sample_entropy calculates the sample entropy for each trajectory as a measure of its complex-
ity. Hehman et al (2015) provide details on how sample entropy can be calculated and applied in
mouse-tracking (following Dale et al., 2007). They apply the sample entropy measure to the differ-
ences between adjacent x-positions (which is also the default here, as in a standard mouse-tracking
task with buttons located in the top-left and right corners mostly the movements in the horizontal
direction are of interest). Besides, they recommend using the time-normalized trajectories so all
trajectories have the same length.

Sample entropy is computed by comparing windows of a fixed size (specified using m) across all
recorded positions. Sample entropy is the negative natural logarithm of the conditional probability
that this window remains similar across the trial (Hehman et al., 2015). A window is considered
to be similar to another if their distance is smaller than a specified tolerance value (which can be
specified using r). Hehman et al. (2015) use a tolerance value of 0.2 * standard deviation of all
differences between adjacent x-positions in the dataset (which is the default implemented here).

Value

A mousetrap data object (see mt_example).

If a data.frame with label specified in save_as (by default "measures") already exists, the sample
entropy values are added as additional column.

If not, an additional data.frame will be added.

If a trajectory array was provided directly as data, only the data.frame will be returned.

Author(s)

Pascal J. Kieslich

Dirk Wulff

Felix Henninger

References

Dale, R., Kehoe, C., & Spivey, M. J. (2007). Graded motor responses in the time course of catego-
rizing atypical exemplars. Memory & Cognition, 35(1), 15-28.

Hehman, E., Stolier, R. M., & Freeman, J. B. (2015). Advanced mouse-tracking analytic techniques
for enhancing psychological science. Group Processes & Intergroup Relations, 18(3), 384-401.

See Also

mt_measures for calculating other mouse-tracking measures.

Examples

Calculate sample entropy based on time-normalized
trajectories and merge results with other meausres
derived from raw trajectories
mt_example <- mt_measures(mt_example)
mt_example <- mt_time_normalize(mt_example,

96 mt_scale_trajectories

save_as="tn_trajectories", nsteps=101)
mt_example <- mt_sample_entropy(mt_example,

use="tn_trajectories", save_as="measures",
dimension="xpos", m=3)

mt_scale_trajectories Standardize variables in mouse trajectory array.

Description

mt_scale_trajectories centers and / or standardizes selected trajectory variables within or across
trajectories.

Usage

mt_scale_trajectories(
data,
use = "trajectories",
save_as = use,
var_names,
center = TRUE,
scale = TRUE,
within_trajectory = FALSE,
prefix = "z_",
transform = NULL

)

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

use a character string specifying which trajectory data should be used.

save_as a character string specifying where the resulting trajectory data should be stored.

var_names character vector giving the labels of the to be standardized variables.

center logical specifying whether variables should be centered (i.e., mean = 0). Can be
a logical vector, in which case the values of scale are mapped to the variables
specified in var_names.

scale logical or numeric specifying the scaling of the variables. When logical, scale =
TRUE normalizes the trajectory variable to sd = 1, whereas scale = FALSE leaves
the variable on its original scale. When numeric, the trajectory variables are
scaled by (i.e., divided by) the specific value in scale. Can also be a numeric
vector, in which case the values of scale are mapped to the variables specified
in var_names.

mt_spatialize 97

within_trajectory

logical specifying whether trajectory variables should be scaled within or across
trajectories. If within_trajectory == TRUE, scaling trajectories to mean = 0
and sd = 1 means that every to be standardized trajectory variable will have
mean = 0 and sd = 1. If within_trajectory == FALSE (the default), mean = 0
and sd = 1 are only true in the aggregate (i.e., across all trajectories). Can be
a logical vector, in which case the values of scale are mapped to the variables
specified in var_names.

prefix character string added to the names of the new standardized variables. If prefix
= "", the original variables will be overwritten.

transform function that takes a numeric matrix as argument and returns a numeric matrix
of same size with transformed values. If NULL the original values are passed on
to standardization.

Value

A mousetrap data object (see mt_example) with an additional variable containing the standardized
trajectory variable added to the trajectory array). If the trajectory array was provided directly as
data, only the trajectory array will be returned.

Author(s)

Dirk U. Wulff

See Also

mt_standardize for standardizing mouse-tracking measures per level of other variables.

Examples

Calculate derivatives
mt_example <- mt_derivatives(mt_example)

Standardize velocity across trajectories
mt_example <- mt_scale_trajectories(mt_example,var_names = "vel")

mt_spatialize Spatialize trajectories.

Description

[Deprecated]

Re-represent each trajectory spatially using a constant number of points so that adjacent points on
the trajectory become equidistant to each other. Please note that this function is deprecated and
that mt_length_normalize should be used instead.

98 mt_spatialize

Usage

mt_spatialize(
data,
use = "trajectories",
dimensions = c("xpos", "ypos"),
save_as = "sp_trajectories",
n_points = 20

)

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

use a character string specifying which trajectory data should be used.

dimensions a character string specifying which trajectory variables should be used. Can be
of length 2 or 3 for two-dimensional or three-dimensional data.

save_as a character string specifying where the resulting trajectory data should be stored.

n_points an integer or vector of integers specifying the number of points used to represent
the spatially rescaled trajectories. If a single integer is provided, the number of
points will be constant across trajectories. Alternatively, a vector of integers can
provided that specify the number of points for each trajectory individually.

Details

mt_spatialize is used to emphasize the trajectories’ shape. Usually, the vast majority of points
of a raw or a time-normalized trajectory lie close to the start and end point. mt_spatialize
re-distributes these points so that the spatial distribution is uniform across the entire trajectory.
mt_spatialize is mainly used to improve the results of clustering (in particular mt_cluster) and
visualization.

Value

A mousetrap data object (see mt_example) with an additional array containing the spatialized tra-
jectories. If a trajectory array was provided directly as data, only the spatialized trajectories will
be returned.

Author(s)

Dirk U. Wulff

Jonas M. B. Haslbeck

Examples

Not run:
KH2017 <- mt_spatialize(data=KH2017,

dimensions = c('xpos','ypos'),
n_points = 20)

mt_standardize 99

End(Not run)

mt_standardize Standardize mouse-tracking measures per level of other variables.

Description

Standardize selected mouse-tracking measures across all trials or per level of one or more other
variable, and store them in new variables. This function is a thin wrapper around scale_within,
focussed on mouse-tracking data stored in a mousetrap data object.

Usage

mt_standardize(
data,
use = "measures",
use_variables = NULL,
within = NULL,
prefix = "z_",
center = TRUE,
scale = TRUE

)

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details).

use a character string specifying which data should be used. By default points to the
measures data.frame created using mt_measures.

use_variables a vector specifying which variables should be standardized. If unspecified, all
variables will be standardized.

within an optional character string specifying one or more variables in data[["data"]].
If specified, all measures will be standardized separately for each level of the
variable (or for each combination of levels, if more than one variable is speci-
fied).

prefix a character string that is inserted before each standardized variable. If an empty
string is specified, the original variables are replaced.

center argument passed on to scale.

scale argument passed on to scale.

Value

A mousetrap data object (see mt_example) including the standardized measures.

100 mt_subset

Author(s)

Pascal J. Kieslich

Felix Henninger

See Also

mt_scale_trajectories for standardizing variables in mouse trajectory arrays.

scale_within which is called by mt_standardize.

scale for the R base scale function.

Examples

mt_example <- mt_measures(mt_example)

Standardize MAD and AD per subject
mt_example <- mt_standardize(mt_example,

use_variables=c("MAD", "AD"),
within="subject_nr", prefix="z_")

Standardize MAD and AD per subject and Condition
mt_example <- mt_standardize(mt_example,

use_variables=c("MAD", "AD"),
within=c("subject_nr", "Condition"),
prefix="z_")

mt_subset Filter mousetrap data.

Description

Return a subset of the mousetrap data including only the trial data and corresponding trajectories
that meet the conditions specified in the arguments.

Usage

mt_subset(data, subset, check = "data")

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details).

subset a logical expression (passed on to subset) indicating the rows to keep. Missing
values are taken as FALSE.

check a character string specifying which data should be used for checking the subset
condition.

mt_time_normalize 101

Details

mt_subset is helpful when trials should be removed from all analyses. By default, check is
set to "data" meaning that the subset condition is evaluated based on the trial data (stored in
data[["data"]]). However, it might also be of interest to only include trials based on specific
mouse-tracking measures (e.g., all trials with an MAD smaller than 200). In this case, check needs
to be set to the respective name of the data.frame (e.g., "measures").

Note that if specific trials should be removed from all analyses based on a condition known a priori
(e.g., practice trials), it is more efficient to use the subset function on the raw data before importing
the trajectories using one of the mt_import functions (such as mt_import_mousetrap).

Besides, if trials should only be removed from some analyses or for specific plots, note that other
mousetrap functions (e.g., mt_reshape, mt_aggregate, and mt_plot) also allow for subsetting.

Value

A mousetrap data object (see mt_example) with filtered data and trajectories.

Author(s)

Pascal J. Kieslich

Felix Henninger

See Also

subset for the R base subset function for vectors, matrices, or data.frames.

mt_reshape for information about the subset argument in various other mousetrap functions.

Examples

Subset based on trial data
mt_example_atypical <- mt_subset(mt_example, Condition=="Atypical")

Subset based on mouse-tracking measure (MAD)
mt_example <- mt_measures(mt_example)
mt_example_mad_sub <- mt_subset(mt_example, MAD<400, check="measures")

mt_time_normalize Time normalize trajectories.

Description

Compute time-normalized trajectories using a constant number of equally sized time steps. Time
normalization is performed separately for all specified trajectory dimensions (by default, the x- and
y-positions) using linear interpolation based on the timestamps. By default, 101 time steps are used
(following Spivey et al., 2005).

102 mt_time_normalize

Usage

mt_time_normalize(
data,
use = "trajectories",
save_as = "tn_trajectories",
dimensions = c("xpos", "ypos"),
timestamps = "timestamps",
nsteps = 101,
verbose = FALSE

)

Arguments

data a mousetrap data object created using one of the mt_import functions (see mt_example
for details). Alternatively, a trajectory array can be provided directly (in this case
use will be ignored).

use a character string specifying which trajectory data should be used.

save_as a character string specifying where the resulting trajectory data should be stored.

dimensions a character vector specifying the dimensions in the trajectory array that should
be time-normalized. If "all", all trajectory dimensions except the timestamps
will be time-normalized.

timestamps a character string specifying the trajectory dimension containing the timestamps.

nsteps an integer specifying the number of equally sized time steps.

verbose logical indicating whether function should report its progress.

Details

Time-normalization is often performed if the number of recorded x- and y-positions varies across
trajectories, which typically occurs when trajectories vary in their response time. After time-
normalization, all trajectories have the same number of recorded positions (which is specified using
nsteps) and the positions at different relative time points can be compared across trajectories.

For example, time normalized trajectories can be compared across conditions that differed in their
overall response time, as the timestamps are now relative to the overall trial duration. This is also
helpful for creating average trajectories, which are often used in plots.

Value

A mousetrap data object (see mt_example) with an additional array (by default called tn_trajectories)
containing the time-normalized trajectories. In this array, another dimension (called steps) has
been added with increasing integer values indexing the time-normalized position. If a trajectory
array was provided directly as data, only the time-normalized trajectories will be returned.

Author(s)

Pascal J. Kieslich

Felix Henninger

print.mt_heatmap_raw 103

References

Spivey, M. J., Grosjean, M., & Knoblich, G. (2005). Continuous attraction toward phonological
competitors. Proceedings of the National Academy of Sciences of the United States of America,
102(29), 10393-10398.

See Also

approx for information about the function used for linear interpolation.

mt_resample for resampling trajectories using a constant time interval.

Examples

mt_example <- mt_time_normalize(mt_example,
save_as="tn_trajectories", nsteps=101)

print.mt_heatmap_raw Generic print for class mt_heatmap_raw

Description

print.mt_heatmap_raw shows str.

Usage

S3 method for class 'mt_heatmap_raw'
print(x, ...)

Arguments

x an object of class mt_heatmap_raw.

... further arguments passed to or from other methods.

read_mt Read MouseTracker raw data.

Description

read_mt reads raw data that was collected using MouseTracker (Freeman & Ambady, 2010) and
stored as a file in the ".mt" format. If multiple files should be read into R, read_mt can be used in
combination with the read_bulk function from the readbulk package (see Examples). After reading
the data into R, mt_import_wide can be used to prepare the trajectory data for analyses using the
mousetrap library. The current version of read_mt has been tested with data from MouseTracker
Version 2.84 - but please be sure to double-check.

http://www.mousetracker.org/
http://pascalkieslich.github.io/readbulk/

104 read_mt

Usage

read_mt(file, columns = "all", add_trialid = FALSE, add_filename = FALSE)

Arguments

file a character string specifying the filename of the .mt file.
columns either ’all’ or a character vector specifying the to be extracted variables. Defaults

to ’all’ in which case all existing variables will be extracted.
add_trialid boolean specifying whether an additional column containing the trial number

should be added.
add_filename boolean specifying whether an additional column containing the file name should

be added.

Value

A data.frame with one row per trial. Variables are ordered according to columns, x-coordinates,
y-coordinates, and timestamps.

Author(s)

Dirk U. Wulff

References

Freeman, J. B., & Ambady, N. (2010). MouseTracker: Software for studying real-time mental
processing using a computer mouse-tracking method. Behavior Research Methods, 42(1), 226-241.

See Also

read_bulk from the readbulk package for reading and combining multiple raw data files.

mt_import_wide to prepare the imported data for analyses in mousetrap.

Examples

Not run:
Read a single raw data file from MouseTracker
(stored in the current working directory)
mt_data_raw <- read_mt("example.mt")

Use read_bulk to read all raw data files ending with ".mt" that are
stored in the folder "raw_data" (in the current working directory)
library(readbulk)
mt_data_raw <- read_bulk("raw_data", fun=read_mt, extension=".mt")

Import the data into mousetrap
mt_data <- mt_import_wide(mt_data_raw)

End(Not run)

scale_within 105

scale_within Scale and center variables within the levels of another variable.

Description

scale_within centers and/or scales variables in a data.frame (using scale) depending on the levels
of one or more other variables. By default, variables are standardized (i.e., centered and scaled). A
typical application is the within-subject standardization of variables in a repeated measures design.

Usage

scale_within(
data,
variables = NULL,
within = NULL,
prefix = "",
center = TRUE,
scale = TRUE

)

Arguments

data a data.frame.
variables a character string (or vector) specifying one or more variables that scale is ap-

plied to. If unspecified, scale_within will be applied to all variables in data.
within an optional character string specifying the name of one or more variables in

data. If specified, scale is applied separately for each of the levels of the vari-
able (or for each combination of levels, if more than one variable is specified).
Alternatively, a vector directly containing the level values.

prefix a character string that is inserted before each scaled variable. By default (empty
string) the original variables are replaced.

center argument passed on to scale.
scale argument passed on to scale.

Value

The original data.frame including the centered and / or scaled variables.

Author(s)

Pascal J. Kieslich

Felix Henninger

See Also

scale for the R base scale function.

mt_standardize for standardizing measures in a mousetrap data object.

106 scale_within

Examples

ChickWeight_scaled <- scale_within(
ChickWeight, variables="weight",
within="Chick", prefix="z_")

Index

∗ datasets
KH2017, 5
KH2017_raw, 6
mt_example, 48
mt_example_raw, 49
mt_prototypes, 85

aes, 78
aggregate, 93
approx, 90, 103
array, 5, 48
as.data.frame, 92

bezier, 3, 10
bimodality_coefficient, 4, 10, 31

clusterApplyLB, 26
coord_cartesian, 82
cStability, 37, 38

data.frame, 5, 6, 14, 16, 35, 40, 48, 49, 54,
70, 74, 92, 93, 95, 104, 105

detectCores, 26
dip.test, 31

geom_path, 78
geom_point, 77, 82
geom_rect, 80
ggplot, 78
grep, 64, 66

hclust, 34, 35, 37

inner_join, 75, 93

KH2017, 5, 6, 10
KH2017_raw, 5, 6, 6, 10
kmeans, 34, 35, 37
kurtosi, 4

list, 5, 48

mean, 92
merge, 93
mousetrap, 7, 60, 63, 65
mt_add_trajectory, 8, 11, 86
mt_add_variables, 8, 12
mt_aggregate, 9, 13, 16, 75, 78, 93, 101
mt_aggregate_per_subject, 9, 14, 15, 75,

93
mt_align, 3, 8, 17, 20, 22, 25, 35, 38, 70
mt_align_start, 6, 8, 19, 19, 22, 48
mt_align_start_end, 8, 19, 20, 20
mt_angles, 9, 22
mt_animate, 10, 24
mt_average, 5, 8, 27, 42, 48, 90
mt_bind, 8, 29
mt_check_bimodality, 5, 9, 30, 75
mt_check_resolution, 9, 28, 32, 73
mt_cluster, 9, 33, 39, 68, 98
mt_cluster_k, 9, 36, 36
mt_count, 9, 39
mt_derivatives, 5, 9, 28, 29, 40, 48, 72, 73
mt_deviations, 9, 12, 42, 73
mt_diffmap, 10, 44, 56, 57, 60
mt_distmat, 9, 34–37, 39, 46, 70
mt_example, 7, 10–13, 15, 17–21, 23, 24,

27–30, 32, 34, 35, 37, 40–43, 47, 48,
49–53, 56, 58, 62, 64, 67–70, 72, 74,
77, 82, 86, 88–91, 94–102

mt_example_raw, 10, 48, 49
mt_exclude_finish, 8, 50, 52
mt_exclude_initiation, 8, 51, 51
mt_export_long, 8, 9, 53, 60, 61, 93
mt_export_wide, 9, 93
mt_export_wide (mt_export_long), 53
mt_heatmap, 10, 46, 54, 57, 60
mt_heatmap_ggplot, 10, 46, 56, 56, 60
mt_heatmap_raw, 45, 46, 55, 57, 58
mt_import_long, 8, 54, 60, 65, 67
mt_import_mousetrap, 6, 8, 48, 62, 62, 67,

107

108 INDEX

74, 101
mt_import_wide, 8, 54, 62, 65, 65, 103, 104
mt_length_normalize, 8, 35, 38, 67, 70, 97
mt_map, 9, 35, 69, 86
mt_measures, 5, 9, 30, 42, 44, 48, 52, 72, 95,

99
mt_plot, 9, 76, 81, 83, 85, 101
mt_plot_add_rect, 10, 78, 80, 82, 83
mt_plot_aggregate, 9
mt_plot_aggregate (mt_plot), 76
mt_plot_per_trajectory, 10, 78, 81
mt_plot_riverbed, 10, 78, 83
mt_prototypes, 9, 69, 85
mt_qeffect, 86
mt_remap_symmetric, 6, 8, 19–22, 25, 35, 38,

48, 70, 87
mt_resample, 8, 28, 29, 89, 103
mt_reshape, 9, 13–16, 30, 53, 54, 78, 91, 101
mt_sample_entropy, 9, 75, 94
mt_scale_trajectories, 9, 96, 100
mt_spatialize, 97
mt_standardize, 9, 31, 75, 97, 99, 105
mt_subset, 8, 100
mt_time_normalize, 5, 8, 48, 73, 85, 90, 101

pdf, 45, 55, 82, 83
png, 45, 55
points, 87
polyarea, 73
print.mt_heatmap_raw, 103

read.csv, 7
read.table, 7
read_bulk, 7, 103, 104
read_mt, 7, 66, 67, 103
read_opensesame, 6, 7, 49, 65
rgeom, 25
rownames, 5, 48, 61, 63, 66, 83, 93

scale, 99, 100, 105
scale_within, 10, 99, 100, 105
skew, 4, 5
str, 103
subset, 92, 100, 101
summarize_at, 14, 16, 92, 93

tbl_df, 92
tiff, 45, 55

	bezier
	bimodality_coefficient
	KH2017
	KH2017_raw
	mousetrap
	mt_add_trajectory
	mt_add_variables
	mt_aggregate
	mt_aggregate_per_subject
	mt_align
	mt_align_start
	mt_align_start_end
	mt_angles
	mt_animate
	mt_average
	mt_bind
	mt_check_bimodality
	mt_check_resolution
	mt_cluster
	mt_cluster_k
	mt_count
	mt_derivatives
	mt_deviations
	mt_diffmap
	mt_distmat
	mt_example
	mt_example_raw
	mt_exclude_finish
	mt_exclude_initiation
	mt_export_long
	mt_heatmap
	mt_heatmap_ggplot
	mt_heatmap_raw
	mt_import_long
	mt_import_mousetrap
	mt_import_wide
	mt_length_normalize
	mt_map
	mt_measures
	mt_plot
	mt_plot_add_rect
	mt_plot_per_trajectory
	mt_plot_riverbed
	mt_prototypes
	mt_qeffect
	mt_remap_symmetric
	mt_resample
	mt_reshape
	mt_sample_entropy
	mt_scale_trajectories
	mt_spatialize
	mt_standardize
	mt_subset
	mt_time_normalize
	print.mt_heatmap_raw
	read_mt
	scale_within
	Index

