
Package ‘moveVis’
October 13, 2022

Type Package

Title Movement Data Visualization

Version 0.10.5

Depends R (>= 3.5.0)

Date 2020-03-27

Description Tools to visualize movement data (e.g. from GPS tracking) and temporal changes of envi-
ronmental data (e.g. from remote sensing) by creating video animations.

License GPL-3

Encoding UTF-8

RoxygenNote 7.1.0

Imports move, raster, sf, lwgeom, slippymath, lubridate, curl,
ggplot2, cowplot, magick, gifski, av, pbapply, magrittr,
methods, stats

BugReports http://www.github.com/16eagle/moveVis/issues

SystemRequirements ImageMagick, FFmpeg, libav

URL http://movevis.org

Suggests parallel, mapview, leaflet, testthat

NeedsCompilation no

Author Jakob Schwalb-Willmann [aut, cre]

Maintainer Jakob Schwalb-Willmann <movevis@schwalb-willmann.de>

Repository CRAN

Date/Publication 2020-03-28 04:20:02 UTC

R topics documented:
moveVis-package . 2
add_colourscale . 4
add_gg . 6
add_labels . 8

1

http://www.github.com/16eagle/moveVis/issues
http://movevis.org

2 moveVis-package

add_northarrow . 10
add_progress . 12
add_scalebar . 13
add_text . 15
add_timestamps . 16
align_move . 18
animate_frames . 19
basemap_data . 21
deprecated . 22
df2move . 23
frames_graph . 24
frames_spatial . 27
get_frametimes . 32
get_maptypes . 33
join_frames . 34
move_data . 35
settings . 36
subset_move . 37
suggest_formats . 38
view_spatial . 39
whitestork_data . 41

Index 42

moveVis-package Tools to visualize movement data in R

Description

moveVis provides tools to visualize movement data (e.g. from GPS tracking) and temporal changes
of environmental data (e.g. from remote sensing) by creating video animations. The moveVis
package is closely connected to the move package and builds up on ggplot2 grammar of graphics.

Details

The package includes the following functions, sorted by the order they would be applied to create
an animation from movement data:

• df2move converts a data.frame into a move or moveStack object. This is useful if you do not
usually work with the move classes and your tracks are present as data.frames.

• align_move aligns single and multi-individual movement data to a uniform time scale with
a uniform temporal resolution needed for creating an animation from it. Use this function to
prepare your movement data for animation depending on the temporal resolution that suits
your data.

• subset_move subsets a move or moveStack by a given time span. This is useful if you want
to create a movement animation of only a temporal subset of your data, e.g. a particular day.

moveVis-package 3

• get_maptypes returns a character vector of available map types that can be used with frames_spatial.
moveVis supports OpenStreetMaps and Mapbox basemap imergay. Alternatively, you can
provide custom imagery to frames_spatial.

• frames_spatial creates a list of ggplot2 maps displaying movement. Each object represents
a single frame. Each frame can be viewed or modified individually. The returned list of frames
can be animated using animate_frames.

• frames_graph creates a list of ggplot2 graphs displaying movement-environment interac-
tion. Each object represents a single frame. Each frame can be viewed or modified individu-
ally. The returned list of frames can be animated using animate_frames.

• add_gg adds ggplot2 functions (e.g. to add layers such as points, polygons, lines, or to
change scales etc.) to the animation frames created with frames_spatial or frames_graph.
Instead of creating your own ggplot2 functions, you can use one of the other moveVis add_
functions:

• add_labels adds character labels such as title or axis labels to animation frames created with
frames_spatial or frames_graph.

• add_scalebar adds a scalebar to the animation frames created with frames_spatial or
frames_graph.

• add_northarrow adds a north arrow to the animation frames created with frames_spatial
or frames_graph.

• add_progress adds a progress bar to animation frames created with frames_spatial or
frames_graph.

• add_timestamps adds timestamps to animation frames created with frames_spatial or
frames_graph.

• add_text adds static or dynamically changing text to the animation frames created with
frames_spatial or frames_graph.

• add_colourscale adjusts the colour scales of the animation frames created with frames_spatial
and custom map imagery.

• join_frames side-by-side joins the ggplot2 objects of two or more frames lists of equal
lengths into a single list of ggplot2 objects per frame using plot_grid. This is useful if you
want to side-by-side combine spatial frames returned by frames_spatial with graph frames
returned by frames_graph.

• get_frametimes extracts the timestamps associated with each frame of a list of frames cre-
ated using frames_spatial or frames_graph and returns them as a vector.

• suggest_formats returns a selection of suggested file formats that can be used with out_file
of animate_frames on your system.

• animate_frames creates an animation from a list of frames computed with frames_spatial
or frames_graph.

• view_spatial displays movement tracks on an interactive mapview or leaflet map.

• use_multicore enables multi-core usage for computational expensive processing steps.

• use_disk enables the usage of disk space for creating frames, which can prevent memory
overload when creating frames for very large animations.

The majority of this functions can be used with the forward pipe operater %>%, which is re-exported
by moveVis.

4 add_colourscale

Author(s)

Jakob Schwalb-Willmann. Maintainer: Jakob Schwalb-Willmann, moveVis@schwalb-willmann.de

See Also

Useful links:

• http://movevis.org

• Report bugs at http://www.github.com/16eagle/moveVis/issues

add_colourscale Add scale to frames

Description

This function adjusts the colour scales of the animation frames created with frames_spatial and
custom map imagery.

Usage

add_colourscale(
frames,
type,
colours,
labels = waiver(),
na.colour = "grey50",
na.show = TRUE,
legend_title = NULL,
verbose = TRUE

)

Arguments

frames list of ggplot2 objects, crated with frames_spatial.

type character, either "gradient" or "discrete". Must be equal to the defintion of
argument r_type with which frames have been created (see frames_spatial).

colours character, a vector of colours. If type = "discrete", number of colours must
be equal to the number of classes contained in the raster imagery with which
frames have been created. Optioanlly, the vector can be named to associate
map values with colours and define the scale limits, e.g. c("-1" = "red", "0"
= "blue", "1" = "green")

labels character, a vector of labels with the same length as colours. Ignored, if type
= "gradient".

na.colour character, colour to use for missing values.

na.show logical, whether to display NA values in discrete scaling. Ignored, if type =
"gradient".

http://movevis.org
http://www.github.com/16eagle/moveVis/issues

add_colourscale 5

legend_title character, a legend title.

verbose logical, if TRUE, messages and progress information are displayed on the console
(default).

Value

List of frames.

Author(s)

Jakob Schwalb-Willmann

See Also

frames_spatial frames_graph animate_frames

Examples

library(moveVis)
library(move)

data("move_data", "basemap_data")
align movement
m <- align_move(move_data, res = 4, unit = "mins")

create spatial frames with frames_spatial:
r_list <- basemap_data[[1]]
r_times <- basemap_data[[2]]

frames <- frames_spatial(m, r_list = r_list, r_times = r_times, r_type = "gradient",
fade_raster = TRUE)

frames[[100]] # take a look at one of the frames

default blue is boring, let's change the colour scale of all frames
frames <- add_colourscale(frames, type = "gradient", colours = c("orange", "white", "darkgreen"),

legend_title = "NDVI")
frames[[100]]

let's make up some classification data with 10 classes
r_list <- lapply(r_list, function(x){

y <- raster::setValues(x, round(raster::getValues(x)*10))
return(y)

})
turn fade_raster to FALSE, since it makes no sense to temporally interpolate discrete classes
frames <- frames_spatial(m, r_list = r_list, r_times = r_times, r_type = "discrete",

fade_raster = FALSE)
frames[[100]]

now, let's assign a colour per class value to frames
colFUN <- colorRampPalette(c("orange", "lightgreen", "darkgreen"))

6 add_gg

cols <- colFUN(10)
frames <- add_colourscale(frames, type = "discrete", colours = cols, legend_title = "Classes")
frames[[100]]

add_gg Add ggplot2 function to frames

Description

This function adds ggplot2 functions (e.g. to add layers, change scales etc.) to the animation
frames created with frames_spatial.

Usage

add_gg(frames, gg, data = NULL, ..., verbose = T)

Arguments

frames list of ggplot2 objects, crated with frames_spatial.

gg ggplot2 expressions (see details), either as

• an expression of one or a list of ggplot2 functions to be added to every
frame,

• a list of such of the same length as frames to add different ggplot2 expres-
sions per frame

data optional data used by gg (see details), either

• an object of any class, e.g. a data.frame, used by gg that will be added to
all frames,

• a list, e.g. of multiple data.frames, with length of frames to add different
data to each frame.

... additional (non-iterated) objects that should be visible to gg.

verbose logical, if TRUE, messages and progress information are displayed on the console
(default).

Details

Agrument gg expects ggplot2 functions handed over as expressions (see expr) to avoid their eval-
uation before thex are called for the correct frame. Simply wrap your ggplot2 function into
expr() and supply it to gg. To add multiple ggplot2 functions to be applied on every frame,
supply an expression containing a list of ggplot2 functions (e.g. expr(list(geom_label(...),
geom_text(...)))). This expression would be added to all frames. To add specific ggplot2 func-
tions per frame, supply a list of expressions of the same length as frames. Each expression may
contain a list of ggplot2 functions, if you want to add multiple functions per frame.

If data is used, the ggplot2 expressions supplied with gg can use the object by the name data
for plotting. If data is a list, it must be of the same length as frames. The list will be iterated,

add_gg 7

so that functions in gg will have access to the individual objects within the list by the name data
per each frame. If the data you want to display is does not change with frames and may only be a
character vector or similiar, you may not need data, as you can supply the needed values within the
expression supplied through gg.

If you supply gg as a list of expressions for each frame and data as a list of objects (e.g. data.frames)
for each frame, each frame will be manipulated with the corresponding ggplot2 function and the
corresponding data.

Value

List of frames.

Author(s)

Jakob Schwalb-Willmann

See Also

frames_spatial frames_graph animate_frames

Examples

library(moveVis)
library(move)
library(ggplot2)

data("move_data", "basemap_data")
align movement
m <- align_move(move_data, res = 4, unit = "mins")

frames <- frames_spatial(m, map_service = "osm", map_type = "watercolor")
frames[[100]] # take a look at one of the frames

let's draw a polygon on frames:
data <- data.frame(x = c(8.917, 8.924, 8.924, 8.916, 8.917),

y = c(47.7678, 47.7675, 47.764, 47.7646, 47.7678))

frames = add_gg(frames, gg = expr(geom_path(aes(x = x, y = y), data = data,
colour = "red", linetype = "dashed")), data = data)

add some text
frames <- add_text(frames, "Static feature", x = 8.9205, y = 47.7633,

colour = "black", size = 3)
frames[[100]]

add_gg can also be used iteratively to manipulate each frame differently.
Let's create unique polygons per frame:

create data.frame containing corner coordinates
data <- data.frame(x = c(8.96, 8.955, 8.959, 8.963, 8.968, 8.963, 8.96),

y = c(47.725, 47.728, 47.729, 47.728, 47.725, 47.723, 47.725))

8 add_labels

make a list from it by replicating it by the length of frames
data <- rep(list(data), length.out = length(frames))

now alter the coordinates to make them shift
data <- lapply(data, function(x){

y <- rnorm(nrow(x)-1, mean = 0.00001, sd = 0.0001)
x + c(y, y[1])

})

draw each individual polygon to each frame
frames = add_gg(frames, gg = expr(geom_path(aes(x = x, y = y), data = data,

colour = "black")), data = data)

add a text label
frames <- add_text(frames, "Dynamic feature", x = 8.959, y = 47.7305,

colour = "black", size = 3)
frames[[100]]

animate frames to see how the polygons "flip"
animate_frames(frames, out_file = tempfile(fileext = ".mov"))

you can use add_gg on any list of ggplot2 objects,
also on frames made using frames_gr
r_list <- basemap_data[[1]]
r_times <- basemap_data[[2]]

frames.gr <- frames_graph(m, r_list = r_list, r_times = r_times, r_type = "gradient",
fade_raster = TRUE, graph_type = "hist", val_by = 0.01)

frames.gr[[100]]
manipulate the labels, since they are very dense:
just replace the current scale
frames.gr <- add_gg(frames.gr, expr(scale_x_continuous(breaks=seq(0,1,0.1),

labels=seq(0,1,0.1), expand = c(0,0))))
frames.gr[[100]]

add_labels Add labels to frames

Description

This function adds character labels such as title or axis labels to animation frames created with
frames_spatial.

Usage

add_labels(
frames,
title = waiver(),

add_labels 9

subtitle = waiver(),
caption = waiver(),
tag = waiver(),
x = waiver(),
y = waiver(),
verbose = TRUE

)

Arguments

frames list of ggplot2 objects, crated with frames_spatial.

title character, frame title. If NULL, an existing title of frames is removed. If waiver()
(default, see ggplot2::waiver()), an existing title of frames is kept.

subtitle character, frame subtitle. If NULL, an existing title of frames is removed. If
waiver() (default, see ggplot2::waiver()), an existing title of frames is kept.

caption character, frame caption. If NULL, an existing title of frames is removed. If
waiver() (default, see ggplot2::waiver()), an existing title of frames is kept.

tag character, frame tag. If NULL, an existing title of frames is removed. If waiver()
(default, see ggplot2::waiver()), an existing title of frames is kept.

x character, label of the x axis. If NULL, an existing title of frames is removed.
If waiver() (default, see ggplot2::waiver()), an existing title of frames is
kept.

y character, label of the y axis. If NULL, an existing title of frames is removed.
If waiver() (default, see ggplot2::waiver()), an existing title of frames is
kept.

verbose logical, if TRUE, messages and progress information are displayed on the console
(default).

Value

List of frames.

Author(s)

Jakob Schwalb-Willmann

See Also

frames_spatial frames_graph animate_frames

Examples

library(moveVis)
library(move)

data("move_data", "basemap_data")
m <- align_move(move_data, res = 4, unit = "mins")

10 add_northarrow

create spatial frames using a custom NDVI base layer
r_list <- basemap_data[[1]]
r_times <- basemap_data[[2]]

frames <- frames_spatial(m, r_list = r_list, r_times = r_times, r_type = "gradient",
fade_raster = TRUE)

add labels to frames:
frames <- add_labels(frames, title = "Example animation using moveVis::add_labels()",

subtitle = "Adding a subtitle to frames created using frames_spatial()",
caption = "Projection: Geographical, WGS84. Sources: moveVis examples.",

x = "Longitude", y = "Latitude")
have a look at one frame
frames[[100]]

add_northarrow Add north arrow to frames

Description

This function adds a north arrow to the animation frames created with frames_spatial.

Usage

add_northarrow(
frames,
height = 0.05,
position = "bottomright",
x = NULL,
y = NULL,
colour = "black",
size = 1,
label_text = "N",
label_margin = 0.4,
label_size = 5,
verbose = TRUE

)

Arguments

frames list of ggplot2 objects, crated with frames_spatial.

height numeric, height of the north arrow in a range from 0 to 1 as the proportion of
the overall height of the frame map.

position character, position of the north arrow on the map. Either "bottomleft", "upperleft",
"upperright", "bottomright". Ignored, if x and y are set.

add_northarrow 11

x numeric, position of the bottom left corner of the north arrow on the x axis. If
not set, position is used to calculate the position of the north arrow.

y numeric, position of the bottom left corner of the north arrow on the y axis. If
not set, position is used to calculate the position of the north arrow.

colour character, colour.
size numeric, arrow size.
label_text character, text below the north arrow.
label_margin numeric, margin between label and north arrow as a proportion of the size of the

north arrow.
label_size numeric, label font size.
verbose logical, if TRUE, messages and progress information are displayed on the console

(default).

Value

List of frames.

Author(s)

Jakob Schwalb-Willmann

See Also

frames_spatial frames_graph animate_frames

Examples

library(moveVis)
library(move)

data("move_data", "basemap_data")
m <- align_move(move_data, res = 4, unit = "mins")

create spatial frames using a custom NDVI base layer
r_list <- basemap_data[[1]]
r_times <- basemap_data[[2]]

frames <- frames_spatial(m, r_list = r_list, r_times = r_times, r_type = "gradient",
fade_raster = TRUE)

add a north arrow to frames:
frames.a <- add_northarrow(frames)
frames.a[[100]]

or in white at another position
frames.b <- add_northarrow(frames, colour = "white", position = "bottomleft")
frames.b[[100]]

12 add_progress

add_progress Add progress bar to frames

Description

This function adds a progress bar to animation frames created with frames_spatial.

Usage

add_progress(frames, colour = "grey", size = 1.8, verbose = TRUE)

Arguments

frames list of ggplot2 objects, crated with frames_spatial.

colour character, progress bar colour.

size numeric, progress bar line size..

verbose logical, if TRUE, messages and progress information are displayed on the console
(default).

Value

List of frames.

Author(s)

Jakob Schwalb-Willmann

See Also

frames_spatial frames_graph animate_frames

Examples

library(moveVis)
library(move)

data("move_data", "basemap_data")
m <- align_move(move_data, res = 4, unit = "mins")

create spatial frames using a custom NDVI base layer
r_list <- basemap_data[[1]]
r_times <- basemap_data[[2]]

frames <- frames_spatial(m, r_list = r_list, r_times = r_times, r_type = "gradient",
fade_raster = TRUE)

add a progress bar:

add_scalebar 13

frames.a <- add_progress(frames)
frames.a[[100]]

or in red and larger
frames.b <- add_progress(frames, colour = "red", size = 2.5)
frames.b[[100]]

add_scalebar Add scalebar to frames

Description

This function adds a scalebar to the animation frames created with frames_spatial.

Usage

add_scalebar(
frames,
distance = NULL,
height = 0.015,
position = "bottomleft",
x = NULL,
y = NULL,
colour = "black",
label_margin = 1.2,
units = "km",
verbose = TRUE

)

Arguments

frames list of ggplot2 objects, crated with frames_spatial.

distance numeric, optional. Distance displayed by the scalebar (in either km or miles
defined by argument units) By default, the displayed distance is calculated
automatically.

height numeric, height of the scalebar in a range from 0 to 1 as the proportion of the
overall height of the frame map. Default is 0.015.

position character, position of the scalebar on the map. Either "bottomleft", "upperleft",
"upperright", "bottomright". Ignored, if x and y are set.

x numeric, position of the bottom left corner of the scalebar on the x axis. If not
set, position is used to calculate the position of the scalebar.

y numeric, position of the bottom left corner of the scalebar on the y axis. If not
set, position is used to calculate the position of the scalebar.

colour character, colour of the distance labels. Default is "black".

14 add_scalebar

label_margin numeric, distance of the labels to the scalebar as a proportion of the height of
the scalebar (e.g. if set to 2, the labels will be positioned with a distance to the
scalebar of twice the scalebar height).

units character, either "km" for kilometers or "miles" for miles.

verbose logical, if TRUE, messages and progress information are displayed on the console
(default).

Value

List of frames.

Author(s)

Jakob Schwalb-Willmann

See Also

frames_spatial frames_graph animate_frames

Examples

library(moveVis)
library(move)

data("move_data", "basemap_data")
m <- align_move(move_data, res = 4, unit = "mins")

create spatial frames using a custom NDVI base layer
r_list <- basemap_data[[1]]
r_times <- basemap_data[[2]]

frames <- frames_spatial(m, r_list = r_list, r_times = r_times, r_type = "gradient",
fade_raster = TRUE)

add a scale bar to frames:
frames.a <- add_scalebar(frames)
frames.a[[100]]

or in white at another position
frames.b <- add_scalebar(frames, colour = "white", position = "bottomright")
frames.b[[100]]

or with another height
frames.c <- add_scalebar(frames, colour = "white", position = "bottomright", height = 0.025)
frames.c[[100]]

add_text 15

add_text Add static or dynamic text to frames

Description

This function adds static or dynamically changing text to the animation frames created with frames_spatial.

Usage

add_text(
frames,
labels,
x,
y,
colour = "black",
size = 3,
type = "text",
verbose = TRUE

)

Arguments

frames list of ggplot2 objects, crated with frames_spatial.

labels character, text to be added to frames. Either a single character value or a char-
acter vector of same length as frames.

x numeric, position of text on the x scale. Either a single numeric value or a
numeric vector of same length as frames.

y numeric, position of text on the y scale. Either a single numeric value or a
numeric vector of same length as frames.

colour character, the text colour(s). Either a single character value or a character vector
of same length as frames.

size numeric, the text size(s). Either a single numeric value or a numeric vector of
same length as frames.

type character, either "text" to draw text or "label" to draw text inside a box.

verbose logical, if TRUE, messages and progress information are displayed on the console
(default).

Value

List of frames.

Author(s)

Jakob Schwalb-Willmann

16 add_timestamps

See Also

frames_spatial frames_graph animate_frames

Examples

library(moveVis)
library(move)

data("move_data", "basemap_data")
m <- align_move(move_data, res = 4, unit = "mins")

create spatial frames using a custom NDVI base layer
r_list <- basemap_data[[1]]
r_times <- basemap_data[[2]]

frames <- frames_spatial(m, r_list = r_list, r_times = r_times, r_type = "gradient",
fade_raster = TRUE)

add text somewhere to all frames:
frames.a <- add_text(frames, "Water area", x = 8.959, y = 47.7305,

colour = "white", size = 3)
frames.a[[100]]

or use the ggplot2 "label" type:
frames.b <- add_text(frames, "Water area", x = 8.959, y = 47.7305,

colour = "black", size = 3, type = "label")
frames.b[[100]]

add_timestamps Add timestamps to frames

Description

This function adds timestamps to animation frames created with frames_spatial.

Usage

add_timestamps(frames, m = NULL, x = NULL, y = NULL, ..., verbose = TRUE)

Arguments

frames list of ggplot2 objects, crated with frames_spatial.

m move or moveStack, optional. If defined, timestamps are extracted from m that
must be the same object used to create frames with frames_spatial. If un-
defined (recommended), timestamps are extracted from the attributes of frames
directly.

add_timestamps 17

x numeric, optional, position of timestamps on the x scale. By default, timestamps
will be displayed in the top center.

y numeric, optional, position of timestamps on the y scale.

... optional, arguments passed to add_text, such as colour, size, type.

verbose logical, if TRUE, messages and progress information are displayed on the console
(default).

Value

List of frames.

Author(s)

Jakob Schwalb-Willmann

See Also

frames_spatial frames_graph animate_frames

Examples

library(moveVis)
library(move)

data("move_data", "basemap_data")
m <- align_move(move_data, res = 4, unit = "mins")

create spatial frames using a custom NDVI base layer
r_list <- basemap_data[[1]]
r_times <- basemap_data[[2]]

frames <- frames_spatial(m, r_list = r_list, r_times = r_times, r_type = "gradient",
fade_raster = TRUE)

add timestamps as text
frames.a <- add_timestamps(frames, type = "text")
frames.a[[100]]

or use the ggplot2 "label" type:
frames.b <- add_timestamps(frames, type = "label")
frames.b[[100]]

18 align_move

align_move Align movement data

Description

This function aligns movement data to a uniform time scale with a uniform temporal resolution
throughout the complete movement sequence. This prepares the provided movement data to be
interpretable by frames_spatial, which necessitates a uniform time scale and a consistent, unique
temporal resolution for all moving individuals to turn recording times into frame times.

Usage

align_move(
m,
res = "min",
digit = "min",
unit = "secs",
spaceMethod = "greatcircle"

)

Arguments

m move or moveStack, which is allowed to contain irregular timestamps and di-
verging temporal resolutions to be aligned (see df2move to convert a data.frame
to a move object).

res either numeric, representing the temporal resolution, to which m should be aligned
to (see argument unit), or character:

• "min" to use the smalles temporal resolution of m (default)
• "max" to use the largest temporal resolution of m
• "mean" to use the rounded average temporal resolution of m

digit either numeric, indicating to which digits of a specifc unit (see argument unit)
the time scale of m should be aligned (e.g. 0 to align the time scale to second
":00", if unit is set to secs), or character:

• "min" to use the smallest digit of the defined unit (default)
• "max" to use the largest digit of the defined unit

• "mean" to use the rounded average digit of the defined unit

unit character, either "secs", "mins", "hours", "days", indicating the temporal
unit, to which res and digit are referring.

spaceMethod character, either "euclidean", "greatcircle" or "rhumbline", indicating the
interpolation function to be used to interpolate locations of m to the aligned time
scale. Interpolation is performed using move::interpolateTime.

Value

Aligned move or moveStack, ready to be used with frames_spatial-

animate_frames 19

Author(s)

Jakob Schwalb-Willmann

See Also

df2move frames_spatial frames_graph

Examples

library(moveVis)
library(move)
data("move_data")

the tracks in move_data have irregular timestamps and sampling rates.
print unique timestamps and timeLag
unique(timestamps(move_data))
unique(unlist(timeLag(move_data, units = "secs")))

use align_move to correct move_data to a uniform time scale and lag using interpolation.
resolution of 4 minutes (240 seconds) at digit 0 (:00 seconds) per timestamp:
m <- align_move(move_data, res = 240, digit = 0, unit = "secs")
unique(unlist(timeLag(m, units = "secs")))

resolution of 1 hour (3600 seconds) at digit 0 (:00 seconds) per timestamp:
m <- align_move(move_data, res = 3600, digit = 0, unit = "secs")
unique(unlist(timeLag(m, units = "secs")))

resolution of 1 hour (15 seconds) at digit 0 (:00 seconds) per timestamp:
m <- align_move(move_data, res = 15, digit = 0, unit = "secs")
unique(unlist(timeLag(m, units = "secs")))

resolution of 1 hour:
m <- align_move(move_data, res = 60, unit = "mins")
unique(unlist(timeLag(m, units = "secs")))

animate_frames Animate frames

Description

animate_frames creates an animation from a list of frames computed with frames_spatial.

Usage

animate_frames(
frames,
out_file,
fps = 25,

20 animate_frames

width = 700,
height = 700,
res = 100,
end_pause = 0,
display = TRUE,
overwrite = FALSE,
verbose = TRUE,
...

)

Arguments

frames list of ggplot2 objects, crated with frames_spatial.

out_file character, the output file path, e.g. "/dir/to/file.mov". The file extension must
correspond to a file format known by the available renderers of the running sys-
tem. Use suggest_formats to get a vector of suggested known file formats.

fps numeric, the number of frames to be displayed per second. Default is 2.

width numeric, width of the output animation in pixels.

height numeric, height of the output animation in pixels.

res numeric, resolution of the output animation in ppi.

end_pause numeric, defining how many seconds the last frame of the animation should be
hold to add a pause at the the end of the animation. Default is 0 seconds to not
add a pause.

display logical, whether the animation should be displayed after rendering or not.

overwrite logical, wether to overwrite an existing file, if out_file is already present.

verbose logical, if TRUE, messages and progress information are displayed on the console
(default).

... additional arguments to be passed to the render function.

Details

An appropriate render function is selected depending on the file extension in out_file: For .gif
files, gifski::save_gif is used, for any other (video) format, av::av_capture_graphics is used.

Value

None or the default image/video viewer displaying the animation

Author(s)

Jakob Schwalb-Willmann

See Also

frames_spatial frames_graph join_frames

basemap_data 21

Examples

library(moveVis)
library(move)

data("move_data", "basemap_data")
align movement
m <- align_move(move_data, res = 4, unit = "mins")

create spatial frames with frames_spatial:
r_list <- basemap_data[[1]]
r_times <- basemap_data[[2]]

frames <- frames_spatial(m, r_list = r_list, r_times = r_times, r_type = "gradient",
fade_raster = TRUE)

customize
frames <- add_colourscale(frames, type = "gradient",

colours = c("orange", "white", "darkgreen"), legend_title = "NDVI")
frames <- add_northarrow(frames, position = "bottomleft")
frames <- add_scalebar(frames, colour = "white", position = "bottomright")

frames <- add_progress(frames)
frames <- add_timestamps(frames, m, type = "label")

check available formats
suggest_formats()

animate frames as GIF
animate_frames(frames, out_file = tempfile(fileext = ".gif"))

animate frames as mov
animate_frames(frames, out_file = tempfile(fileext = ".gif"))

basemap_data Example manipulated NDVI data

Description

This dataset contains two lists of equal lenghts:

• a list of ten single-layer raster objects, representing NDVI images covering the Lake of
Constance area.

• a list of made-up times that simulate acquisition times with a temporal resolution, remote
sensing scientiest would dream of...

Usage

data(basemap_data)

22 deprecated

Format

List containing two lists of equal lengths: a list of raster objects and a list of POSIXct times.

Details

This object is used by some moveVis examples and unit tests.

Note

All data contained should only be used for testing moveVis and are not suitable to be used for
analysis or interpretation.

Source

MODIS (MOD13Q1 NDVI)

deprecated Deprecated functions

Description

Several functions are deprecated due to a rewrite of moveVis with version 0.10.

Usage

animate_move(...)

animate_raster(...)

animate_stats(...)

get_formats(...)

get_libraries(...)

Arguments

... deprecated arguments.

Details

The new version of moveVis makes it much easier to animate movement data and multi-temporal
imagery (see ?moveVis). You gain more control about the preprocessing of your movement data
as well as the visual customization of each animation frame through a more consequent link of
moveVis to gpplot2.

df2move 23

Note

To install the old version of moveVis (0.9.9), see https://github.com/16EAGLE/moveVis/releases/
tag/v0.9.9.

See Also

frames_spatial frames_graph join_frames animate_frames

df2move Convert a data.frame into a move or moveStack object

Description

This function is a simple wrapper that converts a data.frame into a move or moveStack object.
Both can be used as inputs to frames_spatial or frames_graph.

Usage

df2move(df, proj, x, y, time, track_id = NULL, data = NULL, ...)

Arguments

df data.frame, a data.frame with rows representing observations and columns rep-
resenting x and y coordinates, time and optionally track IDs, if multiple tracks
are contained.

proj projection, character (proj4string) or CRS object, indicating the projection that
the coordinates of df represent.

x character, name of the column in df that represents x coordinates.

y character, name of the column in df that represents y coordinates.

time character, name of the column in df that represents timestamps. Timestamps
need to be of class POSIXct.

track_id character, optional, name of the column in df that represents track names or IDs.
If set, a moveStack is returned, otherwise, a move object is returned.

data data.frame, optional, to add additional data such as path colours (see move).
Number of rows must equal number of rows of df.

... additional arguments passed to move.

Value

A move or moveStack object.

See Also

frames_spatial frames_graph subset_move

https://github.com/16EAGLE/moveVis/releases/tag/v0.9.9
https://github.com/16EAGLE/moveVis/releases/tag/v0.9.9

24 frames_graph

Examples

library(moveVis)
library(move)

load the example data and convert them into a data.frame
data("move_data")
move_df <- methods::as(move_data, "data.frame")

use df2move to convert the data.frame into a moveStack
df2move(move_df,

proj = "+init=epsg:4326 +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0",
x = "coords.x1", y = "coords.x2", time = "timestamps", track_id = "trackId")

frames_graph Create frames of movement-environment interaction graphs for ani-
mation

Description

frames_graph creates a list of ggplot2 graphs displaying movement-environment interaction.
Each object represents a single frame. Each frame can be viewed or modified individually. The
returned list of frames can be animated using animate_frames.

Usage

frames_graph(
m,
r_list,
r_times,
r_type = "gradient",
fade_raster = FALSE,
crop_raster = TRUE,
return_data = FALSE,
graph_type = "flow",
path_size = 1,
path_legend = TRUE,
path_legend_title = "Names",
val_min = NULL,
val_max = NULL,
val_by = 0.1,
verbose = T

)

Arguments

m move or moveStack of uniform time scale and time lag, e.g. prepared with
align_move (recommended). May contain a column named colour to control
path colours (see details).

frames_graph 25

r_list list of raster or rasterStack. Each list element referrs to the times given
in r_times. Use single-layer raster objects for gradient or discrete data (see
r_type). Use a rasterStack containing three bands for RGB imagery (in the
order red, green, blue).

r_times list of POSIXct times. Each list element represents the time of the corresponding
element in r_list. Must be of same length as r_list.

r_type character, either "gradient" or "discrete". Ignored, if r_list contains rasterStacks
of three bands, which are treated as RGB.

fade_raster logical, if TRUE, r_list is interpolated over time based on r_times. If FALSE,
r_list elements are assigned to those frames closest to the equivalent times in
r_times.

crop_raster logical, whether to crop rasters in r_list to plot extent before plotting or not.
return_data logical, if TRUE, instead of a list of frames, a data.frame containing the val-

ues extracted from r_list per individual, location and time is returned. This
data.frame can be used to create your own multi- or monotemporal ggplot2
movement-environemnt interaction graphs.

graph_type character, defines the type of multi-temporal graph that should be drawn as
frames. Currently supported graphs are:

• "flow", a time flow graph with frame time on the x axis and values of the
visited cell at x on the y axis per individual track

• "hist", a cumulative histogram with cell values on the x axis and time-
cumulative counts of visits on the y axis per individual track.

path_size numeric, size of each path.
path_legend logical, wether to add a path legend from m or not. Legend tracks and colours

will be ordered by the tracks’ temporal apperances, not by their order in m.
path_legend_title

character, path legend title. Default is "Names".
val_min numeric, minimum value of the value axis. If undefined, the minimum is col-

lected automatically.
val_max numeric, maximum value of the value axis. If undefined, the maximum is col-

lected automatically.
val_by numeric, increment of the value axis sequence. Default is 0.1. If graph_type =

"discrete", this value should be an integer of 1 or greater.
verbose logical, if TRUE, messages and progress information are displayed on the console

(default).

Details

To later on side-by-side join spatial frames created using frames_spatial with frames created with
frames_graph for animation, equal inputs must have been used for both function calls for each of
the arguments m, r_list, r_times and fade_raster.

Value

List of ggplot2 objects, each representing a single frame. If return_data is TRUE, a data.frame is
returned (see return_data).

26 frames_graph

Author(s)

Jakob Schwalb-Willmann

See Also

frames_spatial join_frames animate_frames

Examples

library(moveVis)
library(move)
library(ggplot2)

data("move_data", "basemap_data")
align movement
m <- align_move(move_data, res = 4, unit = "mins")

r_list <- basemap_data[[1]]
r_times <- basemap_data[[2]]

use the same inputs to create a non-spatial graph, e.g. a flow graph:
frames.gr <- frames_graph(m, r_list = r_list, r_times = r_times, r_type = "gradient",

fade_raster = TRUE, graph_type = "flow")
take a look
frames.gr[[100]]

make a histogram graph:
frames.gr <- frames_graph(m, r_list = r_list, r_times = r_times, r_type = "gradient",

fade_raster = TRUE, graph_type = "hist")
change the value interval:
frames.gr <- frames_graph(m, r_list = r_list, r_times = r_times, r_type = "gradient",

fade_raster = TRUE, graph_type = "hist", val_by = 0.01)

frames.gr[[100]]
manipulate the labels, since now they are very dense:
just replace the current scale
frames.gr <- add_gg(frames.gr, expr(scale_x_continuous(breaks=seq(0,1,0.1),

labels=seq(0,1,0.1), expand = c(0,0))))
frames.gr[[100]]

the same can be done for discrete data, histogram will then be shown as bin plots

to make your own graphs, use frames_graph to return data instead of frames
frames.gr <- frames_graph(m, r_list = r_list, r_times = r_times, r_type = "gradient",

fade_raster = TRUE, return_data = TRUE)

then simply animate the frames using animate_frames
see all add_ functions on how to customize your frames created with frames_spatial
or frames_graph

see ?animate_frames on how to animate your list of frames

frames_spatial 27

frames_spatial Create frames of spatial movement maps for animation

Description

frames_spatial creates a list of ggplot2 maps displaying movement. Each object represents a
single frame. Each frame can be viewed or modified individually. The returned list of frames can
be animated using animate_frames.

Usage

frames_spatial(
m,
r_list = NULL,
r_times = NULL,
r_type = "gradient",
fade_raster = FALSE,
crop_raster = TRUE,
map_service = "osm",
map_type = "streets",
map_res = 1,
map_token = NULL,
map_dir = NULL,
margin_factor = 1.1,
equidistant = NULL,
ext = NULL,
path_size = 3,
path_end = "round",
path_join = "round",
path_mitre = 10,
path_arrow = NULL,
path_colours = NA,
path_alpha = 1,
path_fade = FALSE,
path_legend = TRUE,
path_legend_title = "Names",
tail_length = 19,
tail_size = 1,
tail_colour = "white",
trace_show = FALSE,
trace_colour = "white",
cross_dateline = FALSE,
...,
verbose = TRUE

)

28 frames_spatial

Arguments

m move or moveStack of uniform time scale and time lag, e.g. prepared with
align_move (recommended). May contain a column named colour to control
path colours (see details).

r_list list of raster or rasterStack. Each list element referrs to the times given
in r_times. Use single-layer raster objects for gradient or discrete data (see
r_type). Use a rasterStack containing three bands for RGB imagery (in the
order red, green, blue).

r_times list of POSIXct times. Each list element represents the time of the corresponding
element in r_list. Must be of same length as r_list.

r_type character, either "gradient" or "discrete". Ignored, if r_list contains rasterStacks
of three bands, which are treated as RGB.

fade_raster logical, if TRUE, r_list is interpolated over time based on r_times. If FALSE,
r_list elements are assigned to those frames closest to the equivalent times in
r_times.

crop_raster logical, whether to crop rasters in r_list to plot extent before plotting or not.

map_service character, either "osm", "carto" or "mapbox". Default is "osm".

map_type character, a map type, e.g. "streets". For a full list of available map types, see
get_maptypes.

map_res numeric, resolution of base map in range from 0 to 1.

map_token character, mapbox authentification token for mapbox basemaps. Register at
https://www.mapbox.com/ to get a mapbox token. Mapbox is free of charge
after registration for up to 50.000 map requests per month. Ignored, if map_service
= "osm".

map_dir character, directory where downloaded basemap tiles can be stored. By default,
a temporary directory is used. If you use moveVis often for the same area it is
recommended to set this argument to a directory persistent throughout sessions
(e.g. in your user folder), so that baesmap tiles that had been already down-
loaded by moveVis do not have to be requested again.

margin_factor numeric, factor relative to the extent of m by which the frame extent should be
increased around the movement area. Ignored, if ext is set.

equidistant logical, whether to make the map extent equidistant (squared) with y and x axis
measuring equal distances or not. Especially in polar regions of the globe it
might be necessaray to set equidistant to FALSE to avoid strong stretches. By
default (equidistant = NULL), equidistant is set automatically to FALSE, if ext
is set, otherwise TRUE. Read more in the details.

ext sf bbox or sp extent in same CRS as m, optional. If set, frames are cropped to
this extent. If not set, a squared extent around m, optional with a margin set by
margin_factor, is used (default).

path_size numeric, size of each path.

path_end character, either "round", "butt" or "square", indicating the path end style.

path_join character, either "round", "mitre" or "bevel", indicating the path join style.

path_mitre numeric, path mitre limit (number greater than 1).

https://www.mapbox.com/

frames_spatial 29

path_arrow arrow, path arrow specification, as created by grid::arrow().

path_colours character, a vector of colours. Must be of same length as number of individual
tracks in m and refers to the order of tracks in m. If undefined (NA) and m con-
tains a column named colour, colours provided within m are used (see details).
Othwersie, colours are selected randomly per individual track.

path_alpha numeric, defines alpha (transparency) of the path. Value between 0 and 1. De-
fault is 1.

path_fade logical, whether paths should be faded towards the last frame or not. Useful,
if trace_show = TRUE and you want to hold the last frame using end_pause in
animate_frames.

path_legend logical, wether to add a path legend from m or not. Legend tracks and colours
will be ordered by the tracks’ temporal apperances, not by their order in m.

path_legend_title

character, path legend title. Default is "Names".

tail_length numeric, length of tail per movement path.

tail_size numeric, size of the last tail element. Default is 1.

tail_colour character, colour of the last tail element, to which the path colour is faded. De-
fault is "white".

trace_show logical, whether to show the trace of the complete path or not.

trace_colour character, colour of the trace. Default is "white". It is recommended to de-
fine the same colours for both trace_colour and tail_colour to enforce an
uninterrupted colour transition form the tail to the trace.

cross_dateline logical, whether tracks are crossing the dateline (longitude 180/-180) or not. If
TRUE, frames are expanded towards the side of the dateline that is smaller in
space. Applies only if the CRS of m is not projected (geographical, lon/lat). If
FALSE (default), frames are clipped at the minimum and maximum longitudes
and tracks cannot cross.

... Additional arguments customizing the frame background:

• alpha, numeric, background transparency (0-1).
• maxpixels, maximum number of pixels to be plotted per frame. Defaults

to 500000. Reduce to decrease detail and increase rendering speeds.
• macColorValue, numeric, only relevant for RGB backgrounds (i.e. if r_type
= "RGB" or if a default base map is used). Maximum colour value (e.g. 255).
Defaults to maximum raster value.

verbose logical, if TRUE, messages and progress information are displayed on the console
(default).

Details

If argument path_colours is not defined (set to NA), path colours can be defined by adding a
character column named colour to m, containing a colour code or name per row (e.g. "red". This
way, for example, column colour for all rows belonging to individual A can be set to "green",
while column colour for all rows belonging to individual B can be set to "red". Colours could
also be arranged to change through time or by behavioral segments, geographic locations, age,

30 frames_spatial

environmental or health parameters etc. If a column name colour in m is missing, colours will be
selected automatically. Call colours() to see all available colours in R.

Basemap colour scales can be changed/added using add_colourscale or by using ggplot2 com-
mands (see examples). For continous scales, use r_type = "gradient". For discrete scales, use
r_type = "discrete".

The projection of m is treated as target projection. Default base maps accessed through a map service
will be reprojected into the projection of m. Thus, depending on the projection of m, it may happen
that map labels are distorted. To get undistorted map labels, reproject m to the web mercator pro-
jection (the default projection of the base maps): spTransform(m, crs("+init=epsg:3857")).
The ggplot2 coordinate system will be computed based on the projection of m using coord_sf. If
argument equidistant is set, the map extent is calculated (thus enlarged into one axis direction) to
represent equal surface distances on the x and y axis.

Value

List of ggplot2 objects, each representing a single frame.

Author(s)

Jakob Schwalb-Willmann

See Also

frames_graph join_frames animate_frames

Examples

library(moveVis)
library(move)
library(ggplot2)

data("move_data")
align movement
m <- align_move(move_data, res = 4, unit = "mins")

with osm watercolor base map
frames <- frames_spatial(m, map_service = "osm", map_type = "watercolor")
take a look at one of the frames, e.g. the 100th
frames[[100]]

make base map a bit transparent
frames <- frames_spatial(m, map_service = "osm", map_type = "watercolor", alpha = 0.5)
frames[[100]] # take a look

use a larger margin around extent
frames <- frames_spatial(m, map_service = "osm", map_type = "watercolor", alpha = 0.5,

margin_factor = 1.8)

use a extent object as your AOI
ext <- extent(m)

frames_spatial 31

ext@xmin <- ext@xmin - (ext@xmin*0.003)
ext@xmax <- ext@xmax + (ext@xmax*0.003)
frames <- frames_spatial(m, map_service = "osm", map_type = "watercolor", alpha = 0.5,

ext = ext)

alter path appearance (make it longer and bigger)
frames <- frames_spatial(m, map_service = "osm", map_type = "watercolor", alpha = 0.5,

path_size = 4, tail_length = 29)

adjust path colours manually
frames <- frames_spatial(m, map_service = "osm", map_type = "watercolor", alpha = 0.5,

path_colours = c("black", "blue", "purple"))

or do it directly within your moveStack, e.g. like:
m.list <- split(m) # split m into list by individual
m.list <- mapply(x = m.list, y = c("orange", "purple", "darkgreen"), function(x, y){

x$colour <- y
return(x)

}) # add colour per individual
m <- moveStack(m.list) # putting it back together into a moveStack
frames <- frames_spatial(m, map_service = "osm", map_type = "watercolor", alpha = 0.5)
this way, you do not have to assign colours per individual track
instead, you could assign colours by segment, age, speed or other variables

get available map types
get_maptypes()

use mapbox to get a satellite or other map types (register to on mapbox.com to get a token)
frames <- frames_spatial(m, map_service = "mapbox",
map_token = "your_token_from_your_mapbox_account",
map_type = "satellite")

if you make a lot of calls to frames_spatial during mutliple sessions, use a map directory
to save all base maps offline so that you do not have to query the servers each time
frames <- frames_spatial(m, map_service = "mapbox",
map_token = "your_token_from_your_mapbox_account",
map_type = "satellite",
map_dir = "your/map_directory/")

use your own custom base maps
data("basemap_data")
r_list <- basemap_data[[1]]
r_times <- basemap_data[[2]]

using gradient data (e.g. NDVI)
frames <- frames_spatial(m, r_list = r_list, r_times = r_times, r_type = "gradient",

fade_raster = TRUE)

using discrete data (e.g. classifications)
let's make up some classification data with 10 classes
r_list <- lapply(r_list, function(x){

y <- raster::setValues(x, round(raster::getValues(x)*10))
return(y)

32 get_frametimes

})
turn fade_raster to FALSE, since it makes no sense to temporally interpolate discrete classes
frames <- frames_spatial(m, r_list = r_list, r_times = r_times, r_type = "discrete",

fade_raster = FALSE)

then simply animate the frames using animate_frames
see ?add_colourscale to learn how to change colours of custom base maps
see all add_ functions on how to customize your frames created with frames_spatial
or frames_graph
see ?animate_frames on how to animate your list of frames

get_frametimes Get frame times from frames

Description

This function extracts the timestamps associated with each frame of a list of frames created using
frames_spatial or frames_graph and returns them as a vector.

Usage

get_frametimes(frames)

Arguments

frames list, list of frames created using frames_spatial or frames_graph.

Details

moveVis stores the times represented by a frame as an attribute "time" for each ggplot frame.

Value

A POSIXct vector of timestamps representing the time assoicated with each frame in frames.

See Also

frames_spatial frames_graph

Examples

library(moveVis)
library(move)

data("move_data")
align movement
m <- align_move(move_data, res = 4, unit = "mins")

get_maptypes 33

frames <- frames_spatial(m, map_service = "osm", map_type = "watercolor")
frames.ts <- get_frametimes(frames)
print(frames.ts)

get_maptypes Get all supported map types

Description

This function returns every supported map type that can be used as input to the map_type argument
of frames_spatial.

Usage

get_maptypes(map_service = NULL)

Arguments

map_service character, optional, either "osm", "carto" or "mapbox". Otherwise, a list of
map types for both services is returned.

Value

A character vector of supported map types

See Also

frames_spatial

Examples

for all services
get_maptypes()

for osm only
get_maptypes("osm")
or
get_maptypes()$osm

for mapbox only
get_maptypes("mapbox")
or
get_maptypes()$mapbox

same for all other map services

34 join_frames

join_frames Join multiple frames lists into a single frames list

Description

This function side-by-side joins the ggplot2 objects of two or more frames lists of equal lengths
into a single plot per frame using plot_grid. This is useful if you want to side-by-side combine
spatial frames returned by frames_spatial with graph frames returned by frames_graph.

Usage

join_frames(frames_lists, ..., verbose = T)

Arguments

frames_lists list, a list of two or more frames lists that you want to combine. All frames lists
contained in frames_lists must be of equal lengths. The contained ggplot2
objects are passed frame-wise to the plotlist argument of plot_grid.

... Further arguments, specifying the appearance of the joined ggplot2 objects,
passed to plot_grid. See plot_grid for further options.

verbose logical, if TRUE, messages and progress information are displayed on the console
(default).

Value

List of ggplot2 objects, each representing a single frame.

See Also

frames_spatial frames_graph animate_frames

Examples

Not run:
library(moveVis)
library(move)

data("move_data", "basemap_data")
align movement
m <- align_move(move_data, res = 4, unit = "mins")

create spatial frames and graph frames:
r_list <- basemap_data[[1]]
r_times <- basemap_data[[2]]

frames.sp <- frames_spatial(m, r_list = r_list, r_times = r_times, r_type = "gradient",
fade_raster = TRUE)

frames.sp <- add_colourscale(frames.sp, type = "gradient",

move_data 35

colours = c("orange", "white", "darkgreen"), legend_title = "NDVI")
frames.flow <- frames_graph(m, r_list, r_times, path_legend = FALSE, graph_type = "flow")
frames.hist <- frames_graph(m, r_list, r_times, path_legend = FALSE, graph_type = "hist")

check lengths (must be equal)
sapply(list(frames.sp, frames.flow, frames.hist), length)

Let's join the graph frames vertically
frames.join.gr <- join_frames(list(frames.flow, frames.hist), ncol = 1, nrow = 2)
frames.join.gr[[100]]

Now, let's join the joined graph frames with the spatial frames horizontally
in 2:1 ration and align all axis
frames.join <- join_frames(list(frames.sp, frames.join.gr),

ncol = 2, nrow = 1, rel_widths = c(2, 1), axis = "tb")
frames.join[[100]]
in a standard graphics device, this looks a bit unproportional
however when setting the correct width, height and resolution of a graphic device,
it will come out well aligend.

Do so for example with animate_move() with width = 900, dheight = 500 and res = 90
animate_frames(frames.join, out_file = tempfile(fileext = ".gif"), fps = 25,

width = 900, height = 500, res = 90, display = TRUE, overwrite = TRUE)

End(Not run)

move_data Example simulated movement tracks

Description

This dataset contains a Move object, representing coordinates and acquisition times of three simu-
lated movement tracks, covering a location nearby Lake of Constance, Germany. Individual names
are made up for demonstration purposes.

Usage

data(move_data)

Format

Move object, as used by the move package.

Details

This object is used by some moveVis examples and unit tests.

36 settings

Note

All data contained should only be used for testing moveVis and are not suitable to be used for
analysis or interpretation.

settings moveVis settings

Description

These functions control session-wide settings that can increase processing speeds.

Usage

use_multicore(n_cores = NULL, verbose = TRUE)

use_disk(
frames_to_disk = TRUE,
dir_frames = paste0(tempdir(), "/moveVis"),
n_memory_frames = NULL,
verbose = TRUE

)

Arguments

n_cores numeric, optional, number of cores to be used. If not defined, the number of
cores will be detected automatically (n-1 cores will be used with n being the
number of cores available).

verbose logical, if TRUE, messages and progress information are displayed on the console
(default).

frames_to_disk logical, whether to use disk space for creating frames or not. If TRUE, frames
will be written to dir_frames, clearing memory.

dir_frames character, directory where to save frame during frames creating.
n_memory_frames

numeric, maximum number of frames allowed to be hold in memory. This num-
ber defines after how many frames memory should be cleared by writing frames
in memory to disk.

Details

use_multicore enables multi-core usage of moveVis by setting the maximum number of cores to
be used. This can strongly increase the speed of creating frames.

use_disk enables the usage of disk space for creating frames. This can prevent memory overload
when creating frames for very large animations.

For most tasks, moveVis is able to use multiple cores to increase computational times through par-
allelization. By default, multi-core usage is disabled. This function saves the number of cores that
moveVis should use to the global option "moveVis.n_cores" that can be printed using getOption("moveVis.n_cores").

subset_move 37

How much memory is needed to create frames depends on the frame resolution (number of pixels)
and the number of frames. Depending on how much memory is available it can make sense to
allow disk usage and set a maximum number of frames to be hold in memory that won’t fill up the
available memory completely.

moveVis uses the parallel package for parallelization.

Value

None. These functions are used for their side effects.

Examples

enable multi-core usage automatically
use_multicore()

define number of cores manually
use_multicore(n_cores = 2)

allow disk use with default directory
and maxiumum of 50 frames in memory
use_disk(frames_to_disk = TRUE, n_memory_frames = 50)

subset_move Subset a move or moveStack object by a given time span

Description

This function is a simple wrapper that subsets a move or moveStack by a given time span. A move
or moveStack containing data only for the subset time span is returned.

Usage

subset_move(m, from, to, tz = "UTC")

Arguments

m a move or moveStack object (see df2move to convert a data.frame to a move
object).

from character or POSIXct, representing the start time. If character, the format "%m-%d-%y
%H:%M:%S" must be used (see strptime).

to character or POSIXct, representing the stop time. If character, the format "%m-%d-%y
%H:%M:%S" must be used (see strptime).

tz character, time zone that should be used if from and/or to are of type character.

Value

A move or moveStack object.

38 suggest_formats

See Also

df2move

Examples

library(moveVis)
library(move)

load the example data
data("move_data")

check min and max of move_data timestamps
min(timestamps(move_data))
max(timestamps(move_data))

subset by character times
m <- subset_move(move_data, from = "2018-05-15 07:00:00", to = "2018-05-15 18:00:00")

check min and max of result
min(timestamps(m))
max(timestamps(m))

suggest_formats Suggest known file formats

Description

This function returns a selection of suggested file formats that can be used with out_file of
animate_frames on your system.

Usage

suggest_formats(
suggested = c("gif", "mov", "mp4", "flv", "avi", "mpeg", "3gp", "ogg")

)

Arguments

suggested character, a vector of suggested file formats which are checked to be known by
the available renderers on the running system. By default, these are c("gif",
"mov", "mp4", "flv", "avi", "mpeg", "3gp", "ogg").

Value

A subset of suggested, containing only those file formats which are known by the renderers on the
running system.

view_spatial 39

See Also

animate_frames

Examples

find out which formats are available
suggest_formats()

check for a particular format not listed in "suggested" that you want to use, e.g. m4v
suggest_formats("m4v")
if "m4v" is returned, you can use this format with animate_frames

view_spatial View movements on an interactive map

Description

view_spatial is a simple wrapper that displays movement tracks on an interactive mapview or
leaflet map.

Usage

view_spatial(
m,
render_as = "mapview",
time_labels = TRUE,
stroke = TRUE,
path_colours = NA,
path_legend = TRUE,
path_legend_title = "Names",
verbose = TRUE

)

Arguments

m move or moveStack. May contain a column named colour to control path
colours (see details).

render_as character, either 'mapview' to return a mapview map or 'leaflet' to return a
leaflet map.

time_labels logical, wether to display timestamps for each track fix when hovering it with
the mouse cursor.

stroke logical, whether to draw stroke around circles.

path_colours character, a vector of colours. Must be of same length as number of individual
tracks in m and refers to the order of tracks in m. If undefined (NA) and m con-
tains a column named colour, colours provided within m are used (see details).
Othwersie, colours are selected randomly per individual track.

40 view_spatial

path_legend logical, wether to add a path legend from m or not. Legend tracks and colours
will be ordered by the tracks’ temporal apperances, not by their order in m.

path_legend_title

character, path legend title. Default is "Names".

verbose logical, if TRUE, messages and progress information are displayed on the console
(default).

Details

If argument path_colours is not defined (set to NA), path colours can be defined by adding a
character column named colour to m, containing a colour code or name per row (e.g. "red". This
way, for example, column colour for all rows belonging to individual A can be set to "green",
while column colour for all rows belonging to individual B can be set to "red". Colours could
also be arranged to change through time or by behavioral segments, geographic locations, age,
environmental or health parameters etc. If a column name colour in m is missing, colours will be
selected automatically. Call colours() to see all available colours in R.

Value

An interatcive mapview or leaflet map.

Author(s)

Jakob Schwalb-Willmann

See Also

frames_spatial

Examples

Not run:
library(moveVis)
library(move)

data("move_data")

return a mapview map (mapview must be installed)
view_spatial(move_data)

return a leaflet map (leaflet must be installed)
view_spatial(move_data, render_as = "leaflet")

turn off time labels and legend
view_spatial(move_data, time_labels = FALSE, path_legend = FALSE)

End(Not run)

whitestork_data 41

whitestork_data White Stork LifeTrack tracks

Description

This dataset contains a data.frame object, representing coordinates and acquisition times of 15
White Storks, migrating from Lake of Constance, SW Germany, to Africa.

Usage

data(whitestork_data)

Format

• df is a data.frame object

• m is a moveStack object

An object of class MoveStack with 155173 rows and 3 columns.

Details

These objects are used by some moveVis examples and have been included for demonstrational
purposes.

The dataset represents a subset of the LifeTrack White Stork dataset by Cheng et al. (2019) and
Fiedler et al. (2019), available under the Creative Commons license "CC0 1.0 Universal Public
Domain Dedication" on Movebank (doi:10.5441/001/1.ck04mn78/1).

References

Cheng Y, Fiedler W, Wikelski M, Flack A (2019) "Closer-to-home" strategy benefits juvenile sur-
vival in a long-distance migratory bird. Ecology and Evolution. doi:10.1002/ece3.5395

Fiedler W, Flack A, Schäfle W, Keeves B, Quetting M, Eid B, Schmid H, Wikelski M (2019) Data
from: Study "LifeTrack White Stork SW Germany" (2013-2019). Movebank Data Repository.
doi:10.5441/001/1.ck04mn78

Index

∗ datasets
basemap_data, 21
move_data, 35
whitestork_data, 41

add_colourscale, 3, 4, 30
add_gg, 3, 6
add_labels, 3, 8
add_northarrow, 3, 10
add_progress, 3, 12
add_scalebar, 3, 13
add_text, 3, 15, 17
add_timestamps, 3, 16
align_move, 2, 18, 24, 28
animate_frames, 3, 5, 7, 9, 11, 12, 14, 16, 17,

19, 23, 24, 26, 27, 29, 30, 34, 38, 39
animate_move (deprecated), 22
animate_raster (deprecated), 22
animate_stats (deprecated), 22

basemap_data, 21

deprecated, 22
df (whitestork_data), 41
df2move, 2, 18, 19, 23, 37, 38

expr, 6

frames_graph, 3, 5, 7, 9, 11, 12, 14, 16, 17,
19, 20, 23, 24, 25, 30, 32, 34

frames_spatial, 3–20, 23, 25, 26, 27, 32–34,
40

get_formats (deprecated), 22
get_frametimes, 3, 32
get_libraries (deprecated), 22
get_maptypes, 3, 28, 33

join_frames, 3, 20, 23, 26, 30, 34

m (whitestork_data), 41

move, 23
move_data, 35
moveVis (moveVis-package), 2
moveVis-package, 2

plot_grid, 3, 34

settings, 36
strptime, 37
subset_move, 2, 23, 37
suggest_formats, 3, 20, 38

use_disk, 3
use_disk (settings), 36
use_multicore, 3
use_multicore (settings), 36

view_spatial, 3, 39

whitestork_data, 41

42

	moveVis-package
	add_colourscale
	add_gg
	add_labels
	add_northarrow
	add_progress
	add_scalebar
	add_text
	add_timestamps
	align_move
	animate_frames
	basemap_data
	deprecated
	df2move
	frames_graph
	frames_spatial
	get_frametimes
	get_maptypes
	join_frames
	move_data
	settings
	subset_move
	suggest_formats
	view_spatial
	whitestork_data
	Index

