
Package ‘movecost’
October 13, 2022

Title Calculation of Slope-Dependant Accumulated Cost Surface,
Least-Cost Paths, Least-Cost Corridors, Least-Cost Networks
Related to Human Movement Across the Landscape

Version 1.8

Description Provides the facility to calculate non-isotropic accumulated cost surface, least-
cost paths, least-cost corridors, least-cost networks using a number of human-movement-
related cost functions that can be selected by the user. It just requires a Digital Ter-
rain Model, a start location and (optionally) destination locations. See Al-
berti (2019) <doi:10.1016/j.softx.2019.100331>.

Depends R (>= 4.0.0)

Imports chron (>= 2.3-56), gdistance (>= 1.2-2), elevatr (>= 0.3.4),
leastcostpath (>= 1.8.0), maptools (>= 1.1.0), methods (>=
4.0.3), raster (>= 2.8-4), rgdal (>= 1.5-0), rgeos (>= 0.4-2),
sp (>= 1.4.0), spatstat.geom (>= 2.2.0), terra (>= 1.3.0),
utils (>= 4.0.0)

License GPL (>= 2)

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

NeedsCompilation no

Author Gianmarco Alberti [aut, cre]

Maintainer Gianmarco Alberti <gianmarcoalberti@gmail.com>

Repository CRAN

Date/Publication 2022-08-28 17:10:02 UTC

R topics documented:
destin.loc . 2
Etna_boundary . 2
Etna_end_location . 3
Etna_start_location . 3

1

https://doi.org/10.1016/j.softx.2019.100331

2 Etna_boundary

malta_dtm_40 . 3
movealloc . 4
movebound . 8
movecomp . 12
movecorr . 17
movecost . 22
movenetw . 38
moverank . 42
springs . 46
volc . 47
volc.loc . 47

Index 48

destin.loc Dataset: locations on the volcano Maunga Whau (Auckland, New
Zealand)

Description

A SpatialPointsDataFrame representing spots on the volcano Maunga Whau (Auckland, New Zealand),
to be used as destination locations for least-cost paths calculation.

Usage

data(destin.loc)

Format

SpatialPointsDataFrame

Etna_boundary Dataset: bounding polygon representing a study area on Mount Etna
(Sicily, Italy)

Description

A SpatialPolygonDataFrame representing an area on Mount Etna (Sicily, Italy), to be used to down-
load elevation data.

Usage

data(Etna_boundary)

Format

SpatialPolygonDataFrame

Etna_end_location 3

Etna_end_location Dataset: locations on Mount Etna (Sicily, Italy)

Description

A SpatialPointsDataFrame representing spots on Mount Etna (Sicily, Italy), to be used as destination
locations for least-cost paths calculation.

Usage

data(Etna_end_location)

Format

SpatialPointsDataFrame

Etna_start_location Dataset: location on Mount Etna (Sicily, Italy)

Description

A SpatialPointsDataFrame representing a spot on Mount Etna, to be used as start location for least-
cost paths calculation.

Usage

data(Etna_start_location)

Format

SpatialPointsDataFrame

malta_dtm_40 Dataset: Malta DTM (40m cell size)

Description

A RasterLayer representing a Digital Terrain Model of Malta (40m resolution).

Usage

data(malta_dtm_40)

Format

RasterLayer

4 movealloc

movealloc R function for calculating slope-dependant walking-cost allocation to
origins

Description

The function provides the facility to carry out a cost allocation analysis. Given a number of origin
locations, a cost allocation raster is produced; each cell of the cost allocation raster is given an
integer indicating to which origin a cell is closer in terms of cost. Needless to say, the cost can be
conceptualized in terms of either walking time or energy expenditure, and is function of the terrain
slope.
Visit this LINK to access the package’s vignette.

Usage

movealloc(
dtm = NULL,
origin,
studyplot = NULL,
funct = "t",
time = "h",
move = 16,
cogn.slp = FALSE,
sl.crit = 10,
W = 70,
L = 0,
N = 1,
V = 1.2,
z = 9,
isolines = FALSE,
breaks = NULL,
cont.lab = TRUE,
cex.breaks = 0.6,
leg.alloc = FALSE,
leg.pos = "topright",
cex.leg = 0.75,
transp = 0.5,
export = FALSE

)

Arguments

dtm Digital Terrain Model (RasterLayer class); if not provided, elevation data will be
acquired online for the area enclosed by the ’studyplot’ parameter (see movecost).

origin locations (two at least) in relation to which the cost allocation is carried out
(SpatialPointsDataFrame class).

https://drive.google.com/file/d/1gLDrkZFh1b_glzCEqKdkPrer72JJ9Ffa/view?usp=sharing

movealloc 5

studyplot polygon (SpatialPolygonDataFrame class) representing the study area for which
online elevation data are acquired (see movecost); NULL is default.

funct cost function to be used (for details on each of the following, see movecost):

-functions expressing cost as walking time-
t (default) uses the on-path Tobler’s hiking function;
tofp uses the off-path Tobler’s hiking function;
mp uses the Marquez-Perez et al.’s modified Tobler’s function;
icmonp uses the Irmischer-Clarke’s hiking function (male, on-path);
icmoffp uses the Irmischer-Clarke’s hiking function (male, off-path);
icfonp uses the Irmischer-Clarke’s hiking function (female, on-path);
icfoffp uses the Irmischer-Clarke’s hiking function (female, off-path);
ug uses the Uriarte Gonzalez’s walking-time cost function;
ma uses the Marin Arroyo’s walking-time cost function;
alb uses the Alberti’s Tobler hiking function modified for pastoral foraging ex-
cursions;
gkrs uses the Garmy, Kaddouri, Rozenblat, and Schneider’s hiking function;
r uses the Rees’ hiking function;
ks uses the Kondo-Seino’s hiking function;
trp uses the Tripcevich’s hiking function;

-functions for wheeled-vehicles-
wcs uses the wheeled-vehicle critical slope cost function;

-functions expressing abstract cost-
ree uses the relative energetic expenditure cost function;
b uses the Bellavia’s cost function;
e uses the Eastman’s cost function;

-functions expressing cost as metabolic energy expenditure-
p uses the Pandolf et al.’s metabolic energy expenditure cost function;
pcf uses the Pandolf et al.’s cost function with correction factor for downhill
movements;
m uses the Minetti et al.’s metabolic energy expenditure cost function;
hrz uses the Herzog’s metabolic energy expenditure cost function;
vl uses the Van Leusen’s metabolic energy expenditure cost function;
ls uses the Llobera-Sluckin’s metabolic energy expenditure cost function;
a uses the Ardigo et al.’s metabolic energy expenditure cost function;
h uses the Hare’s metabolic energy expenditure cost function (for all the men-
tioned cost functions, see movecost).

time time-unit expressed by the isoline(s) if Tobler’s and other time-related cost func-
tions are used; h’ for hour, ’m’ for minutes.

move number of directions in which cells are connected: 4 (rook’s case), 8 (queen’s
case), 16 (knight and one-cell queen moves; default).

cogn.slp TRUE or FALSE (default) if the user wants or does not want the ’cognitive
slope’ to be used in place of the real slope (see movecost).

6 movealloc

sl.crit critical slope (in percent), typically in the range 8-16 (10 by default) (used by
the wheeled-vehicle cost function; see movecost).

W walker’s body weight (in Kg; 70 by default; used by the Pandolf’s and Van
Leusen’s cost function; see movecost).

L carried load weight (in Kg; 0 by default; used by the Pandolf’s and Van Leusen’s
cost function; see movecost).

N coefficient representing ease of movement (1 by default) (see movecost).

V speed in m/s (1.2 by default) (used by the Pandolf et al.’s, Pandolf et al.s with
correction factor, Van Leusen’s, and Ardigo et al.’s cost function; if set to 0,
it is internally worked out on the basis of Tobler on-path hiking function (see
movecost).

z zoom level for the elevation data downloaded from online sources (from 0 to 15;
9 by default) (see movecost and get_elev_raster).

isolines TRUE or FALSE (default) is the user wants or does not want cost isolines/contours
around the origins to be calculated and plotted.

breaks contours’ (i.e., isolines’) interval; if no value is supplied, the interval is set by
default to 1/10 of the range of values of the cost surface accumulated around the
origins.

cont.lab if set to TRUE (default) display the labels of the cost contours.

cex.breaks set the size of the labels attached to the cost contours (0.6 by default).

leg.alloc if set to TRUE, display the legend in the plotted cost allocation raster; FALSE
by default.

leg.pos set the position of the legend in the plotted cost allocation raster; ’topright’ by
default (other options: "bottomright", "bottom", "bottomleft", "left", "topleft",
"top", "topright", "right", "center").

cex.leg set the size of the labels used in the legend displayed in the plotted allocation
raster (0.75 by default).

transp set the transparency of the slopeshade raster that is plotted over the cost alloca-
tion raster (0.5 by default).

export TRUE or FALSE (default) if the user wants or does not want the output to be
exported; if TRUE, the isolines (i.e. the contours) and the allocation bound-
aries will be exported as a shapefile; the cost allocation raster will be exported
as ’GeoTiff’; the DTM is exported only if it was not provided by the user and
downloaded by the function from online sources; all the exported files (exclud-
ing the DTM) will bear a suffix corresponding to the cost function selected by
the user.

Details

The function requires an input DTM (’RasterLayer’ class) and a dataset (’SpatialPointsDataFrame’
class) containing the origin locations. If a DTM is not provided, movealloc() will download eleva-
tion data from online sources (see movecost for more details). Under the hood, movealloc() relies
on the movecost() function and implements the same cost functions: see the help documentation
of movecost() for further information.

movealloc 7

Internally, what movealloc() does is producing an accumulated cost surface around each individ-
ual origin location; those accumulated cost surfaces are then stacked together, and then the function
looks at each pixel in the stack of surfaces and returns 1 if the first stacked surface has the smallest
pixel value, or 2 if the second stacked surface has the smallest pixel value, and so on for bigger
stacks.

movealloc() produces a plot featuring a slopeshade image that is overlaid by the cost allocation
raster and by a polygon layer where each polygon represents the limits of each allocation zone.
A legend can be optionally added to the plot via the leg.alloc parameter (FALSE by default).
Isolines (i.e., contour lines) around each origin location can be optionally plotted via the ’isolines’
parameter (FALSE by default).

The DTM, the cost allocation raster, the cost allocation polygons, and the isolines (if requested
by the user by setting the isolines parameter to TRUE), can be exported by setting the ’export’
parameter to TRUE. All the exported files (excluding the DTM) will bear a suffix corresponding to
the cost function selected by the user.

Value

The function returns a list storing the following components

• dtm: Digital Terrain Model (’RasterLayer’ class)

• cost.allocation.raster: raster of the cost allocation (’RasterLayer’ class)

• isolines: contour lines representing the accumulated cost around the origins (’SpatialLines-
DataFrame’ class); returned if the ’isolines’ parameter is set to TRUE

• alloc.boundaries: polygons representing the allocation zones (’SpatialPolygonsDataFrame’
class)

See Also

movecost

Examples

load a sample Digital Terrain Model
data(volc)

load the sample locations on the above DTM
data(destin.loc)

#carry out a cost allocation analysis using the Tobler's off-path hiking function,
#setting the time to minutes and the isolines (i.e., contours) interval to 1 minute;
#only 3 locations are used

#result <- movealloc(dtm=volc, origin=destin.loc[c(3,7,9),], funct="tofp", time="m",
#breaks=1, isolines=TRUE)

8 movebound

#same as above, using all the locations and the Kondo-Seino's cost function

#result <- movealloc(dtm=volc, origin=destin.loc, funct="ks", time="m",
#breaks=1, isolines=TRUE)

movebound R function for calculating slope-dependant walking cost boundary(ies)
around point location(s)

Description

The function provides the facility to calculate walking cost boundary(ies) around one or more point
locations. Rationale: while movecost can calculate and render an accumulated cost surface and cor-
responding isolines around a point location, the user(s) might want to calculate and plot a boundary
(or boundaries) corresponding to a specific walking cost limit around one or more locations, either
in terms of walking time or energy expenditure.
Visit this LINK to access the package’s vignette.

Usage

movebound(
dtm = NULL,
origin,
studyplot = NULL,
barrier = NULL,
plot.barrier = FALSE,
funct = "t",
time = "h",
move = 16,
field = 0,
cont.value = NULL,
cogn.slp = FALSE,
sl.crit = 10,
W = 70,
L = 0,
N = 1,
V = 1.2,
z = 9,
cont.lab = TRUE,
transp = 0.5,
add.geom = FALSE,
export = FALSE

)

https://drive.google.com/file/d/1gLDrkZFh1b_glzCEqKdkPrer72JJ9Ffa/view?usp=sharing

movebound 9

Arguments

dtm Digital Terrain Model (RasterLayer class); if not provided, elevation data will be
acquired online for the area enclosed by the ’studyplot’ parameter (see movecost).

origin location(s) around which the boundary(ies) is calculated (SpatialPointsDataFrame
class).

studyplot polygon (SpatialPolygonDataFrame class) representing the study area for which
online elevation data are acquired (see movecost); NULL is default.

barrier area where the movement is inhibited (SpatialLineDataFrame or SpatialPoly-
gonDataFrame class) (see movecost.

plot.barrier TRUE or FALSE (default) if the user wants or does not want the barrier to be
plotted (see movecost).

funct cost function to be used (for details on each of the following, see movecost):

-functions expressing cost as walking time-
t (default) uses the on-path Tobler’s hiking function;
tofp uses the off-path Tobler’s hiking function;
mp uses the Marquez-Perez et al.’s modified Tobler’s function;
icmonp uses the Irmischer-Clarke’s hiking function (male, on-path);
icmoffp uses the Irmischer-Clarke’s hiking function (male, off-path);
icfonp uses the Irmischer-Clarke’s hiking function (female, on-path);
icfoffp uses the Irmischer-Clarke’s hiking function (female, off-path);
ug uses the Uriarte Gonzalez’s walking-time cost function;
ma uses the Marin Arroyo’s walking-time cost function;
alb uses the Alberti’s Tobler hiking function modified for pastoral foraging ex-
cursions;
gkrs uses the Garmy, Kaddouri, Rozenblat, and Schneider’s hiking function;
r uses the Rees’ hiking function;
ks uses the Kondo-Seino’s hiking function;
trp uses the Tripcevich’s hiking function;

-functions for wheeled-vehicles-
wcs uses the wheeled-vehicle critical slope cost function;

-functions expressing abstract cost-
ree uses the relative energetic expenditure cost function;
b uses the Bellavia’s cost function;
e uses the Eastman’s cost function;

-functions expressing cost as metabolic energy expenditure-
p uses the Pandolf et al.’s metabolic energy expenditure cost function;
pcf uses the Pandolf et al.’s cost function with correction factor for downhill
movements;
m uses the Minetti et al.’s metabolic energy expenditure cost function;
hrz uses the Herzog’s metabolic energy expenditure cost function;
vl uses the Van Leusen’s metabolic energy expenditure cost function;
ls uses the Llobera-Sluckin’s metabolic energy expenditure cost function;

10 movebound

a uses the Ardigo et al.’s metabolic energy expenditure cost function (for all the
mentioned cost functions;
h uses the Hare’s metabolic energy expenditure cost function (for all the men-
tioned cost functions, see movecost).

time time-unit expressed by the isoline(s) if Tobler’s and other time-related cost func-
tions are used; h’ for hour, ’m’ for minutes.

move number of directions in which cells are connected: 4 (rook’s case), 8 (queen’s
case), 16 (knight and one-cell queen moves; default).

field value assigned to the cells coincidinng with the barrier (0 by default) (see movecost.

cont.value cost value represented by the calculated isoline(s) (NULL by default); if no
value is supplied, it is set to 1/10 of the range of values of the accumulated cost
surface.

cogn.slp TRUE or FALSE (default) if the user wants or does not want the ’cognitive
slope’ to be used in place of the real slope (see movecost).

sl.crit critical slope (in percent), typically in the range 8-16 (10 by default) (used by
the wheeled-vehicle cost function; see movecost).

W walker’s body weight (in Kg; 70 by default; used by the Pandolf’s and Van
Leusen’s cost function; see movecost).

L carried load weight (in Kg; 0 by default; used by the Pandolf’s and Van Leusen’s
cost function; see movecost).

N coefficient representing ease of movement (1 by default) (see movecost).

V speed in m/s (1.2 by default) (used by the Pandolf et al.’s, Pandolf et al.s with
correction factor, Van Leusen’s, and Ardigo et al.’s cost function; if set to 0,
it is internally worked out on the basis of Tobler on-path hiking function (see
movecost).

z zoom level for the elevation data downloaded from online sources (from 0 to 15;
9 by default) (see movecost and get_elev_raster).

cont.lab TRUE (default) or FALSE if the usuer wants or does not want labels to be at-
tached to the isolines.

transp set the transparency of the slopeshade raster that is plotted over the DTM (0.5
by default).

add.geom TRUE or FALSE (default) if the user wants or does not want the perimeter and
area enclosed by each isolines to be calculated (see Details).

export TRUE or FALSE (default) if the user wants or does not want the isoline(s) and
the copy of the input ’origin’ dataset (storing boundaries’ geometry information)
to be exported; if TRUE, they will be exported as a shapefile; the exported file
will bear a suffix corresponding to the cost function selected by the user. The
DTM is exported only if it was not provided by the user and downloaded by the
function from online sources.

Details

The function just requires an input DTM and a dataset (’SpatialPointsDataFrame’ class) contain-
ing at least one point location. If a DTM is not provided, movebound() will download elevation

movebound 11

data from online sources (see movecost for more details). Under the hood, movebound() relies on
the movecost() function and implements the same cost functions: see the help documentation of
movecost() for further information.

The following example uses in-built datasets and calculates 45-minute boundaries around three
locations close to Mt Etna (Sicily, Italy), using the Tobler’s off-path hiking function (note: eleva-
tion data are acquired online for the area enclosed by the polygon fed via the ’studyplot’ parameter):

result <- movebound(origin=Etna_end_location, cont.value=45, time="m", cont.lab = TRUE, funct="tofp",
studyplot = Etna_boundary, add.geom=TRUE)

Note that by setting the parameter add.geom to TRUE, the function calculates the perimeter and the
area enclosed by the boundary represented by each calculated isoline. Needless to say, the unit
of measure is the one used by the input layers’ coordinate system. The value(s) of the perimeter
and area will be appended as two new variables to a copy of the input ’origin’ dataset. The said
geometries (perimeter, area) can only be calculated if the isolines are "complete" and not truncated
(i.e., if they do not meet the end of the study area for instance). Therefore, before using this option,
the user may want to be sure that all the isolines are actual loops.

With reference to the above example, the area of the three 45-minutes boundaries can be retrieved
typing what follows:

result$origin_w_isolines_geom$area

It will return:
17857994 20428575 9172688

that are the values of the area of each 45-minute boundary in square meter.
Needless to say, if we want to convert to square km we can just:
result$origin_w_isolines_geom$area/1000000

which gives
17.857994 20.428575 9.172688

movebound() produces a plot representing the input DTM overlaid by a slopeshade raster, whose
transparency can be adjusted using the ’transp’ parameter. On the rendered plot, the calculated iso-
line(s) is displayed and the label(s) representing the cost limit can be activated or deactivated using
the ’cont.lab’ parameter. The function also returns the isoline(s) (’SpatialLinesDataFrame’ class)
corresponding to the selected accumulated cost limit and the copy of the ’origin’ dataset (storing
information about the boundaries’ geometry) (see ’Value’ below). The isoline(s) and the copy of
the ’origin’ dataset can be exported as shapefile by setting the export parameter to TRUE.

Value

The function returns a list storing the following components

12 movecomp

• dtm: Digital Terrain Model (’RasterLayer’ class)

• isolines: contour line(s) representing the selected cost limit (’SpatialLinesDataFrame’ class)

• origin_w_isolines_geom: copy of the input origin location(s) dataset with two new variables
(’perimeter’ and ’area’) storing the perimeter and area values of the boundary calculated
around each location

See Also

movecost

Examples

load a sample Digital Terrain Model
data(volc)

load the sample destination locations on the above DTM
data(destin.loc)

calculate the 5minute walking time boundary around a location
using the Tobler's off-path hiking function

result <- movebound(dtm=volc, origin=volc.loc, funct="tofp", move=8, time="m", cont.val=5)

same as above, but around multiple locations; contours' labels are turned off

result <- movebound(dtm=volc, origin=destin.loc, funct="tofp", move=8, time="m",
cont.val=2, cont.lab=FALSE)

movecomp R function for comparing least-cost paths generated using different
cost functions

Description

The function provides the facility to calculate LCPs using different cost functions and to plot them
in the same visual output to allow comparability. See, for instance, fig. 14.2 in Parcero-Oubina C.
et al, Footprints and Cartwheels on a Pixel Road: On the Applicability of GIS for the Modelling of
Ancient (Roman) Routes (2019). In Verhagen P., Joyce J., Groenhuijzen M.R. (eds), Finding the
Limits of the Limes. Modelling Demography, Economy and Transport on the Edge of the Roman
Empire, Springer, 291-311.
Visit this LINK to access the package’s vignette.

https://drive.google.com/file/d/1gLDrkZFh1b_glzCEqKdkPrer72JJ9Ffa/view?usp=sharing

movecomp 13

Usage

movecomp(
dtm = NULL,
origin,
destin,
studyplot = NULL,
barrier = NULL,
plot.barrier = FALSE,
irregular.dtm = FALSE,
choice,
time = "h",
move = 16,
field = 0,
cogn.slp = FALSE,
sl.crit = 10,
W = 70,
L = 0,
N = 1,
V = 1.2,
z = 9,
return.base = FALSE,
leg.pos = "topright",
leg.cex = 0.75,
transp = 0.5,
add.chart = FALSE,
oneplot = TRUE,
export = FALSE

)

Arguments

dtm Digital Terrain Model (RasterLayer class); if not provided, elevation data will be
acquired online for the area enclosed by the ’studyplot’ parameter (see movecost).

origin location(s) around which the boundary(ies) is calculated (SpatialPointsDataFrame
class).

destin location(s) to which least-cost path(s) is calculated (SpatialPointsDataFrame
class).

studyplot polygon (SpatialPolygonDataFrame class) representing the study area for which
online elevation data are acquired (see movecost); NULL is default.

barrier area where the movement is inhibited (SpatialLineDataFrame or SpatialPoly-
gonDataFrame class) (see movecost).

plot.barrier TRUE or FALSE (default) if the user wants or does not want the barrier to be
plotted (see movecost).

irregular.dtm TRUE or FALSE (default) if the input DTM features irregular margins (see
movecost).

14 movecomp

choice character vector indicating the cost functions to be compared (for details on each
of the following, see movecost):

-functions expressing cost as walking time-
t (default) uses the on-path Tobler’s hiking function;
tofp uses the off-path Tobler’s hiking function;
mp uses the Marquez-Perez et al.’s modified Tobler’s function;
icmonp uses the Irmischer-Clarke’s hiking function (male, on-path);
icmoffp uses the Irmischer-Clarke’s hiking function (male, off-path);
icfonp uses the Irmischer-Clarke’s hiking function (female, on-path);
icfoffp uses the Irmischer-Clarke’s hiking function (female, off-path);
ug uses the Uriarte Gonzalez’s walking-time cost function;
ma uses the Marin Arroyo’s walking-time cost function;
alb uses the Alberti’s Tobler hiking function modified for pastoral foraging ex-
cursions;
gkrs uses the Garmy, Kaddouri, Rozenblat, and Schneider’s hiking function;
r uses the Rees’ hiking function;
ks uses the Kondo-Seino’s hiking function;
trp uses the Tripcevich’s hiking function;

-functions for wheeled-vehicles-
wcs uses the wheeled-vehicle critical slope cost function;

-functions expressing abstract cost-
ree uses the relative energetic expenditure cost function;
b uses the Bellavia’s cost function;
e uses the Eastman’s cost function;

-functions expressing cost as metabolic energy expenditure-
p uses the Pandolf et al.’s metabolic energy expenditure cost function;
pcf uses the Pandolf et al.’s cost function with correction factor for downhill
movements;
m uses the Minetti et al.’s metabolic energy expenditure cost function;
hrz uses the Herzog’s metabolic energy expenditure cost function;
vl uses the Van Leusen’s metabolic energy expenditure cost function;
ls uses the Llobera-Sluckin’s metabolic energy expenditure cost function;
a uses the Ardigo et al.’s metabolic energy expenditure cost function;
h uses the Hare’s metabolic energy expenditure cost function (for all the men-
tioned cost functions, see movecost).

time time-unit to be used if Tobler’s and other time-related cost functions are used;
h’ for hour, ’m’ for minutes;

move number of directions in which cells are connected: 4 (rook’s case), 8 (queen’s
case), 16 (knight and one-cell queen moves; default).

field value assigned to the cells coinciding with the barrier (0 by default) (see movecost.

cogn.slp TRUE or FALSE (default) if the user wants or does not want the ’cognitive
slope’ to be used in place of the real slope (see movecost).

movecomp 15

sl.crit critical slope (in percent), typically in the range 8-16 (10 by default) (used by
the wheeled-vehicle cost function; see movecost).

W walker’s body weight (in Kg; 70 by default; used by the Pandolf’s and Van
Leusen’s cost function; see movecost).

L carried load weight (in Kg; 0 by default; used by the Pandolf’s and Van Leusen’s
cost function; see movecost).

N coefficient representing ease of movement (1 by default) (see movecost).

V speed in m/s (1.2 by default) (used by the Pandolf et al.’s, Pandolf et al.s with
correction factor, Van Leusen’s, and Ardigo et al.’s cost function; if set to 0,
it is internally worked out on the basis of Tobler on-path hiking function (see
movecost).

z zoom level for the elevation data downloaded from online sources (from 0 to 15;
9 by default) (see movecost and get_elev_raster).

return.base TRUE or FALSE (default) if the user wants or does not want the least-cost paths
back to the origin to be calculated and plotted (as dashed lines).

leg.pos set the position of the legend in the plotted cost allocation raster; ’topright’ by
default (other options: "bottomright", "bottom", "bottomleft", "left", "topleft",
"top", "topright", "right", "center").

leg.cex set the size of the labels used in the legend displayed in the rendered plot (0.75
by default).

transp set the transparency of the slopeshade raster that is plotted over the DTM (0.5
by default).

add.chart TRUE or FALSE (default) is the user wants or does not want boxplots visualis-
ing LCPs length/cost vs cost function to be rendered.

oneplot TRUE (default) or FALSE if the user wants or does not want the plots displayed
in a single window.

export TRUE or FALSE (default) if the user wants or does not want the LCPs to be
exported as a shapefile; the DTM is exported only if it was not provided by the
user and downloaded by the function from online sources.

Details

Like movecost(), the function just requires an input DTM (’RasterLayer’ class), and an origin
and destination dataset (’SpatialPointsDataFrame’ class). The cost functions to be used have to be
entered into ’movecomp()’ via a character vector fed via the choice parameter (see the examples
below). If a DTM is not provided, movecomp() downloads elevation data from online sources for
the area enclosed by the polygon fed via the studyplot parameter (see movecost for more details).
Under the hood, movecomp() relies on movecost() and implements the same cost functions: see
the help documentation of movecost() for further information.

movecomp() produces a plot representing the input DTM overlaid by a slopeshade raster, whose
transparency can be adjusted using the ’transp’ parameter. On the rendered plot, the LPCs (’Spa-
tialLinesDataFrame’ class) generated by the different input cost functions are given a different line
type; a legend indicates which line type corresponds to which cost function. LCPs back to the origin

16 movecomp

can be calculated (and plotted) setting the parameter return.base to TRUE.

The function returns the LCPs and (if requested by the user) the LCPs back to the origin. If the
DTM has been acquired online, it will be returned as well. The LCPs (and the LCPs back to the
origin) will store three variables: the length of each path, the cost of each path, and an abbreviation
corresponding to the cost function used to generate the LCPs. The mentioned data can be exported
by setting the export parameter to TRUE.

If the users want to compare the distribution of the length of the LCPs generate by different cost
functions, it suffices to set the add.chart parameter to TRUE. Two charts featuring boxplots will
be rendered: one plotting the distribution of the LCPs length by cost function; one portaying the
distribution of the cost by cost function.

The following example uses in-built datasets to compare the LCPs generated using two cost func-
tions: the Tobler hiking function , the wheeled vehicle cost function, and the Pantolf. et al’s cost
function with correction factor. LCPs back to the origin location will be calculated as well. The
origin and destination locations are close to Mt Etna (Sicily, Italy). Note that elevation data are
acquired online for the area enclosed by the polygon fed via the studyplot parameter:

result <- movecomp(origin=Etna_start_location, destin=Etna_end_location, choice=c("t", "wcs",
"pcf"), studyplot = Etna_boundary, return.base=TRUE)

Value

The function returns a list storing the following components

• dtm: Digital Terrain Model (’RasterLayer’ class); returned only if acquired online

• LCPs: estimated least-cost paths (’SpatialLinesDataFrame’ class); three variables are stored:
’length’, ’cost’, and ’funct’.

• LCPs.back: estimated least-cost paths back to the origin (’SpatialLinesDataFrame’ class);
three variables are stored; see above.

See Also

movecost

Examples

load a sample Digital Terrain Model
data(volc)

load the sample destination locations on the above DTM
data(destin.loc)

compare the LCPs generated using different walking-time cost functions (time in minutes)

movecorr 17

result <- movecomp(volc, volc.loc, destin.loc, choice=c("t", "ug", "gkrs"), time="m", move=8)

the distribution of the length and cost of the LCPs by cost function can be easily compared
using the 'add.chart' parameter:
#result <- movecomp(volc, volc.loc, destin.loc, choice=c("t", "ug", "gkrs"), time="m",
#move=8, add.chart=T)

movecorr R function for calculating least-cost corridor between point locations

Description

The function provides the facility to calculate the least-cost corridor between point locations. It
just requires an input DTM and at least two point locations (’SpatialPointsDataFrame’ class) repre-
senting the locations between which the corridor is calculated. Under the hood, movecorr() relies
on the movecost function and, needless to say, implements the same cost functions. See the help
documentation of ’movecost()’ for further details.
Visit this LINK to access the package’s vignette.

Usage

movecorr(
dtm = NULL,
a,
b,
lab.a = "A",
lab.b = "B",
cex.labs = 0.8,
studyplot = NULL,
barrier = NULL,
plot.barrier = FALSE,
irregular.dtm = FALSE,
funct = "t",
time = "h",
move = 16,
field = 0,
cogn.slp = FALSE,
sl.crit = 10,
W = 70,
L = 0,
N = 1,
V = 1.2,
z = 9,
rescale = FALSE,

https://drive.google.com/file/d/1gLDrkZFh1b_glzCEqKdkPrer72JJ9Ffa/view?usp=sharing

18 movecorr

transp = 0.5,
graph.out = TRUE,
export = FALSE

)

Arguments

dtm Digital Terrain Model (RasterLayer class); if not provided, elevation data will be
acquired online for the area enclosed by the ’studyplot’ parameter (see movecost).

a first location from which the least-cost corridor is calculated (SpatialPoints-
DataFrame class); if it contains more than two locations, see the ’Description’
section above.

b second location from which the least-cost corridor is calculated (SpatialPoints-
DataFrame class); if parameter ’a’ stores more than two locations, this parameter
is disregarded; see the ’Description’ section above.

lab.a string to be used to label point a on the outplut plot (A is the default)

lab.b string to be used to label point a on the outplut plot (B is the default).

cex.labs scaling factor for the size of the points’ labels (0.8 by default)

studyplot polygon (SpatialPolygonDataFrame class) representing the study area for which
online elevation data are acquired (see movecost); NULL is default.

barrier area where the movement is inhibited (SpatialLineDataFrame or SpatialPoly-
gonDataFrame class) (see movecost).

plot.barrier TRUE or FALSE (default) if the user wants or does not want the barrier to be
plotted (see movecost).

irregular.dtm TRUE or FALSE (default) if the input DTM features irregular margins (see
movecost).

funct cost function to be used (for details on each of the following, see movecost):

-functions expressing cost as walking time-
t (default) uses the on-path Tobler’s hiking function;
tofp uses the off-path Tobler’s hiking function;
mp uses the Marquez-Perez et al.’s modified Tobler’s function;
icmonp uses the Irmischer-Clarke’s hiking function (male, on-path);
icmoffp uses the Irmischer-Clarke’s hiking function (male, off-path);
icfonp uses the Irmischer-Clarke’s hiking function (female, on-path);
icfoffp uses the Irmischer-Clarke’s hiking function (female, off-path);
ug uses the Uriarte Gonzalez’s walking-time cost function;
ma uses the Marin Arroyo’s walking-time cost function;
alb uses the Alberti’s Tobler hiking function modified for pastoral foraging ex-
cursions;
gkrs uses the Garmy, Kaddouri, Rozenblat, and Schneider’s hiking function;
r uses the Rees’ hiking function;
ks uses the Kondo-Seino’s hiking function;
trp uses the Tripcevich’s hiking function;

movecorr 19

-functions for wheeled-vehicles-
wcs uses the wheeled-vehicle critical slope cost function;

-functions expressing abstract cost-
ree uses the relative energetic expenditure cost function;
b uses the Bellavia’s cost function;
e uses the Eastman’s cost function;

-functions expressing cost as metabolic energy expenditure-
p uses the Pandolf et al.’s metabolic energy expenditure cost function;
pcf uses the Pandolf et al.’s cost function with correction factor for downhill
movements;
m uses the Minetti et al.’s metabolic energy expenditure cost function;
hrz uses the Herzog’s metabolic energy expenditure cost function;
vl uses the Van Leusen’s metabolic energy expenditure cost function;
ls uses the Llobera-Sluckin’s metabolic energy expenditure cost function;
a uses the Ardigo et al.’s metabolic energy expenditure cost function;
h uses the Hare’s metabolic energy expenditure cost function (for all the men-
tioned cost functions, see movecost).

time time-unit expressed by the accumulated raster if Tobler’s and other time-related
cost functions are used; h’ for hour, ’m’ for minutes.

move number of directions in which cells are connected: 4 (rook’s case), 8 (queen’s
case), 16 (knight and one-cell queen moves; default).

field value assigned to the cells coinciding with the barrier (0 by default) (see movecost.

cogn.slp TRUE or FALSE (default) if the user wants or does not want the ’cognitive
slope’ to be used in place of the real slope (see movecost).

sl.crit critical slope (in percent), typically in the range 8-16 (10 by default) (used by
the wheeled-vehicle cost function; see movecost).

W walker’s body weight (in Kg; 70 by default; used by the Pandolf’s and Van
Leusen’s cost function; see movecost).

L carried load weight (in Kg; 0 by default; used by the Pandolf’s and Van Leusen’s
cost function; see movecost).

N coefficient representing ease of movement (1 by default) (see movecost).

V speed in m/s (1.2 by default) (used by the Pandolf et al.’s, Pandolf et al.s with
correction factor, Van Leusen’s, and Ardigo et al.’s cost function; if set to 0,
it is internally worked out on the basis of Tobler on-path hiking function (see
movecost).

z zoom level for the elevation data downloaded from online sources (from 0 to 15;
9 by default) (see movecost and get_elev_raster).

rescale TRUE or FALSE (default) if the user wants or does not want the output least-
coast corridor raster to be rescaled between 0 and 1.

transp set the transparency of the slopeshade raster that is plotted over the least-cost
corridor raster (0.5 by default).

20 movecorr

graph.out TRUE (default) or FALSE if the user wants or does not want a graphical output
to be generated.

export TRUE or FALSE (default) if the user wants or does not want the output to be ex-
ported; if TRUE, the least-cost corridor, the dtm (if not provided by the user but
acquired online), and the accumulated cost surface around a and b are exported
as a GeoTiff file, while the two LCPs (from a to b, and from b to a) as individual
shapefiles. If multiple locations are analysed, only the least-cost corridor (and
the DTM if originally not provided) will be exported. All the exported files (ex-
cluding the DTM) will bear a suffix corresponding to the cost function selected
by the user.

Details

If only two locations are provided (one via parameter a, one via parameter b), the function renders a
raster representing the least cost corridor (which can be optionally exported as GeoTiff) with least-
cost paths superimposed. If more than 2 locations are fed into the function via the ’a’ parameter,
the function calculates the least-cost corridor between pairs of locations. All the pair-wise corridor
rasters are returned (but not individually plotted) in a list. All those rasters will be summed, and the
resulting raster will be plotted (and can be, optionally, exported as GeoTiff).

The function returns a list containing a number of components (see ’Value’ below). For more details
about exporting the function’s outputs, see ’Arguments’ below.

If the user wants to calculate the least-cost corridor between two locations only, (s)he may want to
use parameter a and b to indicate the two locations of interest respectively. For example, using the
datasets provided by this package:

result <- movecorr(a=Etna_start_location, b=Etna_end_location[1,], studyplot=Etna_boundary, funct="tofp")

The above will produce the least-cost corridor between two locations close to Mt Etna (Sicily, Italy),
using the Tobler’s cost function (for off-path hiking). Side note: the elevation data will be acquired
online.

If the interest lies in using more than 2 locations, the user may want to feed the dataset storing all the
locations into parameter a (disregarding b). As explained above, in this case the function calculates
the least-cost corridor between pairs of locations. All the pair-wise corridor rasters are returned in
a list. Those rasters will be summed, and the resulting raster will be plotted (and can be, optionally,
exported as GeoTiff). For example, to calculate the least-cost corridors between every individual
unique pair of the 9 locations stored in the destin.loc dataset:

volc <- raster::raster(system.file("external/maungawhau.grd", package="gdistance"))

result <- movecorr(dtm=volc, a=destin.loc, funct="ree", rescale=TRUE)

Note that only parameter a has been used. The function returns and plots the sum of the 36 individ-
ual corridors; the latter are not plotted, but are stored in a list. If the user wants to plot the least-cost

movecorr 21

corridor, say, n 4, and then add the two locations between which the corridor has been calculated,
(s)he can first plot the corridor raster n 4:

raster::plot(result$corridors[[4]])

Then, identifying which locations are related to corridor n 4 can be easily accomplished by looking
up the values stored in the 4th column of the returned matrix:

result$locations.matrix

The locations are the n 1 and n 5, so the user can add them to the plot previosly produced using:

raster::plot(destin.loc[1,], pch=20, add=T)
raster::plot(destin.loc[5,], pch=20, add=T)

Note that the resulting plot can be produced (with a nicer outlook) directly by ’movecorr()’ by feed-
ing those two locations in the parameter ’a’ and ’b’ respectively:

result <- movecorr(dtm=volc, a=destin.loc[1,], b=destin.loc[5,], funct="ree")

Overall, what movecorr() does is to calculate (via the movecost function) the accumulated cost
surface around each location. Those are eventually summed to produce the least-cost corridor be-
tween locations. On the produced corridor raster, the cost of a cell is the total cost to reach it from
all the analysed locations. About least-cost corridors between pairs of locations, see for instance:
Mitchell A. (2012), "The ESRI Guide to GIS Analysis. Vol 3. Modelling Suitability, Movement,
and Interaction", New York: Esri Press (257-259).

Value

The function returns a list storing the following components

• dtm: Digital Terrain Model (’RasterLayer’ class)

• lc.corridor: raster of the least-cost corridor (’RasterLayer’ class); if more than two locations
are analysed, this raster is the sum of all the corridors between all the pairs of locations

• lcp_a_to_b: least-cost past from a to b (’SpatialLinesDataFrame’ class); returned only when
the corridor is calculated between two locations

• lcp_b_to_a: least-cost past from b to a (’SpatialLinesDataFrame’ class); returned only when
the corridor is calculated between two locations

• accum_cost_surf_a: accumulated cost-surface around a (’RasterLayer’ class); returned only
when the corridor is calculated between two locations

• accum_cost_surf_b: accumulated cost-surface around b (’RasterLayer’ class); returned only
when the corridor is calculated between two locations

• corridors: list of rasters (’RasterLayer’ class) representing the least-cost corridor between all
the unique pairs of locations; returned only when more than two locations are analysed

22 movecost

• locations.matrix: matrix whose columns indicate the identifiers for all the unique pairs of
locations for which each corridor is calculated; returned only when more than two locations
are analysed

See Also

movecost

Examples

load a sample Digital Terrain Model
data(volc)

load the sample destination locations on the above DTM
data(destin.loc)

calculate the least-cost corridor between two locations, using the
relative energetic expenditure cost function, and store the results
in the 'result' object

result <- movecorr(dtm=volc, a=destin.loc[1,], b=destin.loc[3,], funct="ree", move=8)

#same as above, but using the 'cognitive slope'

result <- movecorr(dtm=volc, a=destin.loc[1,], b=destin.loc[3,],
funct="ree", move=8, cogn.slp=TRUE)

movecost R function for calculating accumulated anisotropic slope-dependant
cost of movement across the terrain and least-cost paths from a point
origin

Description

The function provides the facility to calculate the anisotropic accumulated cost of movement around
a starting location and to optionally calculate least-cost path(s) toward one or multiple destinations.
It implements different cost estimations related to human movement across the landscape. The
function takes as input a Digital Terrain Model (’RasterLayer’ class) and a point feature (’Spa-
tialPointsDataFrame’ class), the latter representing the starting location, i.e. the location from
which the accumulated cost is calculated. Besides citing this package, you may want to refer to
the following journal article, where an earlier version of the package is described: Alberti (2019)
<doi:10.1016/j.softx.2019.100331>.
Visit this LINK to access the package’s vignette.

https://drive.google.com/file/d/1gLDrkZFh1b_glzCEqKdkPrer72JJ9Ffa/view?usp=sharing

movecost 23

Usage

movecost(
dtm = NULL,
origin,
destin = NULL,
studyplot = NULL,
barrier = NULL,
plot.barrier = FALSE,
irregular.dtm = FALSE,
funct = "t",
time = "h",
outp = "r",
move = 16,
field = 0,
cogn.slp = FALSE,
sl.crit = 10,
W = 70,
L = 0,
N = 1,
V = 1.2,
z = 9,
return.base = FALSE,
rb.lty = 2,
breaks = NULL,
cont.lab = TRUE,
destin.lab = TRUE,
cex.breaks = 0.6,
cex.lcp.lab = 0.6,
graph.out = TRUE,
transp = 0.5,
oneplot = TRUE,
export = FALSE

)

Arguments

dtm Digital Terrain Model (RasterLayer class); if not provided, elevation data will be
acquired online for the area enclosed by the ’studyplot’ parameter (see Details).

origin location from which the cost surface is calculated (SpatialPointsDataFrame class).

destin location(s) to which least-cost path(s) is calculated (SpatialPointsDataFrame
class).

studyplot polygon (SpatialPolygonDataFrame class) representing the study area for which
online elevation data are acquired (see Details); NULL is default.

barrier area where the movement is inhibited (SpatialLineDataFrame or SpatialPoly-
gonDataFrame class).

plot.barrier TRUE or FALSE (default) if the user wants or does not want the barrier to be
plotted (in blue).

24 movecost

irregular.dtm TRUE or FALSE (default) if the input DTM features irregular margins (Details).

funct cost function to be used:

-functions expressing cost as walking time-
t (default) uses the on-path Tobler’s hiking function;
tofp uses the off-path Tobler’s hiking function;
mp uses the Marquez-Perez et al.’s modified Tobler’s function;
icmonp uses the Irmischer-Clarke’s hiking function (male, on-path);
icmoffp uses the Irmischer-Clarke’s hiking function (male, off-path);
icfonp uses the Irmischer-Clarke’s hiking function (female, on-path);
icfoffp uses the Irmischer-Clarke’s hiking function (female, off-path);
ug uses the Uriarte Gonzalez’s walking-time cost function;
ma uses the Marin Arroyo’s walking-time cost function;
alb uses the Alberti’s Tobler hiking function modified for pastoral foraging ex-
cursions;
gkrs uses the Garmy, Kaddouri, Rozenblat, and Schneider’s hiking function;
r uses the Rees’ hiking function;
ks uses the Kondo-Seino’s hiking function;
trp uses the Tripcevich’s hiking function;

-functions for wheeled-vehicles-
wcs uses the wheeled-vehicle critical slope cost function;

-functions expressing abstract cost-
ree uses the relative energetic expenditure cost function;
b uses the Bellavia’s cost function;
e uses the Eastman’s cost function;

-functions expressing cost as metabolic energy expenditure-
p uses the Pandolf et al.’s metabolic energy expenditure cost function;
pcf uses the Pandolf et al.’s cost function with correction factor for downhill
movements;
m uses the Minetti et al.’s metabolic energy expenditure cost function;
hrz uses the Herzog’s metabolic energy expenditure cost function;
vl uses the Van Leusen’s metabolic energy expenditure cost function;
ls uses the Llobera-Sluckin’s metabolic energy expenditure cost function;
a uses the Ardigo et al.’s metabolic energy expenditure cost function;
h uses the Hare’s metabolic energy expenditure cost function (for all the men-
tioned cost functions, see Details).

time time-unit expressed by the accumulated raster and by the isolines if Tobler’s and
other time-related cost functions are used; ’h’ for hour, ’m’ for minutes.

outp type of output: ’raster’ or ’contours’ (see Details).

move number of directions in which cells are connected: 4 (rook’s case), 8 (queen’s
case), 16 (knight and one-cell queen moves; default).

field value assigned to the cells coinciding with the barrier (0 by default).

movecost 25

cogn.slp TRUE or FALSE (default) if the user wants or does not want the ’cognitive
slope’ to be used in place of the real slope (see Details).

sl.crit critical slope (in percent), typically in the range 8-16 (10 by default) (used by
the wheeled-vehicle cost function; see Details).

W walker’s body weight (in Kg; 70 by default; used by the Pandolf’s and Van
Leusen’s cost function; see Details).

L carried load weight (in Kg; 0 by default; used by the Pandolf’s and Van Leusen’s
cost function; see Details).

N coefficient representing ease of movement (1 by default) (see Details).

V speed in m/s (1.2 by default) (used by the Pandolf et al.’s, Pandolf et al.s with
correction factor, Van Leusen’s, and Ardigo et al.’s cost function; if set to 0,
it is internally worked out on the basis of Tobler on-path hiking function; see
Details).

z zoom level for the elevation data downloaded from online sources (0 to 15; 9 by
default) (see Details and get_elev_raster).

return.base TRUE or FALSE (default) if the user wants or does not want the least-cost paths
back to the origin to be calculated and plotted (as dashed lines).

rb.lty line type used to represent the least-cost paths back to the origin in the returned
plot (2 by default; dashed line; see ’lty’ parameter in par).

breaks contour interval; if no value is supplied, the interval is set by default to 1/10 of
the range of values of the accumulated cost surface.

cont.lab if set to TRUE (default) display the labels of the contours over the accumulated
cost surface.

destin.lab if set to TRUE (default) display the label(s) indicating the cost at the destination
location(s).

cex.breaks set the size of the cost labels used in the contour plot (0.6 by default).

cex.lcp.lab set the size of the labels used in least-cost path(s) plot (0.6 by default).

graph.out TRUE (default) or FALSE if the user wants or does not want a graphical output
to be generated.

transp set the transparency of the slopeshade raster that is plotted over the rendered
plots (0.5 by default).

oneplot TRUE (default) or FALSE if the user wants or does not want the plots displayed
in a single window.

export TRUE or FALSE (default) if the user wants or does not want the outputs to
be exported; if TRUE, the DTM, the cost-surface, and the accumulated cost
surface are exported as a GeoTiff file, while the isolines, the least-cost path(s),
and a copy of the input destination locations (storing the cost measured at each
location) are exported as shapefile; all the exported files (excluding the DTM)
will bear a suffix corresponding to the cost function selected by the user. Note
that the DTM is exported only if it was not provided by the user and downloaded
by the function from online sources.

26 movecost

Details

If the parameter destin is fed with a dataset representing destination location(s) (’SpatialPoints-
DataFrame’ class), the function also calculates least-cost path(s) plotted on the input DTM; the
length of each path is saved under the variable ’length’ stored in the ’LCPs’ dataset (’SpatialLines’
class) returned by the function. In the produced plot, the red dot(s) representing the destination
location(s) are labelled with numeric values representing the cost value at the location(s).

The cost value is also appended to the updated destination locations dataset returned by the func-
tion, which stores a new variable labelled cost. If the cost is expressed in terms of walking time,
the labels accompaining each destinaton location will express time in sexagesimal numbers (hours,
minutes, seconds). In this case, the variable ’cost’ appended to the returned destination location
datset will store the time figures in decimal numbers, while another variable named cost_hms will
store the corresponding value in sexagesimal numbers. When interpreting the time values stored in
the cost variable, the user may want to bear in mind the selected time unit (see right below).

When using cost functions expressing cost in terms of time, the time unit can be selected by the
user setting the time parameter to h (hours) or to m (minutes).

In general, the user can also select which type of visualization the function has to produce; this
is achieved setting the outp parameter to either r (=raster) or to c (=contours). The former will
produce a raster with a colour scale and contour lines representing the accumulated cost surface;
the latter parameter will only produce contour lines.

The contour lines’ interval is set using the breaks parameter; if no value is passed to the param-
eter, the interval will be set by default to 1/10 of the range of values of the accumulated cost surface.

It is worth reminding the user(s) that all the input layers (i.e., DTM, start location, and destination
locations) must use the same projected coordinate system.

Cost surface calculation:
for the cost-surface and LCPs calculation, movecost() builds on functions from Jacob van Etten’s
gdistance package. Under the hood, movecost() calculates the slope as rise over run, following the
procedure described by van Etten, "R Package gdistance: Distances and Routes on Geographical
Grids" in Journal of Statistical Software 76(13), 2017, pp. 14-15. The number of directions in
which cells are connected in the cost calculation can be set to 4 (rook’s case), 8 (queen’s case), or
16 (knight and one-cell queen moves) using the move parameter (see ’Arguments’).

Inhibition of movement (barrier):
areas where the movement is inhibited can be fed into the analysis via the barrier parameter; Spa-
tialLineDataFrame or SpatialPolygonDataFrame can be used. The barrier is assigned a conductance
value of 0 (i.e., movement is inhibited) by default, but the user can assign any other value via the
field parameter. Internally, the barrier creation rests on the create_barrier_cs function from
the leastcostpath package.

To test this facility, consider the following example:

https://cran.r-project.org/package=gdistance

movecost 27

First, we use in-built data to come up with a linear feature (i.e., a LCP) that we will later use as
barrier:

result1 <- movecost(volc, destin.loc[1,], destin.loc[4,])

After, we calculate the LCP between two other locations, first not using any barrier (result2), then
using the mentioned LCP (from result1) as a barrier (result3):

result2 <- movecost(volc, destin.loc[3,], destin.loc[6,], move=8)
result3 <- movecost(volc, destin.loc[3,], destin.loc[6,], barrier=result1$LCPs, plot.barrier=TRUE,
move=8)

As apparent by comparing result2 to result3, when the barrier is used (result3), the LCP does not
cross the barrier but is "forced" to make a long detour. In result3, the barrier is plotted as a blue
line. Note that the move parameter has been set to 8; if set to 16, the LCP will be "able" to jump the
barrier.

DTM featuring irregular margins:
if the input DTM features irregular margins, e.g a coastline with gulfs and/or inlets where cells cor-
responding to the sea are given NoData, the user is to set the irregular.dtm parameter to TRUE;
this will prevent the LCPs to cross the sea. Internally, what movecost() does is to generate a poly-
gon vector layer from the DTM and to use the polygon as a mask to create a Transitional Layer via
the create_barrier_cs function from the leastcostpath package. In the mask Transitional Layer
those parts corresponding to the terrain are given a conductance value equal to 1, while everything
else (i.e., the parts corresponding to the sea) are given 0 conductance. The mask Transitional Layer
is then internally multiplied by the conductance transitional layer representing the cost of movement
(according to the user-selected function). This will set to 0 the conductance values of those parts
of the study area that do not correspond to the terrain, while keeping unaltered the conductance of
those parts that do coincide with the terrain.

As a case in point, let’s consider the two following examples (using some in-build datasets):

resultA <- movecost(malta_dtm_40, origin=springs[5,], destin=springs[15,], irregular.dtm=FALSE,
oneplot=FALSE)

resultB <- movecost(malta_dtm_40, origin=springs[5,], destin=springs[15,], irregular.dtm=TRUE,
oneplot=FALSE)

As you can see, in the first case, the LCP between the two locations cross the sea, while in the
second case the LCP follows the coastline. One can also appreciate the difference between the two
returned conductance transitional layers:

plot(raster::raster(resultA$conductance))

plot(raster::raster(resultB$conductance))

28 movecost

It is apparent that in the second layer the sea area has been given 0 conductance, while keeping the
rest unchanged. If the input DTM does not feature irregular margins (like, for instance, the built-in
volc DTM), the user may safely leave the irregular.dtm parameter set to FALSE (which is the
default value).

Acquiring online elevation data:
if a DTM is not provided,movecost()’ will download elevation data from online sources. Elevation
data will be acquired for the area enclosed by the polygon supplied by the studyplot parameter
(SpatialPolygonDataFrame class). To tap online elevation data, movecost()’ internally builds on
the get_elev_raster function from the elevatr package.

The zoom level of the downloaded DTM (i.e., its resolution) is controlled by the parameter z, which
is set to 9 by default (a trade off between resolution and download time).

To test this facility, the user may want to try the following code, that will generate a least-cost sur-
face and least-cost paths in an area close the Mount Etna (Sicily, Italy), whose elevation data are
acquired online; the start and end locations, and the polygon defining the study area, are provided
in this same package:

result <- movecost(origin=Etna_start_location, destin=Etna_end_location, studyplot=Etna_boundary)

The LCPs back to the origin can be calculated and plotted setting the parameter ’return.base’ to
TRUE:

result <- movecost(origin=Etna_start_location, destin=Etna_end_location, studyplot=Etna_boundary,
return.base=TRUE)

To know more about what elevation data are tapped from online sources, visit: https://cran.r-
project.org/web/packages/elevatr/vignettes/introduction_to_elevatr.html.

For more information about the elevation data resolution per zoom level, visit https://github.com/tilezen/joerd/blob/master/docs/data-
sources.md#what-is-the-ground-resolution.

To know what is sourced at what zoom level, visit https://github.com/tilezen/joerd/blob/master/docs/data-
sources.md#what-is-sourced-at-what-zooms.

Terrain slope and cognitive slope:
when it comes to the terrain slope, the function provides the facility to use the so-called ’cognitive
slope’, following Pingel TJ (2013), Modeling Slope as a Contributor to Route Selection in Moun-
tainous Areas, in Cartography and Geographic Information Science, 37(2), 137-148. According
to Pingel, "Humans tend to overestimate geographic slopes by a surprisingly high margin...This
analysis indicates downhill slopes are overestimated at approximately 2.3 times the vertical, while
uphill slopes are overestimated at 2 times the vertical.". As a result, if the parameter cogn.slp is
set to TRUE, positive slope values are preliminarily multiplied by 1.99, while negative slope values
are multiplied by 2.31.

movecost 29

Terrain factor (N):
virtually all the implemented cost functions (with few exceptions) can take into account a ’terrain
factor’ (N parameter; 1 by default), which represents the easiness/difficulty of moving on different
terrain types. According to the type of terrain, the energy spent when walking increases. The same
holds true for time, which increases because on a loose terrain (for instance) the walking speed de-
creases. While a terrain factor is ’natively’ part of the Van Leusen’s, Pandolf et al.’s, and Bellavia’s
cost function, it has been integrated into the other cost functions as well (when/if relevant).

Note that the terrain factor has NOT been implemented in the Alberti’s, Tobler’s off-path, and
Irmischer-Clarke’s off-path cost function. As for the latter two, they already natively feature a ter-
rain factor. Therefore, it has been implemented only in their on-path version. Needless to say, if
we use a terrain factor of 1.67 with the Tobler’s (on-path) hiking function, the results will be equal
to those obtained using the Tobler’s off-path function (the reciprocal of 1.67, i.e. 0.60, is in fact
natively used by the Tobler’s function for off-path hiking). In fact, compare the results of the fol-
lowing two runs of movecost() (using in-built datasets):

result1 <- movecost(dtm=volc, origin=volc.loc, destin=destin.loc, breaks=0.05, funct="t", N=1.67)
result2 <- movecost(dtm=volc, origin=volc.loc, destin=destin.loc, breaks=0.05, funct="tofp")

The user may want to refer to the following list of terrain factors, which is based on the data col-
lected in Herzog, I. (2020). Spatial Analysis Based on Cost Functions. In Gillings M, Haciguzeller
P, Lock G (eds), "Archaeological Spatial Analysis. A Methodological Guide.", Routledge: New
York, 340 (with previous references). The list is divided into two sections (a and b), the first re-
porting the terrain factors to be used for cost functions measuring time, the second for functions
measuring cost other than time:

(a)

• Blacktop roads, improved dirt paths, cement = 1.00

• Lawn grass = 1.03

• Loose beach sand = 1.19

• Disturbed ground (former stone quarry) = 1.24

• Horse riding path, flat trails and meadows = 1.25

• Tall grassland (with thistle and nettles) = 1.35

• Open space above the treeline (i.e., 2000 m asl) = 1.50

• Bad trails, stony outcrops and river beds = 1.67

• Off-paths = 1.67

• Bog = 1.79

• Off-path areas below the treeline (pastures, forests, heathland) = 2.00

• Rock = 2.50

• Swamp, water course = 5.00

(b)

30 movecost

• Asphalt/blacktop = 1.00

• Dirt road or grass = 1.10

• Hard-surface road = 1.20

• Light brush = 1.20

• Ploughed field = 1.30 or 1.50

• Heavy brush = 1.50

• Hard-packed snow = 1.60

• Swampy bog = 1.80

• Sand dunes = 1.80

• Loose sand = 2.10

Implemented cost functions:
note that in what follows x[adj] stands for slope as rise/run calculated for adjacent cells:

Tobler’s hiking function (on-path) (speed in kmh):

(6 ∗ exp(−3.5 ∗ abs(x[adj] + 0.05))) ∗ (1/N)

Tobler’s hiking function (off-path) (speed in kmh):

(6 ∗ exp(−3.5 ∗ abs(x[adj] + 0.05))) ∗ 0.6

as per Tobler’s indication, the off-path walking speed is reduced by 0.6.

Marquez-Perez et al.’s modified Tobler hiking function (speed in kmh):

(4.8 ∗ exp(−5.3 ∗ abs((x[adj] ∗ 0.7) + 0.03))) ∗ (1/N)

modified version of the Tobler’s hiking function as proposed by Joaquin Marquez-Parez, Ismael
Vallejo-Villalta & Jose I. Alvarez-Francoso (2017), "Estimated travel time for walking trails in natu-
ral areas", Geografisk Tidsskrift-Danish Journal of Geography, 117:1, 53-62, DOI: 10.1080/00167223.2017.1316212.

Irmischer-Clarke’s modified Tobler hiking function (male, on-path; speed in kmh):

((0.11 + exp(−(abs(x[adj]) ∗ 100 + 5)2/(2 ∗ 302))) ∗ 3.6) ∗ (1/N)

modified version of the Tobler’s function as proposed for (male) on-path hiking by Irmischer, I. J., &
Clarke, K. C. (2018). Measuring and modeling the speed of human navigation. Cartography and Ge-
ographic Information Science, 45(2), 177-186. https://doi.org/10.1080/15230406.2017.1292150. It
is interesting to note that the hiking speed predicted by this and by the other functions proposed
by the authors is slower than the one modelled by Tobler’s hiking function. This is attributed to
the cognition involved in wayfinding , such as map reading, analyzing the terrain, decision making,

movecost 31

determining routes, etc. Note: all the all the Irmischer-Clarke’s functions originally express speed
in m/s; they have been reshaped (multiplied by 3.6) to turn m/s into km/h for consistency with the
other Tobler-related cost functions; slope is in percent.

Irmischer-Clarke’s modified Tobler hiking function (male, off-path; speed in kmh):

(0.11 + 0.67 ∗ exp(−(abs(x[adj]) ∗ 100 + 2)2/(2 ∗ 30)2)) ∗ 3.6

Irmischer-Clarke’s modified Tobler hiking function (female, on-path; speed in kmh):

((0.95 ∗ (0.11 + exp(−(abs(x[adj]) ∗ 100 + 5)2/(2 ∗ 302)))) ∗ 3.6) ∗ (1/N)

Irmischer-Clarke’s modified Tobler hiking function (female, off-path; speed in kmh):

(0.95 ∗ (0.11 + 0.67 ∗ exp(−(abs(x[adj]) ∗ 100 + 2)2/(2 ∗ 302)))) ∗ 3.6

Uriarte Gonzalez’s walking-time cost function:

1/((0.0277 ∗ (abs(x[adj]) ∗ 100) + 0.6115) ∗N)

proposed by Uriarte Gonzalez; see: Chapa Brunet, T., Garcia, J., Mayoral Herrera, V., & Uriarte
Gonzalez, A. (2008). GIS landscape models for the study of preindustrial settlement patterns in
Mediterranean areas. In Geoinformation Technologies for Geo-Cultural Landscapes (pp. 255-273).
CRC Press. https://doi.org/10.1201/9780203881613.ch12.
The cost function originally expresses walking time in seconds; for the purpose of its implemen-
tation in this function, it is the reciprocal of time (1/T) that is used in order to eventually get T/1.
Unlike in the original cost function, here the pixel resolution is not taken into account since ’gdis-
tance’ takes care of the cells’ dimension when calculating accumulated costs.

Marin Arroyo’s walking-time cost function:

ifelse((abs(x[adj])∗100) < 0, 1/((0.6∗((abs(x[adj])∗100)/23+1))∗N), 1/((0.6∗((abs(x[adj])∗
100)/11 + 1)) ∗N))

used by Marin Arroyo A.B. (2009), The use of optimal foraging theory to estimate Late Glacial site
catchments areas from a central place: the case of eastern Cantabria, Span, in Journal of Anthro-
pological Archaeology 28, 27-36. The cost function originally expresses walking time in seconds;
here it is the reciprocal of time (1/T) that is used in order to eventually get T/1. Slope is in percent.
Note: unlike in the original equation, here d (distance travelled in meter) is not taken into account
since ’gdistance’ takes care of the cells’ dimension when calculating accumulated costs.

Alberti’s Tobler hiking function modified for pastoral foraging excursions (speed in kmh):

32 movecost

(6 ∗ exp(−3.5 ∗ abs(x[adj] + 0.05))) ∗ 0.25

proposed by Gianmarco Alberti; see: Locating potential pastoral foraging routes in Malta through
the use of a Geographic Information System. The Tobler’s function has been rescaled to fit animal
walking speed during foraging excursions. The distribution of the latter, as empirical data show,
turns out to be right-skewed and to vary along a continuum. It ranges from very low speed values
(corresponding to slow grazing activities grazing while walking) to comparatively higher values
(up to about 4.0 km/h) corresponding to travels without grazing (directional travel toward feeding
stations). The function consider 1.5 km/h as the average flock speed, which roughly corresponds to
the average speed recorded in some studies, and can be considered the typical speed of flocks during
excursions in which grazing takes place while walking (typical form of grazing in most situations).
Tobler’s hiking function has been rescaled by a factor of 0.25 to represent the walking pace of a
flock instead of humans. The factor corresponds to the ratio between the flock average speed (1.5
km/h) and the maximum human walking speed (about 6.0 km/h) on a favourable slope.

Garmy, Kaddouri, Rozenblat, and Schneider’s hiking function (speed in kmh):

(4 ∗ exp(−0.008 ∗ ((atan(abs(x[adj])) ∗ 180/pi)2))) ∗ (1/N)

slope in degrees; see: Herzog, I. (2020). Spatial Analysis Based on Cost Functions. In Gillings
M, Haciguzeller P, Lock G (eds), "Archaeological Spatial Analysis. A Methodological Guide.",
Routledge: New York, 333-358 (with previous references).

Rees’ hiking function (speed in kmh):

((1/(0.75 + 0.09 ∗ abs(x[adj]) + 14.6 ∗ (abs(x[adj]))2)) ∗ 3.6) ∗ (1/N)

Rees’ slope-dependant cost function; it is originally expressed in terms of time (1/v in Rees’ pub-
lication); here it is the reciprocal of time (i.e. speed) that is used in order to eventually get the
reciprocal of speed (i.e. time). Slope is dealt with here as originally expressed in Rees’ publication
(i.e. rise over run). The speed, which is originally expressed in m/s, has been here transposed to
kmh (i.e., multiplied by 3.6) for consistency with other hiking functions.
For this cost function see: Rees, WG (2004). Least-cost paths in mountainous terrain. Computers &
Geosciences, 30(3), 203-209. See also: Campbell MJ, Dennison PE, Butler BW, Page WG (2019).
Using crowdsourced fitness tracker data to model the relationship between slope and travel rates.
Applied Geography 106, 93-107 (with previous references).

Kondo-Seino’s modified Tobler hiking function (speed in kmh):

ifelse(abs(x[adj]) >= −0.07, (5.1∗exp(−2.25∗abs(x[adj]+0.07)))∗(1/N), (5.1∗exp(−1.5∗
abs(x[adj] + 0.07)))) ∗ (1/N)

Kondo-Seino’s modified Tobler hiking function; it expresses walking speed in Kmh; slope as
rise/run; see Kondo Y., Seino Y. (2010). GPS-aided Walking Experiments and Data-driven Travel
Cost Modelingon the Historical Road of Nakasendo-Kisoji (Central Highland Japan), in: Frischer

https://www.um.edu.mt/library/oar/bitstream/123456789/64172/1/Chapter_9_Locating_potential_pastoral_foraging_routes.pdf
https://www.um.edu.mt/library/oar/bitstream/123456789/64172/1/Chapter_9_Locating_potential_pastoral_foraging_routes.pdf

movecost 33

B., Webb Crawford J., Koller D. (eds.), Making History Interactive. Computer Applications and
Quantitative Methods in Archaeology (CAA). Proceedings of the 37th International Conference,
Williamsburg, Virginia, United States of America, March 22-26 (BAR International Series S2079).
Archaeopress, Oxford, 158-165.

Tripcevich hiking function (speed in kmh):

((4.028 ∗ 462)/(((atan(abs(x[adj])) ∗ 180/pi) + 4.127)2 + 462)) ∗ (1/N)

Tripcevich’s hiking function; it expresses walking speed in Kmh; slope is originally expressed in
degrees; see Tripcevich N (2008). Estimating Llama caravan travel speeds: ethno-archaeological
fieldwork with a Peruvian salt caravan. Trabajo presentado el la inauguracionn del Centre for Spatial
Studies, University of California, Santa Barbara. See also: Lucero G, Marsh EJ, Castro S (2014),
Rutas prehistoricas en lo NO de San Juan: una propuesta macroregional desde los sistemas de in-
formation geografica, in Cortegoso V, Duran V, Gasco Alejandra (eds), Arqueologia de ambientes
de altura de Mendoza y San Juan (Argentina), EDIUNC, pp. 275-305.

Wheeled-vehicle critical slope cost function:

1/((1 + ((abs(x[adj]) ∗ 100)/sl.crit)2) ∗N)

where sl.crit (=critical slope, in percent) is "the transition where switchbacks become more effec-
tive than direct uphill or downhill paths" and typically is in the range 8-16; see Herzog, I. (2016).
Potential and Limits of Optimal Path Analysis. In A. Bevan & M. Lake (Eds.), Computational Ap-
proaches to Archaeological Spaces (pp. 179-211). New York: Routledge.

Relative energetic expenditure cost function:

1/((tan((atan(abs(x[adj])) ∗ 180/pi) ∗ pi/180)/tan(1 ∗ pi/180)) ∗N)

slope-based cost function expressing change in potential energy expenditure; see Conolly, J., &
Lake, M. (2006). Geographic Information Systems in Archaeology. Cambridge: Cambridge Uni-
versity Press, p. 220; see also Newhard, J. M. L., Levine, N. S., & Phebus, A. D. (2014). The
development of integrated terrestrial and marine pathways in the Argo-Saronic region, Greece. Car-
tography and Geographic Information Science, 41(4), 379-390, with references to studies that use
this function; see also ten Bruggencate, R. E., Stup, J. P., Milne, S. B., Stenton, D. R., Park, R. W., &
Fayek, M. (2016). A human-centered GIS approach to modeling mobility on southern Baffin Island,
Nunavut, Canada. Journal of Field Archaeology, 41(6), 684-698. https://doi.org/10.1080/00934690.2016.1234897.

Bellavia’s cost function:

1/(N ∗ ((atan(abs(x[adj])) ∗ 180/pi) + 1))

proposed by G. Bellavia, it measures abstract cost. Slope in degrees; N is a terrain factor (see above).
See: Herzog I. (2020). Spatial Analysis Based on Cost Functions. In Gillings M, Haciguzeller P,

34 movecost

Lock G (eds), "Archaeological Spatial Analysis. A Methodological Guide.", Routledge: New York,
333-358 (with previous references).

Eastman’s cost function:

1/((0.031 ∗ (atan(abs(x[adj])) ∗ 180/pi)2 − 0.025 ∗ (atan(abs(x[adj])) ∗ 180/pi) + 1) ∗N)

proposed by J.R. Eastman, it measures abstract cost; slope in degrees. See: Vaissie E., Mobility
of Paleolithic Populations: Biomechanical Considerations and Spatiotemporal Modelling, in Pale-
oAnthropology 2021 (1): 120-144 (with previous reference to Eastman 1999).

Pandolf et al.’s metabolic energy expenditure cost function (in Watts):

1/((1.5∗W+2.0∗(W+L)∗(L/W)2+N∗(W+L)∗(1.5∗(V 2)+0.35∗V ∗(abs(x[adj])∗100)))∗N)

where W is the walker’s body weight (Kg), L is the carried load (in Kg), V is the velocity in m/s,
N is a coefficient representing ease of movement on the terrain (see above). Note that if V is set
to 0 by the user, it is internally worked out on the basis of the Tobler function for on-path hiking;
therefore, V will not be considered constant throughout the analysed area, but will vary as function
of the slope.

For this cost function, see Pandolf, K. B., Givoni, B., & Goldman, R. F. (1977). Predicting en-
ergy expenditure with loads while standing or walking very slowly. Journal of Applied Physiology,
43(4), 577-581. https://doi.org/10.1152/jappl.1977.43.4.577.

For the use of this cost function in a case study, see Rademaker, K., Reid, D. A., & Bromley, G.
R. M. (2012). Connecting the Dots: Least Cost Analysis, Paleogeography, and the Search for Pale-
oindian Sites in Southern Highland Peru. In White D.A. & Surface-Evans S.L. (Eds.), Least Cost
Analysis of Social Landscapes. Archaeological Case Studies (pp. 32-45). University of Utah Press;
see also Herzog, I. (2013). Least-cost Paths - Some Methodological Issues, Internet Archaeology
36 (http://intarch.ac.uk/journal/issue36/index.html) with references. For the idea of using an hiking
function inside an energetic cost function, see for instance White D.A., Prehistoric Trail Networks
of the Western Papaguarie. A Multifaceted Least Cost Graph Theory Analysis. In White D.A. &
Surface-Evans S.L. (Eds.), Least Cost Analysis of Social Landscapes. Archaeological Case Studies
(pp. 188-206). University of Utah Press.

Note: in the returned charts, the cost is transposed from Watts to Megawatts (see, e.g., Rademaker
et al 2012 cited above).

Pandolf et al.’s metabolic energy expenditure cost function with correction factor for downhill
movements (in Watts):

ifelse(abs(x[adj]) ∗ 100 > 0, 1/(1.5 ∗W + 2.0 ∗ (W + L) ∗ (L/W)2 + N ∗ (W + L) ∗ (1.5 ∗
V 2 +0.35 ∗ V ∗ (abs(x[adj]) ∗ 100))), 1/((1.5 ∗W +2.0 ∗ (W +L) ∗ (L/W)2 +N ∗ (W +L) ∗
(1.5 ∗ V 2 + 0.35 ∗ V ∗ (abs(x[adj]) ∗ 100)))− (N ∗ ((abs(x[adj]) ∗ 100) ∗ (W + L) ∗ V/3.5)−

movecost 35

((W + L) ∗ ((abs(x[adj]) ∗ 100) + 6)2/W) + (25− V 2))))

for the parameters W , L, V , and N , see above. If V is set to 0 by the user, it is internally worked out
on the basis of the Tobler function for on-path hiking; therefore, V will not be considered constant
throughout the analysed area, but will vary as function of the slope. For the correction factor applied
to the Pandolf et al.’s cost function, see Yokota M., Berglund L.G., Santee W.R., Buller M.J., Hoyt
R.W. (2004), Predicting Individual Physiological Responsed During Marksmanship Field Training
Using an Updates Scenario-J Model. U.S. Army Research Institute of Environmental Medicine
Technical Report T04-09. For an archaeological application of the Pandol et al’s cost function with
correction factor, see White D.A., Prehistoric Trail Networks of the Western Papaguarie. A Multi-
faceted Least Cost Graph Theory Analysis. In White D.A. & Surface-Evans S.L. (Eds.), Least Cost
Analysis of Social Landscapes. Archaeological Case Studies (pp. 188-206). University of Utah
Press.

Note: in the returned charts, the cost is transposed from Watts to Megawatts (see, e.g., Rademaker
et al 2012 cited above).

Minetti et al.’s metabolic energy cost function (in J/(kg*m)):

1/(((280.5∗abs(x[adj])5)−(58.7∗abs(x[adj])4)−(76.8∗abs(x[adj])3)+(51.9∗abs(x[adj])2)+
(19.6 ∗ abs(x[adj])) + 2.5) ∗N)

see Minetti A.E., Moia C., Roi G.S., Susta D., Ferretti G. (2002), Enery cost of walking and run-
ning at extreme uphilland downhill slopes, in Journal of Applied Physiology 93, 1039-1046. Note
that this equation is valid for slopes in the range -0.5/0.5; outside this range, the function’s output
becomes counterintuitive, as noted in Paez et al. in Journal of Transport Geography 82 (2020) and
Herzog I. (2013), Theory and practice of cost functions, in Contreras F., Farjas M., Melero F.J.
(eds), "Fusion of cultures. Proceedings of the 38th annual conference on computer applications
and quantitative methods in archaeology". BAR IS, 2494, 375-382. Oxford: Archaeopress. In the
latter work, Herzog proposes to replace Minetti et al.’s equation with its 6th degrees polynomial
approximation (see the Herzog’s metabolic cost function below).

Herzog’s metabolic cost function in J/(kg*m):

1/(((1337.8 ∗ abs(x[adj])6) + (278.19 ∗ abs(x[adj])5) − (517.39 ∗ abs(x[adj])4) − (78.199 ∗
abs(x[adj])3) + (93.419 ∗ abs(x[adj])2) + (19.825 ∗ abs(x[adj])) + 1.64) ∗N)

see Herzog, I. (2016). Potential and Limits of Optimal Path Analysis. In A. Bevan & M. Lake
(Eds.), Computational Approaches to Archaeological Spaces (pp. 179-211). New York: Routledge.
Herzog suggests to use this as a 6th degree polynomial approximation of the Minetti et al’s cost
function (see above).

Van Leusen’s metabolic energy expenditure cost function (in Watts):

1/((1.5 ∗W +2.0 ∗ (W +L) ∗ (L/W)2 +N ∗ (W +L) ∗ (1.5 ∗ (V 2)+ 0.35 ∗V ∗ ((abs(x[adj]) ∗

36 movecost

100) + 10))) ∗N)

which modifies the Pandolf et al.’s equation; see Van Leusen, P. M. (2002). Pattern to process:
methodological investigations into the formation and interpretation of spatial patterns in archaeo-
logical landscapes. University of Groningen. Note that, as per Herzog, I. (2013). Least-cost Paths -
Some Methodological Issues, Internet Archaeology 36 (http://intarch.ac.uk/journal/issue36/index.html)
and unlike Van Leusen (2002), in the above equation slope is expressed in percent and speed in m/s;
also, in the last bit of the equantion, 10 replaces the value of 6 used by Van Leusen (as per Herzog
2013).
As explained above, if V is set to 0 by the user, it is internally worked out on the basis of the Tobler
function for on-path hiking; therefore, V will not be considered constant throughout the analysed
area, but will vary as function of the slope.

Note: in the returned charts, the cost is transposed from Watts to Megawatts.

Llobera-Sluckin’s metabolic energy expenditure cost function (in KJ/m):

1/((2.635 + (17.37 ∗ abs(x[adj])) + (42.37 ∗ abs(x[adj])2)− (21.43 ∗ abs(x[adj])3) + (14.93 ∗
abs(x[adj])4)) ∗N)

for which see Llobera M.-Sluckin T.J. (2007). Zigzagging: Theoretical insights on climbing strate-
gies, Journal of Theoretical Biology 249, 206-217.

Ardigo et al.’s metabolic energy expenditure cost function (in J/(kg*m)):

1/((1.866 ∗ exp(4.911 ∗ abs(x[adj])) ∗ V 2 − 3.773 ∗ exp(3.416 ∗ abs(x[adj])) ∗ V + (45.71 ∗
abs(x[adj]2) + 18.90 ∗ abs(x[adj])) + 4.456) ∗N)

see Ardigo L.P., Saibene F., Minetti A.E. (2003), The optimal locomotion on gradients: walking,
running or cycling?, in Eur J Appl Physiol 90, 365-371. If V is set to 0 by the user, it is internally
worked out on the basis of the Tobler function for on-path hiking; therefore, V will not be consid-
ered constant throughout the analysed area, but will vary as function of the slope.

Hare’s metabolic energy expenditure cost function (in cal/km):

1/((48 + 30/(1/(6 ∗ exp(−3.5 ∗ abs(x[adj] + 0.05))))) ∗N)

see Hare T.S., Using Measures of Cost Distance in the Estimation of Polity Bounrdaries in the Post
Classic Yautepec valley, Mexico, in Journal of Archaeological Science 31 (2004). Energetic expen-
diture is expressed in calories per km; walking speed is internally worked out from the DTM using
the on-path Tobler’s hiking function, which is expressed as its reciprocal; walking speed in km/h as
per original Tobler’s equation and as requested by Hare’s function.

Note that the walking-speed-related cost functions listed above are used as they are, while the other
functions are reciprocated. This is done since "gdistance works with conductivity rather than the

movecost 37

more usual approach using costs"; therefore "we need inverse cost functions" (Nakoinz-Knitter
(2016). "Modelling Human Behaviour in Landscapes". New York: Springer, p. 183). As a conse-
quence, if we want to estimate time, we have to use the walking-speed functions as they are since
the final accumulated values will correspond to the reciprocal of speed, i.e. pace. In the other cases,
we have to use 1/cost-function to eventually get cost-function/1.

Value

The function returns a list storing the following components

• dtm: Digital Terrain Model (’RasterLayer’ class)

• cost.surface: raster representing the cost-surface (’RasterLayer’ class)

• accumulated.cost.raster: raster representing the accumualted cost (’RasterLayer’ class)

• isolines: contour lines derived from the accumulated cost surface (’SpatialLinesDataFrame’
class)

• LCPs: estimated least-cost paths (’SpatialLinesDataFrame’ class)

• LCPs.back: estimated least-cost paths back to the origin (’SpatialLinesDataFrame’ class)

• LCPs$length: length of each least-cost path (units depend on the unit used in the input DTM)

• LCPs.back$length: length of each least-cost path back to the origin (units depend on the unit
used in the input DTM)

• dest.loc.w.cost: copy of the input destination location(s) dataset with a new variable (’cost’)
added; if the cost is expressed in terms of time, the ’cost’ variable will store the time values
in decimal numbers, while another variable named ’cost_hms’ will store the time values in
sexagesimmal numbers (hours, minutes, seconds)

• conductance: conductance ’Transitional Layer’, returned because internally used by the movenetw()
function

See Also

get_elev_raster, movecorr, movebound, movealloc, movecomp, movenetw, moverank

Examples

load a sample Digital Terrain Model
data(volc)

load a sample start location on the above DTM
data(volc.loc)

load the sample destination locations on the above DTM
data(destin.loc)

calculate walking-time isochrones based on the on-path Tobler's hiking function (default),
setting the time unit to hours and the isochrones interval to 0.05 hour;
also, since destination locations are provided,
least-cost paths from the origin to the destination locations will be calculated
and plotted; 8-directions move is used

38 movenetw

result <- movecost(dtm=volc, origin=volc.loc, destin=destin.loc, move=8, breaks=0.05)

same as above, but using the Irmischer-Clarke's hiking function (male, on-path)

result <- movecost(dtm=volc, origin=volc.loc, destin=destin.loc, funct="icmonp",
move=8, breaks=0.05)

same as above, but using the 'cognitive slope'

result <- movecost(dtm=volc, origin=volc.loc, destin=destin.loc, funct="icmonp",
move=8, breaks=0.05, cogn.slp=TRUE)

calculate accumulated cost surface and the least-cost path between the
origin and one destination, and also calculate the LCP back to the origin

results <- movecost(dtm=volc, origin=volc.loc, destin=destin.loc[2,], move=8, return.base = TRUE)

movenetw R function for calculating least-cost path network

Description

The function provides the facility to calculate LCPs between multiple origins. Two types of net-
works are produced: one where each origin location is connected to all the others locations; one
where only pairs of neighboring locations are connected. In other words, in the latter case, each
location is connected to the location that is the nearest in terms of walking cost, either in terms
of time or energy (or abstract cost), according to the selected cost function. Optionally, a raster
representing the density of the first type of network can be produced.
Visit this LINK to access the package’s vignette.

Usage

movenetw(
dtm = NULL,
origin,
studyplot = NULL,
barrier = NULL,
plot.barrier = FALSE,
irregular.dtm = FALSE,
funct = "t",
move = 16,
field = 0,

https://drive.google.com/file/d/1gLDrkZFh1b_glzCEqKdkPrer72JJ9Ffa/view?usp=sharing

movenetw 39

cogn.slp = FALSE,
sl.crit = 10,
W = 70,
L = 0,
N = 1,
V = 1.2,
z = 9,
lcp.dens = FALSE,
transp = 0.5,
export = FALSE

)

Arguments

dtm Digital Terrain Model (RasterLayer class); if not provided, elevation data will be
acquired online for the area enclosed by the ’studyplot’ parameter (see movecost).

origin location(s) around which the boundary(ies) is calculated (SpatialPointsDataFrame
class).

studyplot polygon (SpatialPolygonDataFrame class) representing the study area for which
online elevation data are acquired (see movecost); NULL is default.

barrier area where the movement is inhibited (SpatialLineDataFrame or SpatialPoly-
gonDataFrame class) (see movecost).

plot.barrier TRUE or FALSE (default) if the user wants or does not want the barrier to be
plotted (see movecost).

irregular.dtm TRUE or FALSE (default) if the input DTM features irregular margins (see
movecost).

funct cost function to be used (for details on each of the following, see movecost):
-functions expressing cost as walking time-
t (default) uses the on-path Tobler’s hiking function;
tofp uses the off-path Tobler’s hiking function;
mp uses the Marquez-Perez et al.’s modified Tobler’s function;
icmonp uses the Irmischer-Clarke’s hiking function (male, on-path);
icmoffp uses the Irmischer-Clarke’s hiking function (male, off-path);
icfonp uses the Irmischer-Clarke’s hiking function (female, on-path);
icfoffp uses the Irmischer-Clarke’s hiking function (female, off-path);
ug uses the Uriarte Gonzalez’s walking-time cost function;
ma uses the Marin Arroyo’s walking-time cost function;
alb uses the Alberti’s Tobler hiking function modified for pastoral foraging ex-
cursions;
gkrs uses the Garmy, Kaddouri, Rozenblat, and Schneider’s hiking function;
r uses the Rees’ hiking function;
ks uses the Kondo-Seino’s hiking function;
trp uses the Tripcevich’s hiking function;

-functions for wheeled-vehicles-
wcs uses the wheeled-vehicle critical slope cost function;

40 movenetw

-functions expressing abstract cost-
ree uses the relative energetic expenditure cost function;
b uses the Bellavia’s cost function;
e uses the Eastman’s cost function;

-functions expressing cost as metabolic energy expenditure-
p uses the Pandolf et al.’s metabolic energy expenditure cost function;
pcf uses the Pandolf et al.’s cost function with correction factor for downhill
movements;
m uses the Minetti et al.’s metabolic energy expenditure cost function;
hrz uses the Herzog’s metabolic energy expenditure cost function;
vl uses the Van Leusen’s metabolic energy expenditure cost function;
ls uses the Llobera-Sluckin’s metabolic energy expenditure cost function;
a uses the Ardigo et al.’s metabolic energy expenditure cost function;
h uses the Hare’s metabolic energy expenditure cost function (for all the men-
tioned cost functions, see movecost).

move number of directions in which cells are connected: 4 (rook’s case), 8 (queen’s
case), 16 (knight and one-cell queen moves; default).

field value assigned to the cells coinciding with the barrier (0 by default) (see movecost.

cogn.slp TRUE or FALSE (default) if the user wants or does not want the ’cognitive
slope’ to be used in place of the real slope (see movecost).

sl.crit critical slope (in percent), typically in the range 8-16 (10 by default) (used by
the wheeled-vehicle cost function; see movecost).

W walker’s body weight (in Kg; 70 by default; used by the Pandolf’s and Van
Leusen’s cost function; see movecost).

L carried load weight (in Kg; 0 by default; used by the Pandolf’s and Van Leusen’s
cost function; see movecost).

N coefficient representing ease of movement (1 by default) (see movecost).

V speed in m/s (1.2 by default) (used by the Pandolf et al.’s, Pandolf et al.s with
correction factor, Van Leusen’s, and Ardigo et al.’s cost function; if set to 0,
it is internally worked out on the basis of Tobler on-path hiking function (see
movecost).

z zoom level for the elevation data downloaded from online sources (from 0 to 15;
9 by default) (see movecost and get_elev_raster).

lcp.dens TRUE or FALSE (default) if the user wants or does not want the least-cost paths
density raster to be produced.

transp set the transparency of the slopeshade raster that is plotted over the DTM (0.5
by default).

export TRUE or FALSE (default) if the user wants or does not want the LCPs network
to be exported as a shapefile, and the LCPs network density as a GeoTiff; the
DTM is exported only if it was not provided by the user and downloaded by the
function from online sources.

movenetw 41

Details

Like movecost(), the function just requires an input DTM (’RasterLayer’ class) and an origin
dataset (’SpatialPointsDataFrame’ class). If a DTM is not provided, movenetw() downloads eleva-
tion data from online sources for the area enclosed by the polygon fed via the studyplot parameter
(see movecost for more details). Under the hood, movenetw() relies on movecost() and imple-
ments the same cost functions: see the help documentation of movecost() for further information.

movenetw() produces a plot representing the input DTM overlaid by a slopeshade raster, whose
transparency can be adjusted using the ’transp’ parameter. On the rendered plot, the LPCs network
(’SpatialLinesDataFrame’ class) is represented by black lines. Optionally, by setting the parameter
lcp.dens() to TRUE, the function produces a raster representing the density of the LCPs connecting
each location to all the other locations. The raster, which is rendered overlaid to a slopeshade visu-
alization, expresses the density of LCPs as percentages. The percentages are calculated in relation
to the maximum number of LCPs passing through the same cell stored in the raster. A density raster
expressing counts is NOT rendered BUT is returned by the function. The density raster retains the
cell size and coordinate system of the input DTM.

The function returns a list storing the DTM (only in case this has not been fed into the function but
acquired online), a list of LCPs split by origin, a SpatialLineDataFrame representing the merged
LCPs, two rasters representing the LCPs network density expressed as counts and percentages re-
spectively, and cost matrices. As for the latter, if the selected cost function defines cost as walking
time, two matrices are returned, one expressing time in minutes, one in hours (note that the values
are in decimal format). If the selected cost function expresses cost differently (i.e., energy or ab-
stract cost), the two above mentioned cost matrices will be set to NULL, and a third cost matrix will
store all the pair-wise costs.

The above mentioned data (DTM, LCPs, network density) can be exported by setting the export
parameter to TRUE The LCPs network (exported as a shapefile) and the density raster (as a GeoTiff)
will bear a suffix indicating the used cost function.

Value

The function returns a list storing the following components

• dtm: Digital Terrain Model (’RasterLayer’ class); returned only if acquired online

• LCPs.netw: list containing the LCPs (’SpatialLinesDataFrame’ class) split by origin

• LCPs.netw.merged: ’SpatialLinesDataFrame’ corresponding to the merged LCPs

• LCPs.netw.neigh: list containing the LCPs between neighboring locations (’SpatialLines-
DataFrame’ class) split by origin

• LCPs.netw.merged: ’SpatialLinesDataFrame’ corresponding to the merged LCPs between
neighboring locations

• LCPs.density.count: raster (’RasterLayer’ class) representing the counts of LCPs on each
raster’s cell

• LCPs.density.perc: same as the preceding, but re-expressing the counts as percentages

• cost.matrix.min: matrix of cost between locations, expressing cost in minutes

42 moverank

• cost.matrix.hr: matrix of cost between locations, expressing cost in hours

• cost.matrix: matrix of cost between locations, expressing cost either in energy or abstract cost,
depending on the used cost function

See Also

movecost

Examples

load a sample Digital Terrain Model
data(volc)

load the sample destination locations on the above DTM
data(destin.loc)

calculate the least-cost path network using the Tobler's hiking
function (for on-path walking)

result <- movenetw(dtm=volc, origin=destin.loc[c(1,2,4),], move=8, funct="t")

moverank R function for calculating sub-optimal least-cost paths bewteen an ori-
gin and a destination location

Description

The function provides the facility to calculate the LCP between an origin and a destination location
and (more importantly) to work out the first six sub-optimal LCPs between those locations. The un-
derlying idea is the following: given two locations, we can calculate the least-costly path between
them; but, if we disregard that LCP, what path would be the second least costly? And if we in turn
disregard those first two, what the third least costly path would be? The same reasoning holds for
all the subsequent n-th LCPs. Under the hood, moverank() rests on movecost and implements the
same cost functions. See the help documentation of movecost() for further details.
Visit this LINK to access the package’s vignette.

Usage

moverank(
dtm = NULL,
origin,
destin,
studyplot = NULL,

https://drive.google.com/file/d/1gLDrkZFh1b_glzCEqKdkPrer72JJ9Ffa/view?usp=sharing

moverank 43

barrier = NULL,
plot.barrier = FALSE,
irregular.dtm = FALSE,
funct = "t",
time = "h",
lcp.n = 3,
move = 16,
cogn.slp = FALSE,
sl.crit = 10,
W = 70,
L = 0,
N = 1,
V = 1.2,
z = 9,
use.corr = FALSE,
leg.pos = "topright",
leg.cex = 0.55,
add.chart = FALSE,
bubble.cex = 0.5,
transp = 0.5,
export = FALSE

)

Arguments

dtm Digital Terrain Model (RasterLayer class); if not provided, elevation data will be
acquired online for the area enclosed by the ’studyplot’ parameter (see movecost).

origin first location from which the least-cost corridor is calculated (SpatialPoints-
DataFrame class); if it contains more than two locations, see the ’Description’
section above.

destin second location from which the least-cost corridor is calculated (SpatialPoints-
DataFrame class); if parameter ’a’ stores more than two locations, this parameter
is disregarded; see the ’Description’ section above.

studyplot polygon (SpatialPolygonDataFrame class) representing the study area for which
online elevation data are acquired (see movecost); NULL is default.

barrier area where the movement is inhibited (SpatialLineDataFrame or SpatialPoly-
gonDataFrame class) (see movecost).

plot.barrier TRUE or FALSE (default) if the user wants or does not want the barrier to be
plotted (see movecost).

irregular.dtm TRUE or FALSE (default) if the input DTM features irregular margins (see
movecost).

funct cost function to be used (for details on each of the following, see movecost):

-functions expressing cost as walking time-
t (default) uses the on-path Tobler’s hiking function;
tofp uses the off-path Tobler’s hiking function;
mp uses the Marquez-Perez et al.’s modified Tobler’s function;

44 moverank

icmonp uses the Irmischer-Clarke’s hiking function (male, on-path);
icmoffp uses the Irmischer-Clarke’s hiking function (male, off-path);
icfonp uses the Irmischer-Clarke’s hiking function (female, on-path);
icfoffp uses the Irmischer-Clarke’s hiking function (female, off-path);
ug uses the Uriarte Gonzalez’s walking-time cost function;
ma uses the Marin Arroyo’s walking-time cost function;
alb uses the Alberti’s Tobler hiking function modified for pastoral foraging ex-
cursions;
gkrs uses the Garmy, Kaddouri, Rozenblat, and Schneider’s hiking function;
r uses the Rees’ hiking function;
ks uses the Kondo-Seino’s hiking function;
trp uses the Tripcevich’s hiking function;

-functions for wheeled-vehicles-
wcs uses the wheeled-vehicle critical slope cost function;

-functions expressing abstract cost-
ree uses the relative energetic expenditure cost function;
b uses the Bellavia’s cost function;
e uses the Eastman’s cost function;

-functions expressing cost as metabolic energy expenditure-
p uses the Pandolf et al.’s metabolic energy expenditure cost function;
pcf uses the Pandolf et al.’s cost function with correction factor for downhill
movements;
m uses the Minetti et al.’s metabolic energy expenditure cost function;
hrz uses the Herzog’s metabolic energy expenditure cost function;
vl uses the Van Leusen’s metabolic energy expenditure cost function;
ls uses the Llobera-Sluckin’s metabolic energy expenditure cost function;
a uses the Ardigo et al.’s metabolic energy expenditure cost function;
h uses the Hare’s metabolic energy expenditure cost function (for all the men-
tioned cost functions, see movecost).

time time-unit expressed by the accumulated raster if Tobler’s and other time-related
cost functions are used; h’ for hour, ’m’ for minutes.

lcp.n number of LCPs rendered in the output plot (min=1, max=6; 3 by default; the
1st LCP is the optimal one, while the LCPs from the 2nd to the 6th are the
sub-optimal ones).

move number of directions in which cells are connected: 4 (rook’s case), 8 (queen’s
case), 16 (knight and one-cell queen moves; default).

cogn.slp TRUE or FALSE (default) if the user wants or does not want the ’cognitive
slope’ to be used in place of the real slope (see movecost).

sl.crit critical slope (in percent), typically in the range 8-16 (10 by default) (used by
the wheeled-vehicle cost function; see movecost).

W walker’s body weight (in Kg; 70 by default; used by the Pandolf’s and Van
Leusen’s cost function; see movecost).

moverank 45

L carried load weight (in Kg; 0 by default; used by the Pandolf’s and Van Leusen’s
cost function; see movecost).

N coefficient representing ease of movement (1 by default) (see movecost).

V speed in m/s (1.2 by default) (used by the Pandolf et al.’s, Pandolf et al.s with
correction factor, Van Leusen’s, and Ardigo et al.’s cost function; if set to 0,
it is internally worked out on the basis of Tobler on-path hiking function (see
movecost).

z zoom level for the elevation data downloaded from online sources (from 0 to 15;
9 by default) (see movecost and get_elev_raster).

use.corr TRUE or FALSE (default) is the user wants or does not want the least-cost cor-
ridor raster to be rendered in place of the input DTM.

leg.pos set the position of the legend in rendered plot; ’topright’ by default (other op-
tions: "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright",
"right", "center").

leg.cex set the size of the labels used in the legend displayed in the rendered plot (0.55
by default).

add.chart TRUE or FALSE (default) is the user wants or does not want a bubble chart
visualising LCPs length vs rank vs cost to be rendered.

bubble.cex set the size of the labels reporting the LCPs cost in the bubble chart (0.5 by
default).

transp set the transparency of the slopeshade raster that is plotted over the least-cost
corridor raster (0.5 by default).

export TRUE or FALSE (default) if the user wants or does not want the output to be
exported; if TRUE, the least-cost corridor and the DTM (if not provided by the
user but acquired online) are expoerted as a GeoTiff file, while the LCPs as a
shapefile layer. All the exported files (excluding the DTM) will bear a suffix
corresponding to the cost function selected by the user.

Details

Internally, moverank() uses movecost() to generate the first (optimal) LCP. In a second iteration,
the optimal LCP is internally used as barrier (see movecost) when calculating the 2nd LCPs. Then,
in a third iteration, the two previously generated LCPs are used as barriers when working out the
3rd LCPs. The process repeats along the same lines until the 6th LCP is calculated. The 1st LCP
is deemed to represent the optimal path (cost-wise) between the two locations, while the 2nd-to-5th
LCPs are deemed to represent progressively sub-optimal paths.

It is worth noting that it may happen that some LCP will cross another one; this cannot be antici-
pated and is context dependent. In those cases, the user may want to set the move parameter to 8
(see the section about inhibition of movement in the help documentation of movecost).

The function provides the facility to render the LCPs either on the input DTM or on the least-cost
corridor between the two locations. The second option can be obtained by setting the use.corr pa-
rameter to TRUE. Also, by setting the add.chart parameter to TRUE, the function renders a bubble
chart that plots the LCPs length against their rank, while the size of the bubbles is proportional to

46 springs

the cost. All the LCPs will be plotted.

By setting the export parameter to TRUE, the LCPs, the DTM (if acquired online), and the least-
cost corridor (if obtained by setting the use.corr parameter to TRUE), will be exported: the DTM
and least-cost corridor as a raster layer, the LCPs as shapefile layer. The LCPs and the least-cost
corridor files will be given a suffix indicating which cost function has been used.

Value

The function returns a list storing the following components

• dtm: Digital Terrain Model (’RasterLayer’ class); returned only if not provided by the user
and acquired online instead

• LCPs: least-cost paths (’SpatialLinesDataFrame’ class) ranked from 1 (optimal) to 6 (sub-
optimal LCPs)

• lc.corr: least-cost corridor between the origin and destination location (’RasterLayer’ class);
returned if the use.corr parameter is set to TRUE

See Also

movecost

Examples

load a sample Digital Terrain Model
data(volc)

load the sample destination locations on the above DTM
data(destin.loc)

calculate the optimal and sub-optimals LCPs between two locations
#result <- moverank(volc, destin.loc[1,], destin.loc[4,], move=8, funct="t")

springs Dataset: location of springs in Malta

Description

A SpatialPointsDataFrame representing the location of spring-related toponyms in Malta.

Usage

data(springs)

Format

SpatialPointsDataFrame

volc 47

volc Dataset: raster dataset representing the elevation of the volcano
Maunga Whau (Auckland, New Zealand)

Description

A RasterLayer representing a DTM of the volcano Maunga Whau (Auckland, New Zealand).

Usage

data(volc)

Format

RasterLayer

volc.loc Dataset: location on the volcano Maunga Whau (Auckland, New
Zealand)

Description

A SpatialPointsDataFrame representing a spot on the volcano Maunga Whau (Auckland, New
Zealand).

Usage

data(volc.loc)

Format

SpatialPointsDataFrame

Index

∗ datasets
destin.loc, 2
Etna_boundary, 2
Etna_end_location, 3
Etna_start_location, 3
malta_dtm_40, 3
springs, 46
volc, 47
volc.loc, 47

∗ movealloc
movealloc, 4

∗ movebound
movebound, 8

∗ movecomp
movecomp, 12

∗ movecorr
movecorr, 17

∗ movecost
movecost, 22

∗ movenetw
movenetw, 38

∗ moverank
moverank, 42

create_barrier_cs, 26, 27

destin.loc, 2

Etna_boundary, 2
Etna_end_location, 3
Etna_start_location, 3

get_elev_raster, 6, 10, 15, 19, 25, 28, 37,
40, 45

malta_dtm_40, 3
movealloc, 4, 37
movebound, 8, 37
movecomp, 12, 37
movecorr, 17, 37
movecost, 4–19, 21, 22, 22, 39–46

movenetw, 37, 38
moverank, 37, 42

par, 25

springs, 46

volc, 47
volc.loc, 47

48

	destin.loc
	Etna_boundary
	Etna_end_location
	Etna_start_location
	malta_dtm_40
	movealloc
	movebound
	movecomp
	movecorr
	movecost
	movenetw
	moverank
	springs
	volc
	volc.loc
	Index

