The mudata2 package is designed to be used as little as possible. That is, if you need use data that is currently in mudata format, the functions in this package are designed to let you spend as little time as possible reading, subsetting, and inspecting your data. The steps are generally as follows:
read_mudata()
summary()
,
print()
, distinct_locations()
, and
distinct_params()
tbl_locations()
and
tbl_params()
select_params()
or
filter_params()
select_locations()
or
filter_locations()
tbl_data()
or
tbl_data_wide()
In this vignette we will use the ns_climate
dataset
within the mudata2 package, which is a collection of
monthly climate observations from Nova Scotia
(Canada), sourced from Environment Canada using the
rclimateca
package.
library(mudata2)
data("ns_climate")
ns_climate
## A mudata object aligned along "date"
## distinct_datasets(): "ecclimate_monthly"
## distinct_locations(): "ANNAPOLIS ROYAL 6289", "BADDECK 6297" ... and 13 more
## distinct_params(): "dir_of_max_gust", "extr_max_temp" ... and 9 more
## src_tbls(): "data", "locations" ... and 3 more
##
## tbl_data() %>% head():
## # A tibble: 6 × 7
## dataset location param date value flag flag_…¹
## <chr> <chr> <chr> <date> <dbl> <chr> <chr>
## 1 ecclimate_monthly SABLE ISLAND 6454 mean_max_t… 1897-01-01 NA M Missing
## 2 ecclimate_monthly SABLE ISLAND 6454 mean_max_t… 1897-02-01 NA M Missing
## 3 ecclimate_monthly SABLE ISLAND 6454 mean_max_t… 1897-03-01 NA M Missing
## 4 ecclimate_monthly SABLE ISLAND 6454 mean_max_t… 1897-04-01 NA M Missing
## 5 ecclimate_monthly SABLE ISLAND 6454 mean_max_t… 1897-05-01 NA M Missing
## 6 ecclimate_monthly SABLE ISLAND 6454 mean_max_t… 1897-06-01 NA M Missing
## # … with abbreviated variable name ¹flag_text
The ns_climate
object is already an object in R, but if
it wasn’t, you would need to use read_mudata()
to read it
in. If you’re curious what a mudata object looks like on disk, you could
try using write_mudata()
to find out. I tend to prefer
writing to a directory rather than a JSON or ZIP file, but you can take
your pick.
# write to directory
write_mudata(ns_climate, "ns_climate.mudata")
# write to ZIP
write_mudata(ns_climate, "ns_climate.mudata.zip")
# write to JSON
write_mudata(ns_climate, "ns_climate.mudata.json")
Then, you can read in the object using
read_mudata()
:
# read from directory
read_mudata("ns_climate.mudata")
# read from ZIP
read_mudata("ns_climate.mudata.zip")
# read from JSON
read_mudata("ns_climate.mudata.json")
The three main ways to quickly inspect a mudata object are
print()
and summary()
. The
print()
function is what you get when you type the name of
the object at the prompt, and gives a short summary of the object. The
output suggests a couple of other ways to inspect the object, including
distinct_locations()
, which returns a character vector of
location identifiers, and distinct_params()
, which returns
a character vector of parameter identifiers.
print(ns_climate)
## A mudata object aligned along "date"
## distinct_datasets(): "ecclimate_monthly"
## distinct_locations(): "ANNAPOLIS ROYAL 6289", "BADDECK 6297" ... and 13 more
## distinct_params(): "dir_of_max_gust", "extr_max_temp" ... and 9 more
## src_tbls(): "data", "locations" ... and 3 more
##
## tbl_data() %>% head():
## # A tibble: 6 × 7
## dataset location param date value flag flag_…¹
## <chr> <chr> <chr> <date> <dbl> <chr> <chr>
## 1 ecclimate_monthly SABLE ISLAND 6454 mean_max_t… 1897-01-01 NA M Missing
## 2 ecclimate_monthly SABLE ISLAND 6454 mean_max_t… 1897-02-01 NA M Missing
## 3 ecclimate_monthly SABLE ISLAND 6454 mean_max_t… 1897-03-01 NA M Missing
## 4 ecclimate_monthly SABLE ISLAND 6454 mean_max_t… 1897-04-01 NA M Missing
## 5 ecclimate_monthly SABLE ISLAND 6454 mean_max_t… 1897-05-01 NA M Missing
## 6 ecclimate_monthly SABLE ISLAND 6454 mean_max_t… 1897-06-01 NA M Missing
## # … with abbreviated variable name ¹flag_text
The summary()
function provides some numeric summaries
by dataset, location, and parameter if the value
column of
the data
table is numeric (if it isn’t, it provides counts
instead).
summary(ns_climate)
## # A tibble: 137 × 7
## param location dataset mean_…¹ sd_va…² n n_NA
## <chr> <chr> <chr> <dbl> <dbl> <int> <int>
## 1 dir_of_max_gust SABLE ISLAND 6454 ecclimate_m… 19.8 10.2 299 0
## 2 extr_max_temp ANNAPOLIS ROYAL 6289 ecclimate_m… 19.9 7.24 995 28
## 3 extr_max_temp BADDECK 6297 ecclimate_m… 18.9 8.58 901 43
## 4 extr_max_temp BEAVERBANK 6301 ecclimate_m… 17.2 10.4 24 17
## 5 extr_max_temp COLLEGEVILLE 6329 ecclimate_m… 20.3 8.54 1061 34
## 6 extr_max_temp DIGBY 6338 ecclimate_m… 19.0 6.92 624 20
## 7 extr_max_temp KENTVILLE CDA 6375 ecclimate_m… 21.0 8.27 1002 3
## 8 extr_max_temp MAHONE BAY 6396 ecclimate_m… 20.8 8.35 108 11
## 9 extr_max_temp MOUNT UNIACKE 6413 ecclimate_m… 19.7 8.21 972 30
## 10 extr_max_temp NAPPAN CDA 6414 ecclimate_m… 19.3 8.04 1121 19
## # … with 127 more rows, and abbreviated variable names ¹mean_value, ²sd_value
You can have a look at the embedded documentation using
tbl_params()
, and tbl_locations()
, which
contain any additional information about parameters and locations for
which data are available. The identifiers (i.e., param
and
location
columns) of these can be used to subset the object
using select_*()
functions; the tables themselves can be
used to subset the object using the filter_*()
functions.
# extract the parameters table
%>% tbl_params() ns_climate
## # A tibble: 11 × 4
## dataset param label unit
## <chr> <chr> <chr> <chr>
## 1 ecclimate_monthly mean_max_temp Mean Max Temp (C) C
## 2 ecclimate_monthly mean_min_temp Mean Min Temp (C) C
## 3 ecclimate_monthly mean_temp Mean Temp (C) C
## 4 ecclimate_monthly extr_max_temp Extr Max Temp (C) C
## 5 ecclimate_monthly extr_min_temp Extr Min Temp (C) C
## 6 ecclimate_monthly total_rain Total Rain (mm) mm
## 7 ecclimate_monthly total_snow Total Snow (cm) cm
## 8 ecclimate_monthly total_precip Total Precip (mm) mm
## 9 ecclimate_monthly snow_grnd_last_day Snow Grnd Last Day (cm) cm
## 10 ecclimate_monthly dir_of_max_gust Dir of Max Gust (10's deg) 10's deg
## 11 ecclimate_monthly spd_of_max_gust Spd of Max Gust (km/h) km/h
# exract the locations table
%>% tbl_locations() ns_climate
## # A tibble: 15 × 19
## dataset locat…¹ name provi…² clima…³ stati…⁴ wmo_id tc_id latit…⁵ longi…⁶
## <chr> <chr> <chr> <chr> <chr> <int> <int> <chr> <dbl> <dbl>
## 1 ecclimate… ANNAPO… ANNA… NOVA S… 8200100 6289 NA "" 44.8 -65.5
## 2 ecclimate… BADDEC… BADD… NOVA S… 8200300 6297 NA "" 46.1 -60.8
## 3 ecclimate… BEAVER… BEAV… NOVA S… 8200550 6301 NA "" 44.9 -63.7
## 4 ecclimate… COLLEG… COLL… NOVA S… 8201000 6329 NA "" 45.5 -62.0
## 5 ecclimate… DIGBY … DIGBY NOVA S… 8201600 6338 NA "" 44.6 -65.8
## 6 ecclimate… KENTVI… KENT… NOVA S… 8202800 6375 NA "" 45.1 -64.5
## 7 ecclimate… MAHONE… MAHO… NOVA S… 8203300 6396 NA "" 44.5 -64.4
## 8 ecclimate… MOUNT … MOUN… NOVA S… 8203600 6413 NA "" 44.9 -63.8
## 9 ecclimate… NAPPAN… NAPP… NOVA S… 8203700 6414 NA "" 45.8 -64.2
## 10 ecclimate… PARRSB… PARR… NOVA S… 8204400 6428 NA "" 45.4 -64.3
## 11 ecclimate… PORT H… PORT… NOVA S… 8204480 6441 NA "" 45.6 -61.4
## 12 ecclimate… SABLE … SABL… NOVA S… 8204700 6454 71600 "ESA" 43.9 -60.0
## 13 ecclimate… ST MAR… ST M… NOVA S… 8204800 6456 NA "" 44.7 -63.9
## 14 ecclimate… SPRING… SPRI… NOVA S… 8205200 6473 NA "" 44.7 -64.8
## 15 ecclimate… UPPER … UPPE… NOVA S… 8206200 6495 NA "" 45.2 -63
## # … with 9 more variables: elevation <dbl>, first_year <int>, last_year <int>,
## # hly_first_year <int>, hly_last_year <int>, dly_first_year <int>,
## # dly_last_year <int>, mly_first_year <int>, mly_last_year <int>, and
## # abbreviated variable names ¹location, ²province, ³climate_id, ⁴station_id,
## # ⁵latitude, ⁶longitude
You can subset mudata objects using select_params()
and
select_locations()
, which use dplyr-like
selection syntax to quickly subset mudata objects using the identifiers
from distinct_locations()
and
distinct_params()
(respectively).
# find out which parameters are available
%>% distinct_params() ns_climate
## [1] "dir_of_max_gust" "extr_max_temp" "extr_min_temp"
## [4] "mean_max_temp" "mean_min_temp" "mean_temp"
## [7] "snow_grnd_last_day" "spd_of_max_gust" "total_precip"
## [10] "total_rain" "total_snow"
# subset by parameter
%>% select_params(mean_temp, total_precip) ns_climate
## A mudata object aligned along "date"
## distinct_datasets(): "ecclimate_monthly"
## distinct_locations(): "ANNAPOLIS ROYAL 6289", "BADDECK 6297" ... and 13 more
## distinct_params(): "mean_temp", "total_precip"
## src_tbls(): "data", "locations" ... and 3 more
##
## tbl_data() %>% head():
## # A tibble: 6 × 7
## dataset location param date value flag flag_text
## <chr> <chr> <chr> <date> <dbl> <chr> <chr>
## 1 ecclimate_monthly SABLE ISLAND 6454 mean_temp 1897-01-01 NA M Missing
## 2 ecclimate_monthly SABLE ISLAND 6454 mean_temp 1897-02-01 NA M Missing
## 3 ecclimate_monthly SABLE ISLAND 6454 mean_temp 1897-03-01 NA M Missing
## 4 ecclimate_monthly SABLE ISLAND 6454 mean_temp 1897-04-01 NA M Missing
## 5 ecclimate_monthly SABLE ISLAND 6454 mean_temp 1897-05-01 NA M Missing
## 6 ecclimate_monthly SABLE ISLAND 6454 mean_temp 1897-06-01 NA M Missing
You can also use the dplyr select helpers to select related params/locations…
%>% select_params(contains("temp")) ns_climate
## A mudata object aligned along "date"
## distinct_datasets(): "ecclimate_monthly"
## distinct_locations(): "ANNAPOLIS ROYAL 6289", "BADDECK 6297" ... and 13 more
## distinct_params(): "extr_max_temp", "extr_min_temp" ... and 3 more
## src_tbls(): "data", "locations" ... and 3 more
##
## tbl_data() %>% head():
## # A tibble: 6 × 7
## dataset location param date value flag flag_…¹
## <chr> <chr> <chr> <date> <dbl> <chr> <chr>
## 1 ecclimate_monthly SABLE ISLAND 6454 mean_max_t… 1897-01-01 NA M Missing
## 2 ecclimate_monthly SABLE ISLAND 6454 mean_max_t… 1897-02-01 NA M Missing
## 3 ecclimate_monthly SABLE ISLAND 6454 mean_max_t… 1897-03-01 NA M Missing
## 4 ecclimate_monthly SABLE ISLAND 6454 mean_max_t… 1897-04-01 NA M Missing
## 5 ecclimate_monthly SABLE ISLAND 6454 mean_max_t… 1897-05-01 NA M Missing
## 6 ecclimate_monthly SABLE ISLAND 6454 mean_max_t… 1897-06-01 NA M Missing
## # … with abbreviated variable name ¹flag_text
…and rename params/locations on the fly.
%>% select_locations(Kentville = starts_with("KENT")) ns_climate
## A mudata object aligned along "date"
## distinct_datasets(): "ecclimate_monthly"
## distinct_locations(): "Kentville"
## distinct_params(): "extr_max_temp", "extr_min_temp" ... and 7 more
## src_tbls(): "data", "locations" ... and 3 more
##
## tbl_data() %>% head():
## # A tibble: 6 × 7
## dataset location param date value flag flag_text
## <chr> <chr> <chr> <date> <dbl> <chr> <chr>
## 1 ecclimate_monthly Kentville mean_max_temp 1913-01-01 NA M Missing
## 2 ecclimate_monthly Kentville mean_max_temp 1913-02-01 NA M Missing
## 3 ecclimate_monthly Kentville mean_max_temp 1913-03-01 NA M Missing
## 4 ecclimate_monthly Kentville mean_max_temp 1913-04-01 9.7 <NA> <NA>
## 5 ecclimate_monthly Kentville mean_max_temp 1913-05-01 12.5 <NA> <NA>
## 6 ecclimate_monthly Kentville mean_max_temp 1913-06-01 19.9 <NA> <NA>
To select params/locations based on the tbl_params()
and
tbl_locations()
tables, you can use the
filter_*()
functions (note that last_year
is a
column in tbl_locations()
, and unit
is a
column in tbl_params()
):
# only use locations whose last data point was after 2000
%>%
ns_climate filter_locations(last_year > 2000)
## A mudata object aligned along "date"
## distinct_datasets(): "ecclimate_monthly"
## distinct_locations(): "ANNAPOLIS ROYAL 6289", "COLLEGEVILLE 6329" ... and 7 more
## distinct_params(): "dir_of_max_gust", "extr_max_temp" ... and 9 more
## src_tbls(): "data", "locations" ... and 3 more
##
## tbl_data() %>% head():
## # A tibble: 6 × 7
## dataset location param date value flag flag_…¹
## <chr> <chr> <chr> <date> <dbl> <chr> <chr>
## 1 ecclimate_monthly SABLE ISLAND 6454 mean_max_t… 1897-01-01 NA M Missing
## 2 ecclimate_monthly SABLE ISLAND 6454 mean_max_t… 1897-02-01 NA M Missing
## 3 ecclimate_monthly SABLE ISLAND 6454 mean_max_t… 1897-03-01 NA M Missing
## 4 ecclimate_monthly SABLE ISLAND 6454 mean_max_t… 1897-04-01 NA M Missing
## 5 ecclimate_monthly SABLE ISLAND 6454 mean_max_t… 1897-05-01 NA M Missing
## 6 ecclimate_monthly SABLE ISLAND 6454 mean_max_t… 1897-06-01 NA M Missing
## # … with abbreviated variable name ¹flag_text
# use only params measured in mm
%>%
ns_climate filter_params(unit == "mm")
## A mudata object aligned along "date"
## distinct_datasets(): "ecclimate_monthly"
## distinct_locations(): "ANNAPOLIS ROYAL 6289", "BADDECK 6297" ... and 13 more
## distinct_params(): "total_precip", "total_rain"
## src_tbls(): "data", "locations" ... and 3 more
##
## tbl_data() %>% head():
## # A tibble: 6 × 7
## dataset location param date value flag flag_t…¹
## <chr> <chr> <chr> <date> <dbl> <chr> <chr>
## 1 ecclimate_monthly SABLE ISLAND 6454 total_rain 1891-01-01 NA M Missing
## 2 ecclimate_monthly SABLE ISLAND 6454 total_rain 1891-02-01 40.4 <NA> <NA>
## 3 ecclimate_monthly SABLE ISLAND 6454 total_rain 1891-03-01 32 <NA> <NA>
## 4 ecclimate_monthly SABLE ISLAND 6454 total_rain 1891-04-01 132. <NA> <NA>
## 5 ecclimate_monthly SABLE ISLAND 6454 total_rain 1891-05-01 44.7 <NA> <NA>
## 6 ecclimate_monthly SABLE ISLAND 6454 total_rain 1891-06-01 106. <NA> <NA>
## # … with abbreviated variable name ¹flag_text
Similarly, we can subset parameters, locations, and the data table
all at once using filter_data()
.
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
# extract only June temperature from the data table
%>%
ns_climate filter_data(month(date) == 6)
## A mudata object aligned along "date"
## distinct_datasets(): "ecclimate_monthly"
## distinct_locations(): "ANNAPOLIS ROYAL 6289", "BADDECK 6297" ... and 13 more
## distinct_params(): "dir_of_max_gust", "extr_max_temp" ... and 9 more
## src_tbls(): "data", "locations" ... and 3 more
##
## tbl_data() %>% head():
## # A tibble: 6 × 7
## dataset location param date value flag flag_…¹
## <chr> <chr> <chr> <date> <dbl> <chr> <chr>
## 1 ecclimate_monthly SABLE ISLAND 6454 mean_max_t… 1897-06-01 NA M Missing
## 2 ecclimate_monthly SABLE ISLAND 6454 mean_max_t… 1898-06-01 13.4 <NA> <NA>
## 3 ecclimate_monthly SABLE ISLAND 6454 mean_max_t… 1899-06-01 14.4 <NA> <NA>
## 4 ecclimate_monthly SABLE ISLAND 6454 mean_max_t… 1900-06-01 14.6 <NA> <NA>
## 5 ecclimate_monthly SABLE ISLAND 6454 mean_max_t… 1901-06-01 15.3 <NA> <NA>
## 6 ecclimate_monthly SABLE ISLAND 6454 mean_max_t… 1902-06-01 13.6 <NA> <NA>
## # … with abbreviated variable name ¹flag_text
The data is stored in the data table (i.e., tbl_data()
)
in parameter-long form (that is, one row per measurement rather than one
row per observation). This has advantages in that information about each
measurement can be stored next to the value (e.g., standard deviation,
notes, etc.), however it is rarely the form required for analysis. To
extract data in parameter-long form, you can use
tbl_data()
:
%>% tbl_data() ns_climate
## # A tibble: 115,541 × 7
## dataset location param date value flag flag_…¹
## <chr> <chr> <chr> <date> <dbl> <chr> <chr>
## 1 ecclimate_monthly SABLE ISLAND 6454 mean_max_… 1897-01-01 NA M Missing
## 2 ecclimate_monthly SABLE ISLAND 6454 mean_max_… 1897-02-01 NA M Missing
## 3 ecclimate_monthly SABLE ISLAND 6454 mean_max_… 1897-03-01 NA M Missing
## 4 ecclimate_monthly SABLE ISLAND 6454 mean_max_… 1897-04-01 NA M Missing
## 5 ecclimate_monthly SABLE ISLAND 6454 mean_max_… 1897-05-01 NA M Missing
## 6 ecclimate_monthly SABLE ISLAND 6454 mean_max_… 1897-06-01 NA M Missing
## 7 ecclimate_monthly SABLE ISLAND 6454 mean_max_… 1897-07-01 NA M Missing
## 8 ecclimate_monthly SABLE ISLAND 6454 mean_max_… 1897-08-01 NA M Missing
## 9 ecclimate_monthly SABLE ISLAND 6454 mean_max_… 1897-09-01 NA M Missing
## 10 ecclimate_monthly SABLE ISLAND 6454 mean_max_… 1897-10-01 12.2 <NA> <NA>
## # … with 115,531 more rows, and abbreviated variable name ¹flag_text
To extract data in a more standard parameter-wide form, you can use
tbl_data_wide()
:
%>% tbl_data_wide() ns_climate
## # A tibble: 14,311 × 14
## dataset locat…¹ date dir_o…² extr_…³ extr_…⁴ mean_…⁵ mean_…⁶ mean_…⁷
## <chr> <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 ecclimate… ANNAPO… 1914-01-01 NA NA NA NA NA NA
## 2 ecclimate… ANNAPO… 1914-02-01 NA NA NA NA NA NA
## 3 ecclimate… ANNAPO… 1914-03-01 NA NA NA NA NA NA
## 4 ecclimate… ANNAPO… 1914-04-01 NA 19.4 -11.1 8.2 -3.1 2.6
## 5 ecclimate… ANNAPO… 1914-05-01 NA 30 -3.9 15.8 3.8 9.8
## 6 ecclimate… ANNAPO… 1914-06-01 NA 26.7 -1.7 19.8 7.2 13.5
## 7 ecclimate… ANNAPO… 1914-07-01 NA 30 3.9 22.3 10.2 16.3
## 8 ecclimate… ANNAPO… 1914-08-01 NA NA NA NA NA NA
## 9 ecclimate… ANNAPO… 1914-09-01 NA NA NA NA NA NA
## 10 ecclimate… ANNAPO… 1914-10-01 NA NA NA NA NA NA
## # … with 14,301 more rows, 5 more variables: snow_grnd_last_day <dbl>,
## # spd_of_max_gust <dbl>, total_precip <dbl>, total_rain <dbl>,
## # total_snow <dbl>, and abbreviated variable names ¹location,
## # ²dir_of_max_gust, ³extr_max_temp, ⁴extr_min_temp, ⁵mean_max_temp,
## # ⁶mean_min_temp, ⁷mean_temp
The tbl_data_wide()
function isn’t limited to
parameter-wide data - data can be anything-wide (Edzer Pebesma has a great discussion
on this). Using tbl_data_wide()
is identical to using
tbl_data()
and tidyr::spread()
, with
context-specific defaults.
%>%
ns_climate select_params(mean_temp) %>%
filter_data(year(date) == 1960) %>%
tbl_data_wide(key = location)
## # A tibble: 12 × 16
## dataset param date BADDE…¹ COLLE…² DIGBY…³ KENTV…⁴ MAHON…⁵ MOUNT…⁶
## <chr> <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 ecclimate_m… mean… 1960-01-01 -3.8 -6 -2.6 -5.1 -5.7 -6.7
## 2 ecclimate_m… mean… 1960-02-01 -1.2 -2.5 0.3 -1.2 -2.3 -3.1
## 3 ecclimate_m… mean… 1960-03-01 -1.3 -3.1 0 -1.8 -2.3 -3.5
## 4 ecclimate_m… mean… 1960-04-01 3 2.1 6.5 4.8 4.7 3.1
## 5 ecclimate_m… mean… 1960-05-01 11.7 10.9 12.8 13.1 11.5 11.6
## 6 ecclimate_m… mean… 1960-06-01 14.4 14.7 16.4 17.2 16.2 15
## 7 ecclimate_m… mean… 1960-07-01 17.1 18 18.9 19.4 18.2 17.2
## 8 ecclimate_m… mean… 1960-08-01 NA 18.5 18.6 19.6 18.9 18
## 9 ecclimate_m… mean… 1960-09-01 15.2 14 14.8 15.1 15 13.1
## 10 ecclimate_m… mean… 1960-10-01 8.7 6.9 9.1 8.1 7.2 6.6
## 11 ecclimate_m… mean… 1960-11-01 4.6 3.2 6.7 4.9 4.1 3
## 12 ecclimate_m… mean… 1960-12-01 -0.8 -3.5 -0.4 -2.4 NA -4.3
## # … with 7 more variables: `NAPPAN CDA 6414` <dbl>, `PARRSBORO 6428` <dbl>,
## # `PORT HASTINGS 6441` <dbl>, `SABLE ISLAND 6454` <dbl>,
## # `SPRINGFIELD 6473` <dbl>, `ST MARGARET'S BAY 6456` <dbl>,
## # `UPPER STEWIACKE 6495` <dbl>, and abbreviated variable names
## # ¹`BADDECK 6297`, ²`COLLEGEVILLE 6329`, ³`DIGBY 6338`,
## # ⁴`KENTVILLE CDA 6375`, ⁵`MAHONE BAY 6396`, ⁶`MOUNT UNIACKE 6413`
Using the pipe (%>%
), we can string all the steps
together concisely:
<- ns_climate %>%
temp_1960 # pick parameters
select_params(contains("temp")) %>%
# pick locations
select_locations(
`Sable Island` = starts_with("SABLE"),
`Kentville` = starts_with("KENT"),
`Badeck` = starts_with("BADD")
%>%
) # filter data table
filter_data(year(date) == 1960) %>%
# extract data in wide format
tbl_data_wide()
temp_1960
## # A tibble: 36 × 8
## dataset location date extr_…¹ extr_…² mean_…³ mean_…⁴ mean_…⁵
## <chr> <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 ecclimate_monthly Badeck 1960-01-01 8.9 -16.7 -0.6 -6.9 -3.8
## 2 ecclimate_monthly Badeck 1960-02-01 6.1 -13.3 1.7 -4.1 -1.2
## 3 ecclimate_monthly Badeck 1960-03-01 7.2 -9.4 0.9 -3.4 -1.3
## 4 ecclimate_monthly Badeck 1960-04-01 16.7 -7.8 6.1 -0.2 3
## 5 ecclimate_monthly Badeck 1960-05-01 26.7 2.2 17.2 6.2 11.7
## 6 ecclimate_monthly Badeck 1960-06-01 30.6 0 19.6 9.2 14.4
## 7 ecclimate_monthly Badeck 1960-07-01 28.3 8.9 22.6 11.6 17.1
## 8 ecclimate_monthly Badeck 1960-08-01 33.3 8.9 24.3 NA NA
## 9 ecclimate_monthly Badeck 1960-09-01 25.6 4.4 19.8 10.6 15.2
## 10 ecclimate_monthly Badeck 1960-10-01 18.3 -0.6 12.3 5 8.7
## # … with 26 more rows, and abbreviated variable names ¹extr_max_temp,
## # ²extr_min_temp, ³mean_max_temp, ⁴mean_min_temp, ⁵mean_temp
We can then use this data with ggplot2 to lead us to the conclusion that three locations in the same province had more or less the same monthly temperature characteristics in 1960.
library(ggplot2)
ggplot(
temp_1960,aes(
x = date,
y = mean_temp,
ymin = extr_min_temp,
ymax = extr_max_temp,
col = location,
fill = location
)+
) geom_ribbon(alpha = 0.2, col = NA) +
geom_line()