Package 'multid'

December 21, 2022

Title Multivariate Difference Between Two Groups

Version 0.7.1
Description Estimation of multivariate differences between two groups (e.g., multivariate sex differences) with regularized regression methods and predictive approach. See Lönnqvist & Ilmarinen (2021) <doi:10.1007 s11109-021-09681-2=""> and Ilmarinen et al. (2022) <doi:10.1177 08902070221088155="">. Includes tools that help in understanding difference score reliability, predictions of difference score variables, conditional intra-class correlations, and heterogeneity of variance estimates. Package development was supported by the Academy of Finland research grant 338891.</doi:10.1177></doi:10.1007>
License GPL-3
Encoding UTF-8
BugReports https://github.com/vjilmari/multid/issues
RoxygenNote 7.1.2
Imports dplyr (>= 1.0.7), glmnet (>= 4.1.2), stats (>= 4.0.2), pROC (>= 1.18.0), lavaan (>= 0.6.9), emmeans (>= 1.6.3), lme4 (>= 1.1.27.1), quantreg (>= 5.88)
Suggests knitr (>= 1.39), rmarkdown (>= 2.14), overlapping (>= 1.7), rio (>= 0.5.29)
VignetteBuilder knitr
NeedsCompilation no
Author Ville-Juhani Ilmarinen [aut, cre] (https://orcid.org/0000-0001-9493-379X)
Maintainer Ville-Juhani Ilmarinen <vj.ilmarinen@gmail.com></vj.ilmarinen@gmail.com>
Repository CRAN
Date/Publication 2022-12-21 10:00:02 UTC
R topics documented:
colwise_pool

colwise_pool

	d_pooled_sd	4
	D_regularized	4
	D_regularized_fold	8
	D_regularized_fold_out	10
	D_regularized_out	1
	D_regularized_vanilla	13
	ml_dadas	14
	pcc	10
	qcc	17
	reliability_dms	18
	sem_dadas	20
	vpc_at	22
Index		24

colwise_pool

Column-wise pooling of standard deviations

Description

Column-wise pooling of standard deviations

Usage

```
colwise_pool(data, n1, n2, m1, m2, sd1, sd2)
```

Arguments

data	Data frame of d_pooled_sd output for multiple samples.
n1	Sample sizes of group1.
n2	Sample sizes of group2.
m1	Means of group1.
m2	Means of group2.
sd1	Standard deviations of group1.
sd2	Standard deviations of group2.

Value

pooled SDs for groups and across groups

3 cvv

CVV

Coefficient of variance variation

Description

Calculates three different indices for variation between two or more variance estimates. VR = Variance ratio between the largest and the smallest variance. CVV = Coefficient of variance variation (Box, 1954). SVH = Standardized variance heterogeneity (Ruscio & Roche, 2012).

Usage

```
cvv(data)
```

Arguments

data

Data frame of two or more columns or list of two or more variables.

Value

A vector including VR, CVV, and SVH.

References

Box, G. E. P. (1954). Some Theorems on Quadratic Forms Applied in the Study of Analysis of Variance Problems, I. Effect of Inequality of Variance in the One-Way Classification. The Annals of Mathematical Statistics, 25(2), 290–302.

Ruscio, J., & Roche, B. (2012). Variance Heterogeneity in Published Psychological Research: A Review and a New Index. Methodology, 8(1), 1-11. https://doi.org/10.1027/1614-2241/a000034

```
d <- list(</pre>
 X1 = rnorm(10, sd = 10),
 X2 = rnorm(100, sd = 7.34),
 X3 = rnorm(1000, sd = 6.02),
 X4 = rnorm(100, sd = 5.17),
 X5 = rnorm(10, sd = 4.56)
)
cvv(d)
```

d_pooled_sd

cvv_manual	Coefficient of variance variation from manual input sample sizes and variance estimates

Description

Calculates three different indices for variation between two or more variance estimates. VR = Variance ratio between the largest and the smallest variance. CVV = Coefficient of variance variation (Box, 1954). SVH = Standardized variance heterogeneity (Ruscio & Roche, 2012).

Usage

```
cvv_manual(sample_sizes, variances)
```

Arguments

sample_sizes Numeric vector of length > 1. Sample sizes used for each variance estimate.

variances Numeric vector of length > 1. Variance estimates.

Value

A vector including VR, CVV, and SVH.

References

Box, G. E. P. (1954). Some Theorems on Quadratic Forms Applied in the Study of Analysis of Variance Problems, I. Effect of Inequality of Variance in the One-Way Classification. The Annals of Mathematical Statistics, 25(2), 290–302.

Ruscio, J., & Roche, B. (2012). Variance Heterogeneity in Published Psychological Research: A Review and a New Index. Methodology, 8(1), 1–11. https://doi.org/10.1027/1614-2241/a000034

Examples

```
cvv_manual(sample_sizes=c(10,100,1000,75,3),
variances=c(1.5,2,2.5,3,3.5))
```

d_pooled_sd

Standardized mean difference with pooled standard deviation

Description

Standardized mean difference with pooled standard deviation

D_regularized 5

Usage

```
d_pooled_sd(
  data,
  var,
  group.var,
  group.values,
  rename.output = TRUE,
  infer = FALSE
)
```

Arguments

data A data frame.

var A continuous variable for which difference is estimated.

group.var The name of the group variable.

group.values Vector of length 2, group values (e.g. c("male", "female) or c(0,1)).

rename.output Logical. Should the output values be renamed according to the group.values?

Default TRUE.

infer Logical. Statistical inference with Welch test? (default FALSE)

Value

Descriptive statistics and mean differences

Examples

```
d_pooled_sd(iris[iris$Species == "setosa" | iris$Species == "versicolor", ],
  var = "Petal.Length", group.var = "Species",
  group.values = c("setosa", "versicolor"), infer = TRUE
)
```

D_regularized

Multivariate group difference estimation with regularized binomial regression

Description

Multivariate group difference estimation with regularized binomial regression

Usage

```
D_regularized(
  data,
  mv.vars,
  group.var,
  group.values,
```

6 D_regularized

```
alpha = 0.5,
nfolds = 10,
s = "lambda.min",
type.measure = "deviance",
rename.output = TRUE,
out = FALSE,
size = NULL,
fold = FALSE,
fold.var = NULL,
pcc = FALSE,
auc = FALSE,
pred.prob = FALSE,
prob.cutoffs = seq(0, 1, 0.2),
append.data = FALSE
```

Arguments

data A data frame.

mv.vars Character vector. Variable names in the multivariate variable set.

group.var The name of the group variable.

group.values Vector of length 2, group values (e.g. c("male", "female) or c(0,1)).

alpha Alpha-value for penalizing function ranging from 0 to 1: 0 = ridge regression, 1

= lasso, 0.5 = elastic net (default).

nfolds Number of folds used for obtaining lambda (range from 3 to n-1, default 10).

s Which lambda value is used for predicted values? Either "lambda.min" (default)

or "lambda.1se".

type.measure Which measure is used during cross-validation. Default "deviance".

rename.output Logical. Should the output values be renamed according to the group.values?

Default TRUE.

out Logical. Should results and predictions be calculated on out-of-bad data set?

(Default FALSE)

size Integer. Number of cases in regularization data per each group. Default 1/4 of

cases

fold Logical. Is regularization applied across sample folds with separate predictions

for each fold? (Default FALSE)

fold.var Character string. Name of the fold variable. (default NULL)

pcc Logical. Include probabilities of correct classification? Default FALSE.

auc Logical. Include area under the receiver operating characteristics? Default

FALSE.

pred.prob Logical. Include table of predicted probabilities? Default FALSE.

prob.cutoffs Vector. Cutoffs for table of predicted probabilities. Default seq(0,1,0.20).

append. data Logical. If TRUE, the data is appended to the predicted variables.

D_regularized 7

Value

D	Multivariate descriptive statistics and differences.
pred.dat	A data frame with predicted values.
cv.mod	Regularized regression model from cv.glmnet.
P.table	Table of predicted probabilities by cutoffs.

References

Lönnqvist, J. E., & Ilmarinen, V. J. (2021). Using a continuous measure of genderedness to assess sex differences in the attitudes of the political elite. Political Behavior, 43, 1779–1800. https://doi.org/10.1007/s11109-021-09681-2

Ilmarinen, V. J., Vainikainen, M. P., & Lönnqvist, J. E. (2022). Is there a g-factor of genderedness? Using a continuous measure of genderedness to assess sex differences in personality, values, cognitive ability, school grades, and educational track. European Journal of Personality. https://doi.org/10.1177/089020702210881

See Also

```
cv.glmnet
```

```
D_regularized(
  data = iris[iris$Species == "setosa" | iris$Species == "versicolor", ],
  mv.vars = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"),
  group.var = "Species", group.values = c("setosa", "versicolor")
# out-of-bag predictions
D_regularized(
  data = iris[iris$Species == "setosa" | iris$Species == "versicolor", ],
  mv.vars = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"),
  group.var = "Species", group.values = c("setosa", "versicolor"),
  out = TRUE, size = 15, pcc = TRUE, auc = TRUE
)$D
# separate sample folds
# generate data for 10 groups
set.seed(34246)
n1 <- 100
n2 <- 10
d <-
  data.frame(
    sex = sample(c("male", "female"), n1 * n2, replace = TRUE),
    fold = sample(x = LETTERS[1:n2], size = n1 * n2, replace = TRUE),
    x1 = rnorm(n1 * n2),
    x2 = rnorm(n1 * n2),
    x3 = rnorm(n1 * n2)
# Fit and predict with same data
```

8 D_regularized_fold

```
D_regularized(
  data = d,
  mv.vars = c("x1", "x2", "x3"),
  group.var = "sex",
  group.values = c("female", "male"),
  fold.var = "fold",
  fold = TRUE,
  rename.output = TRUE
)$D
# Out-of-bag data for each fold
D_regularized(
  data = d,
  mv.vars = c("x1", "x2", "x3"),
  group.var = "sex",
  group.values = c("female", "male"),
  fold.var = "fold",
  size = 17,
  out = TRUE,
  fold = TRUE,
  rename.output = TRUE
)$D
```

D_regularized_fold

Use manually defined data folds for regularization and obtain estimates for each separately.

Description

Use manually defined data folds for regularization and obtain estimates for each separately.

Usage

```
D_regularized_fold(
  data,
  mv.vars,
  group.var,
  group.values,
  alpha = 0.5,
  s = "lambda.min",
  type.measure = "deviance",
  rename.output = TRUE,
  fold.var,
  append.data = FALSE
)
```

D_regularized_fold 9

Arguments

data A data frame. Character vector. Variable names in the multivariate variable set. mv.vars The name of the group variable. group.var Vector of length 2, group values (e.g. c("male", "female) or c(0,1)). group.values Alpha-value for penalizing function ranging from 0 to 1: 0 = ridge regression, 1 alpha = lasso, 0.5 = elastic net (default). Which lambda value is used for predicted values? Either "lambda.min" (default) s or "lambda.1se". Which measure is used during cross-validation. Default "deviance". type.measure rename.output Logical. Should the output values be renamed according to the group.values? Default TRUE. fold.var Character string. Name of the fold variable. Logical. If TRUE, the original data is appended to the predicted variables. append.data

Value

D Multivariate descriptive statistics and differences.

pred.dat A data.frame with predicted values.

cv.mod Regularized regression model from cv.glmnet.

See Also

```
cv.glmnet
```

```
set.seed(34246)
n1 <- 100
n2 <- 10
d <-
  data.frame(
    sex = sample(c("male", "female"), n1 * n2, replace = TRUE),
    fold = sample(x = LETTERS[1:n2], size = n1 * n2, replace = TRUE),
   x1 = rnorm(n1 * n2),
   x2 = rnorm(n1 * n2),
    x3 = rnorm(n1 * n2)
D_regularized_fold(
  data = d,
  mv.vars = c("x1", "x2", "x3"),
  group.var = "sex",
  group.values = c("female", "male"),
  fold.var = "fold"
)$D
```

```
D_regularized_fold_out
```

Use separate data partitions for regularization and estimation across defined data folds.

Description

Use separate data partitions for regularization and estimation across defined data folds.

Usage

```
D_regularized_fold_out(
  data,
 mv.vars,
  group.var,
 group.values,
 alpha = 0.5,
  s = "lambda.min",
  type.measure = "deviance",
  rename.output = TRUE,
  size = NULL,
  fold.var,
  pcc = FALSE,
  auc = FALSE,
  pred.prob = FALSE,
  prob.cutoffs = seq(from = 0, to = 1, by = 0.2),
  append.data = FALSE
)
```

Arguments

data	A data frame.
mv.vars	Character vector. Variable names in the multivariate variable set.
group.var	The name of the group variable.
group.values	Vector of length 2, group values (e.g. $c("male", "female)$ or $c(0,1)$).
alpha	Alpha-value for penalizing function ranging from 0 to 1: $0 = \text{ridge regression}$, $1 = \text{lasso}$, $0.5 = \text{elastic net (default)}$.
S	Which lambda value is used for predicted values? Either "lambda.min" (default) or "lambda.1se".
type.measure	Which measure is used during cross-validation. Default "deviance".
rename.output	Logical. Should the output values be renamed according to the group.values? Default TRUE.
size	Integer. Size of regularization data per each group. Default 1/4 of cases.
fold.var	Name of the fold variable.

D_regularized_out

Logical. Include probabilities of correct classification? Default FALSE.

Logical. Include area under the receiver operating characteristics? Default FALSE.

pred.prob

Logical. Include table of predicted probabilities? Default FALSE.

vector. Cutoffs for table of predicted probabilities. Default seq(0,1,0.20).

Logical. If TRUE, the testing data split is appended to the predicted variables.

Value

D Multivariate descriptive statistics and differences.

pred.dat A data.frame with predicted values.

cv.mod Regularized regression model from cv.glmnet.

P.table Table of predicted probabilities by cutoffs.

Examples

```
set.seed(34246)
n1 <- 100
n2 <- 10
d <-
  data.frame(
    sex = sample(c("male", "female"), n1 * n2, replace = TRUE),
    fold = sample(x = LETTERS[1:n2], size = n1 * n2, replace = TRUE),
   x1 = rnorm(n1 * n2),
   x2 = rnorm(n1 * n2),
    x3 = rnorm(n1 * n2)
D_regularized_fold_out(
  data = d,
  mv.vars = c("x1", "x2", "x3"),
  group.var = "sex",
  group.values = c("female", "male"),
  fold.var = "fold",
  size = 17,
  pcc = TRUE
)$D
```

D_regularized_out

Use separate data partition for regularization and estimation.

Description

Use separate data partition for regularization and estimation.

D_regularized_out

Usage

```
D_regularized_out(
 data,
 mv.vars,
 group.var,
 group.values,
 alpha = 0.5,
 nfolds = 10,
 s = "lambda.min",
 type.measure = "deviance",
 rename.output = TRUE,
 size = NULL,
 pcc = FALSE,
 auc = FALSE,
 pred.prob = FALSE,
 prob.cutoffs = seq(from = 0, to = 1, by = 0.2),
 append.data = FALSE
)
```

A data frame.

Arguments

data

data	A data frame.
mv.vars	Character vector. Variable names in the multivariate variable set.
group.var	The name of the group variable.
group.values	Vector of length 2, group values (e.g. $c("male", "female))$ or $c(0,1)$).
alpha	Alpha-value for penalizing function ranging from 0 to 1: $0 = \text{ridge regression}$, $1 = \text{lasso}$, $0.5 = \text{elastic net (default)}$.
nfolds	Number of folds used for obtaining lambda (range from 3 to n-1, default 10).
S	Which lambda value is used for predicted values? Either "lambda.min" (default) or "lambda.1se".
type.measure	Which measure is used during cross-validation. Default "deviance".
rename.output	Logical. Should the output values be renamed according to the group.values? Default TRUE.
size	Integer. Size of regularization data per each group. Default 1/4 of cases.
pcc	Logical. Include probabilities of correct classification? Default FALSE.
auc	Logical. Include area under the receiver operating characteristics? Default FALSE.
pred.prob	Logical. Include table of predicted probabilities? Default FALSE.
prob.cutoffs	Vector. Cutoffs for table of predicted probabilities. Default seq(0,1,0.20).
append.data	Logical. If TRUE, the testing data split is appended to the predicted variables.

D_regularized_vanilla 13

Value

D Multivariate descriptive statistics and differences.

pred.dat A data.frame with predicted values.

cv.mod Regularized regression model from cv.glmnet.

P.table Table of predicted probabilities by cutoffs.

Examples

```
D_regularized_out(
  data = iris[iris$Species == "setosa" |
    iris$Species == "versicolor", ],
  mv.vars = c(
    "Sepal.Length", "Sepal.Width",
    "Petal.Length", "Petal.Width"
  ),
  group.var = "Species",
  group.values = c("setosa", "versicolor"),
  size = 40,
  pcc = TRUE
)$D
```

Description

Use same data partition for regularization and estimation.

Usage

```
D_regularized_vanilla(
  data,
  mv.vars,
  group.var,
  group.values,
  alpha = 0.5,
  nfolds = 10,
  s = "lambda.min",
  type.measure = "deviance",
  rename.output = TRUE,
  append.data = FALSE
)
```

14 ml_dadas

Arguments

data A data frame.

mv.vars Character vector. Variable names in the multivariate variable set.

group.var The name of the group variable.

group.values Vector of length 2, group values (e.g. c("male", "female) or c(0,1)).

alpha Alpha-value for penalizing function ranging from 0 to 1: 0 = ridge regression, 1

= lasso, 0.5 = elastic net (default).

nfolds Number of folds used for obtaining lambda (range from 3 to n-1, default 10).

s Which lambda value is used for predicted values? Either "lambda.min" (default)

or "lambda.1se".

type.measure Which measure is used during cross-validation. Default "deviance".

rename.output Logical. Should the output values be renamed according to the group.values?

Default TRUE.

append. data Logical. If TRUE, the original data is appended to the predicted variables.

Value

D Multivariate descriptive statistics and differences.

pred.dat A data.frame with predicted values.

cv.mod Regularized regression model from cv.glmnet.

See Also

```
cv.glmnet
```

Examples

```
D_regularized(
  data = iris[iris$Species == "setosa" | iris$Species == "versicolor", ],
  mv.vars = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"),
  group.var = "Species", group.values = c("setosa", "versicolor")
)$D
```

ml_dadas

Predicting algebraic difference scores in multilevel model

Description

Decomposes difference score predictions to predictions of difference score components by probing simple effects at the levels of the binary moderator.

ml_dadas 15

Usage

```
ml_dadas(
  model,
  predictor,
  diff_var,
  diff_var_values,
  scaled_estimates = FALSE,
  re_cov_test = FALSE,
  var_boot_test = FALSE,
  nsim = NULL,
  level = 0.95,
  seed = NULL,
  abs_diff_test = 0
)
```

Arguments

model Multilevel model fitted with lmerTest.

predictor Character string. Variable name of independent variable predicting difference

score.

diff_var Character string. A variable indicative of difference score components (two

groups).

diff_var_values

Vector. Values of the component score groups in diff_var.

scaled_estimates

Logical. Are scaled estimates obtained? Does fit a reduced model for correct

standard deviations. (Default FALSE)

re_cov_test Logical. Significance test for random effect covariation? Does fit a reduced

model without the correlation. (Default FALSE)

var_boot_test Logical. Compare variance by lower-level groups at the upper-level in a reduced

model with bootstrap? (Default FALSE)

nsim Numeric. Number of bootstrap simulations.

level Numeric. The confidence level required for the var_boot_test output (Default

.95)

seed Numeric. Seed number for bootstrap simulations.

abs_diff_test Numeric. A value against which absolute difference between component score

predictions is tested (Default 0).

Value

dadas A data frame including main effect, interaction, regression coefficients for com-

ponent scores, dadas, and comparison between interaction and main effect.

scaled_estimates

Scaled regression coefficients for difference score components and difference score.

16 pcc

vpc_at_reduced Variance partition coefficients in the model without the predictor and interactions.
 re_cov_test Likelihood ratio significance test for random effect covariation.
 boot_var_diffs List of different variance bootstrap tests.

Examples

```
## Not run:
set.seed(95332)
n1 <- 10 # groups
n2 <- 10 # observations per group
dat <- data.frame(</pre>
  group = rep(c(LETTERS[1:n1]), each = n2),
  w = sample(c(-0.5, 0.5), n1 * n2, replace = TRUE),
  x = rep(sample(1:5, n1, replace = TRUE), each = n2),
  y = sample(1:5, n1 * n2, replace = TRUE)
library(lmerTest)
fit <- lmerTest::lmer(y \sim x * w + (w | group),
  data = dat
round(ml_dadas(fit,
  predictor = "x",
  diff_var = "w",
  diff_var_values = c(0.5, -0.5)
)$dadas, 3)
## End(Not run)
```

рсс

Returns probabilities of correct classification for both groups in independent data partition.

Description

Returns probabilities of correct classification for both groups in independent data partition.

Usage

```
pcc(data, pred.var, group.var, group.values)
```

Arguments

data	Data frame including predicted values (e.g., pred.dat from D_regularized_out).
pred.var	Character string. Variable name for predicted values.
group.var	The name of the group variable.
group.values	Vector of length 2, group values (e.g. $c("male", "female))$ or $c(0,1)$).

qcc 17

Value

Vector of length 2. Probabilities of correct classification.

Examples

```
D_out <- D_regularized_out(
   data = iris[iris$Species == "versicolor" | iris$Species == "virginica", ],
   mv.vars = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"),
   group.var = "Species", group.values = c("versicolor", "virginica"),
   size = 15
)

pcc(
   data = D_out$pred.dat,
   pred.var = "pred",
   group.var = "group",
   group.values = c("versicolor", "virginica")
)</pre>
```

qcc

Quantile correlation coefficient

Description

For computation of tail dependence as correlations estimated at different variable quantiles (Choi & Shin, 2022; Lee et al., 2022) summarized across two quantile regression models where x and y switch roles as independent/dependent variables.

Usage

```
qcc(
    x,
    y,
    tau = c(0.1, 0.5, 0.9),
    data,
    method = "br",
    boot_n = NULL,
    ci_level = 0.95
)
```

Arguments

```
    Name of x variable. Character string.
    Name of y variable. Character string.
    The quantile(s) to be estimated. A vector of values between 0 and 1, default c(.1,.5,.9). @seealso rq
    Data frame.
```

18 reliability_dms

method	The algorithmic method used to compute the fit (default "br"). @seealso rq
boot_n	Number of bootstrap redraws (default NULL = no bootstrap inference).
ci_level	Level for percentile bootstrap confidence interval. Numeric values between 0 and 1. Default .95.

Value

r Pearson's correlation estimate for comparison.

rho_tau Correlations at different tau values (quantiles).

r_boot_est Pearson's correlation bootstrap estimates.

rho_tau_boot_est

Bootstrap estimates for correlations at different tau values (quantiles).

References

Choi, J.-E., & Shin, D. W. (2022). Quantile correlation coefficient: A new tail dependence measure. Statistical Papers, 63(4), 1075–1104. https://doi.org/10.1007/s00362-021-01268-7

Lee, J. A., Bardi, A., Gerrans, P., Sneddon, J., van Herk, H., Evers, U., & Schwartz, S. (2022). Are value–behavior relations stronger than previously thought? It depends on value importance. European Journal of Personality, 36(2), 133–148. https://doi.org/10.1177/08902070211002965

Examples

```
set.seed(2321) d <- data.frame(x = rnorm(2000)) d$y <- 0.10 * d$x + (0.20) * d$x^2 + 0.40 * d$x^3 + (-0.20) * d$x^4 + rnorm(2000) qcc_boot <- qcc(x = "x", y = "y", data = d, tau = 1:9 / 10, boot_n = 50) qcc_boot$rho_tau
```

reliability_dms Reliability calculation for difference score variable that is a difference between two mean variables calculated over upper-level units (e.g., sex differences across countries)

Description

Calculates reliability of difference score (Johns, 1981) based on two separate ICC2 values (Bliese, 2000), standard deviations of mean values over upper-level units, and correlations between the mean values across upper-level units.

reliability_dms 19

Usage

```
reliability_dms(
  model = NULL,
  data = NULL,
  diff_var,
  diff_var_values,
  var,
  group_var
)
```

Arguments

model Multilevel model fitted with lmer (default NULL)

data Long format data frame (default NULL)

diff_var Character string. A variable indicative of difference score components (two

groups).

diff_var_values

Vector. Values of the component score groups in diff_var.

var Character string. Name of the dependent variable or variable of which mean

values are calculated.

group_var Character string. Upper-level clustering unit.

Value

A vector including ICC2s (r11 and r22), SDs (sd1, sd2, and sd_d12), means (m1, m2, and m_d12), correlation between means (r12), and reliability of the mean difference variable.

References

Bliese, P. D. (2000). Within-group agreement, non-independence, and reliability: Implications for data aggregation and analysis. In K. J. Klein & S. W. J. Kozlowski (Eds.), Multilevel theory, research, and methods in organizations: Foundations, extensions, and new directions (pp. 349–381). Jossey-Bass.

Johns, G. (1981). Difference score measures of organizational behavior variables: A critique. Organizational Behavior and Human Performance, 27(3), 443–463. https://doi.org/10.1016/0030-5073(81)90033-7

```
set.seed(4317)
n2 <- 20
n1 <- 200
ri <- rnorm(n2, m = 0.5, sd = 0.2)
rs <- 0.5 * ri + rnorm(n2, m = 0.3, sd = 0.15)
d.list <- list()
for (i in 1:n2) {
    x <- rep(c(-0.5, 0.5), each = n1 / 2)
    y <- ri[i] + rs[i] * x + rnorm(n1)</pre>
```

20 sem_dadas

```
d.list[[i]] <- cbind(x, y, i)
}

d <- data.frame(do.call(rbind, d.list))
names(d) <- c("x", "y", "cntry")
reliability_dms(
   data = d, diff_var = "x",
   diff_var_values = c(-0.5, 0.5), var = "y", group_var = "cntry"
)</pre>
```

sem_dadas

Predicting algebraic difference scores in structural equation model

Description

Predicting algebraic difference scores in structural equation model

Usage

```
sem_dadas(
  data,
  var1,
  var2,
  center = FALSE,
  scale = FALSE,
  predictor,
  covariates = NULL,
  estimator = "MLR",
  level = 0.95,
  sampling.weights = NULL,
  abs_coef_diff_test = 0
)
```

Arguments

data	A data frame.
var1	Character string. Variable name of first component score of difference score (Y_1) .
var2	Character string. Variable name of second component score of difference score (Y_2).
center	Logical. Are var1 and var2 centered around their grand mean? (Default FALSE)
scale	Logical. Are var1 and var2 scaled with their pooled sd? (Default FALSE)
predictor	Character string. Variable name of independent variable predicting difference score.
covariates	Character string or vector. Variable names of covariates (Default NULL).
estimator	Character string. Estimator used in SEM (Default "MLR").

sem_dadas 21

```
level Numeric. The confidence level required for the result output (Default .95) sampling.weights

Character string. Name of sampling weights variable.
```

abs_coef_diff_test

Numeric. A value against which absolute difference between component score predictions is tested (Default 0).

Value

```
descriptives Means, standard deviations, and intercorrelations.

parameter_estimates
    Parameter estimates from the structural equation model.

variance_test Variances and covariances of component scores.

transformed_data
    Data frame with variables used in SEM.

dadas One sided dadas-test for positivity of abs(b_11-b_21)-abs(b_11+b_21).

results Summary of key results.
```

References

Edwards, J. R. (1995). Alternatives to Difference Scores as Dependent Variables in the Study of Congruence in Organizational Research. Organizational Behavior and Human Decision Processes, 64(3), 307–324.

```
## Not run:
set.seed(342356)
d <- data.frame(
    var1 = rnorm(50),
    var2 = rnorm(50),
    x = rnorm(50)
)
sem_dadas(
    data = d, var1 = "var1", var2 = "var2",
    predictor = "x", center = TRUE, scale = TRUE,
    abs_coef_diff_test = 0.20
)$results
## End(Not run)</pre>
```

vpc_at

vpc_at

Variance partition coefficient calculated at different level-1 values

Description

Calculates variance estimates (level-2 Intercept variance) and variance partition coefficients (i.e., intra-class correlation) at selected values of predictor values in two-level linear models with random effects (intercept, slope, and their covariation).

Usage

```
vpc_at(model, lvl1.var, lvl1.values)
```

Arguments

model Two-level model fitted with lme4. Must include random intercept, slope, and

their covariation.

1v11.var Character string. Level 1 variable name to which random slope is also estimated.

lvl1.values Level 1 variable values.

Value

Data frame of level 2 variance and std.dev. estimates at level 1 variable values, respective VPCs (ICC1s) and group-mean reliabilities (ICC2s) (Bliese, 2000).

References

Goldstein, H., Browne, W., & Rasbash, J. (2002). Partitioning Variation in Multilevel Models. Understanding Statistics, 1(4), 223–231. https://doi.org/10.1207/S15328031US0104_02

Bliese, P. D. (2000). Within-group agreement, non-independence, and reliability: Implications for data aggregation and analysis. In K. J. Klein & S. W. J. Kozlowski (Eds.), Multilevel theory, research, and methods in organizations: Foundations, extensions, and new directions (pp. 349–381). Jossey-Bass.

```
fit <- lme4::lmer(Sepal.Length ~ Petal.Length +
    (Petal.Length | Species),
data = iris
)

lvl1.values <-
    c(
    mean(iris$Petal.Length) - stats::sd(iris$Petal.Length),
    mean(iris$Petal.Length),
    mean(iris$Petal.Length) + stats::sd(iris$Petal.Length)
)</pre>
```

vpc_at 23

```
vpc_at(
  model = fit,
  lvl1.var = "Petal.Length",
  lvl1.values = lvl1.values
)
```

Index

```
colwise\_pool, 2
cv.glmnet, 7, 9, 14
cvv, 3
\texttt{cvv\_manual}, \textcolor{red}{4}
d_pooled_sd, 4
D_regularized, 5
D_regularized_fold, 8
{\tt D\_regularized\_fold\_out,}\ 10
D_regularized_out, 11
D_regularized_vanilla, 13
ml_dadas, 14
pcc, 16
qcc, 17
reliability\_dms, \\ 18
rq, 17, 18
{\tt sem\_dadas}, \textcolor{red}{20}
vpc_at, 22
```