The multilateral package provides one key function, that is
multilateral()
. The user provides the necessary attributes
of a dataset to calculate their choice of multilateral methods.
See vignette for further information.
For some specific index calculation methods this package has been heavily influenced by Graham White’s IndexNumR package.
::install_github("MjStansfi/multilateral")
devtools
library(multilateral)
See bottom for all index and splice methods.
library(multilateral)
library(ggplot2)
<- multilateral(period = turvey$month,
tpd_index id = turvey$commodity,
price = turvey$price,
quantity = turvey$quantity,
splice_method = "geomean",
window_length = 13,
index_method = "TPD")
<- ggplot(tpd_index$index)+geom_line(aes(x = period, y = index))+theme_bw()
plot
print(plot)
The function returns a list object containing
index
: the continuous spliced index,index_windows
: each individual window’s index,splice_detail
: splicing information.str(tpd_index)
#> List of 3
#> $ index :Classes 'data.table' and 'data.frame': 48 obs. of 3 variables:
#> ..$ period : Date[1:48], format: "1970-01-31" "1970-02-28" ...
#> ..$ index : num [1:48] 1 0.971 0.949 1.047 1.308 ...
#> ..$ window_id: int [1:48] 1 1 1 1 1 1 1 1 1 1 ...
#> ..- attr(*, ".internal.selfref")=<externalptr>
#> $ index_windows:Classes 'data.table' and 'data.frame': 468 obs. of 3 variables:
#> ..$ period : Date[1:468], format: "1970-01-31" "1970-02-28" ...
#> ..$ index : num [1:468] 1 0.971 0.949 1.047 1.308 ...
#> ..$ window_id: int [1:468] 1 1 1 1 1 1 1 1 1 1 ...
#> ..- attr(*, ".internal.selfref")=<externalptr>
#> $ splice_detail:Classes 'data.table' and 'data.frame': 35 obs. of 5 variables:
#> ..$ period : Date[1:35], format: "1971-02-28" "1971-03-31" ...
#> ..$ latest_window_movement: num [1:35] 0.97 1.012 1.097 1.195 0.949 ...
#> ..$ revision_factor : num [1:35] 1 1 1 1.01 1.02 ...
#> ..$ update_factor : num [1:35] 0.972 1.013 1.099 1.205 0.966 ...
#> ..$ window_id : int [1:35] 2 3 4 5 6 7 8 9 10 11 ...
#> ..- attr(*, ".internal.selfref")=<externalptr>
#> - attr(*, "class")= chr [1:2] "list" "multilateral"
#> - attr(*, "params")=List of 6
#> ..$ index_method : chr "TPD"
#> ..$ window_length : num 13
#> ..$ splice_method : chr "geomean"
#> ..$ chain_method : NULL
#> ..$ check_inputs_ind: logi TRUE
#> ..$ matched : NULL
The index_windows
returns all individual windows indexes
before they were spliced. Below shows how you could (roughly) visualise
this data
library(dplyr)
#> Warning: package 'dplyr' was built under R version 4.0.5
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
#Get splice details to relevel each new index
<- tpd_index$splice_detail%>%
update_factor mutate(update_factor = cumprod(update_factor))%>%
select(window_id, update_factor)
<- merge(tpd_index$index_windows,update_factor)
index_windows
<-index_windows%>%mutate(updated_index = index*update_factor)
index_windows <- ggplot(index_windows)+
windows_plot geom_line(aes(x = period, y = updated_index, group = window_id, colour = window_id))+
theme_bw()
print(windows_plot)
splice_detail
gives the user a break down of how the
given periods index number is made up of both a ‘revision factor’ (from
splicing) and the latest periods movement. This can be useful for
diagnostics.
head(tpd_index$splice_detail)
#> period latest_window_movement revision_factor update_factor window_id
#> 1: 1971-02-28 0.9698029 1.002095 0.9718351 2
#> 2: 1971-03-31 1.0120421 1.001120 1.0131760 3
#> 3: 1971-04-30 1.0973656 1.001151 1.0986290 4
#> 4: 1971-05-31 1.1950159 1.008111 1.2047081 5
#> 5: 1971-06-30 0.9490383 1.017805 0.9659356 6
#> 6: 1971-07-31 1.0336941 1.004028 1.0378582 7
Below shows one way in which you could visualise contribution of revision factor verses the latest movement.
library(dplyr)
#Period of interest
<- tpd_index$splice_detail[period=="1973-02-28"]
splice_detail
#Log information to determine contribution
<- log(splice_detail$latest_window_movement)
lwm_log <- log(splice_detail$revision_factor)
rf_log <- sum(lwm_log+rf_log)
sum_log
<- lwm_log/sum_log
lwm_contrib <- rf_log/sum_log
rf_contrib
ggplot(mapping = aes(fill=c("Latest movement","Revision factor"),
y=c(lwm_contrib,rf_contrib),
x="1973-02-28"))+
geom_bar(position="stack", stat="identity", width = 0.2)+
theme_bw()+
xlab("Date")+
ylab("% Contribution")+
labs(fill = "Contributor")+
scale_fill_manual(values = c("#085c75","#d2ac2f"))
See vignette for further information.
Method |
Name |
Requires ID |
Requires Features |
Requires Quantity |
Requires Weight |
Can Restrict to Matched Sample |
---|---|---|---|---|---|---|
TPD |
Time Product Dummy |
TRUE |
FALSE |
FALSE |
TRUE |
FALSE |
TDH |
Time Dummy Hedonic |
FALSE |
TRUE |
FALSE |
TRUE |
FALSE |
GEKS-J |
GEKS Jevons |
TRUE |
FALSE |
FALSE |
FALSE |
TRUE |
GEKS-T |
GEKS Tornqvist |
TRUE |
FALSE |
TRUE |
FALSE |
TRUE |
GEKS-F |
GEKS Fisher |
TRUE |
FALSE |
TRUE |
FALSE |
TRUE |
GEKS-IT |
GEKS Imputation Tornqvist |
TRUE |
TRUE |
TRUE |
FALSE |
TRUE |
splice_method |
---|
geomean |
window |
movement |
geomean_short |
half |
chain_method |
---|
geomean |
window |
movement |
half |