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netgsa-package Network-Based Gene Set Analysis

Description

The netgsa-package provides functions for carrying out Network-based Gene Set Analysis by incor-
porating external information about interactions among genes, as well as novel interactions learned
from data.

Details

Package: netgsa
Type: Package
Version: 3.1.0
Date: 2019-03-12
License: GPL (>=2)
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Author(s)

Ali Shojaie <ashojaie@uw.edu> and Jing Ma <jingma@fredhutch.org>

References

Ma, J., Shojaie, A. & Michailidis, G. (2016) Network-based pathway enrichment analysis with
incomplete network information. Bioinformatics 32(20):165–3174. doi: 10.1093/bioinformatics/
btw410

Shojaie, A., & Michailidis, G. (2010a). Penalized likelihood methods for estimation of sparse high-
dimensional directed acyclic graphs. Biometrika 97(3), 519-538. https://academic.oup.com/
biomet/article-abstract/97/3/519/243918

Shojaie, A., & Michailidis, G. (2010b). Network enrichment analysis in complex experiments.
Statistical applications in genetics and molecular biology, 9(1), Article 22. https://pubmed.ncbi.
nlm.nih.gov/20597848/.

Shojaie, A., & Michailidis, G. (2009). Analysis of gene sets based on the underlying regulatory
network. Journal of Computational Biology, 16(3), 407-426. https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC3131840/

See Also

glmnet

bic.netEst.undir Bayesian information criterion to select the tuning parameters for
netEst.undir

Description

This function uses the Bayesian information criterion to select the optimal tuning parameters needed
in netEst.undir.

Usage

bic.netEst.undir(x, zero = NULL, one = NULL, lambda, rho = NULL, weight = NULL,
eta = 0, verbose = FALSE, eps = 1e-08)

Arguments

x The p× n data matrix as in netEst.undir.

zero (Optional) indices of entries of the matrix to be constrained to be zero. The input
should be a matrix of p× p, with 1 at entries to be constrained to be zero and 0
elsewhere. The matrix must be symmetric.

one (Optional) indices of entries of the matrix to be kept regardless of the regular-
ization parameter for lasso. The input is similar to that of zero and needs to be
symmetric.

https://doi.org/10.1093/bioinformatics/btw410
https://doi.org/10.1093/bioinformatics/btw410
https://academic.oup.com/biomet/article-abstract/97/3/519/243918
https://academic.oup.com/biomet/article-abstract/97/3/519/243918
https://pubmed.ncbi.nlm.nih.gov/20597848/
https://pubmed.ncbi.nlm.nih.gov/20597848/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131840/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131840/
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lambda (Non-negative) user-supplied lambda sequence.

rho (Non-negative) numeric scalar representing the regularization parameter for es-
timating the weights in the inverse covariance matrix. This is the same as rho in
the graphical lasso algorithm glassoFast.

weight (Optional) whether to add penalty to known edges. If NULL (default), then
the known edges are assumed to be true. If nonzero, then a penalty equal to
lambda * weight is added to penalize the known edges to account for possible
uncertainty. Only non-negative values are accepted for the weight parameter.

eta (Non-negative) a small constant added to the diagonal of the empirical covari-
ance matrix of X to ensure it is well conditioned. By default, eta is set to 0.

verbose Whether to print out information as estimation proceeds. Default=FALSE.

eps Numeric scalar >= 0, indicating the tolerance level for differentiating zero and
non-zero edges: entries < eps will be set to 0.

Details

Let Σ̂ represent the empirical covariance matrix of data x. For a given λ, denote the estimated
inverse covariance matrix by Ω̂λ. the Bayesian information criterion (BIC) is defined as

trace(Σ̂Ω̂λ)− log det(Ω̂λ) +
log n

n
· df,

where df represents the degrees of freedom in the selected model and can be estimated via the
number of edges in Ω̂λ. The optimal tuning parameter is selected as the one that minimizes the BIC
over the range of lambda.

Note when the penalty parameter lambda is too large, the estimated adjacency matrix may be zero.
The function will thus return a warning message.

Value

lambda The values of lambda used.

weight The values of weight used.

BIC If weight=NULL, then a numeric vector of the same length as lambda with the
corresponding BIC. If weight is a vector, then a matrix of size length(lambda)
by length(weight) with the corresponding BIC.

df The degrees of freedom corresponding to each BIC.

Author(s)

Jing Ma

References

Ma, J., Shojaie, A. & Michailidis, G. (2016) Network-based pathway enrichment analysis with
incomplete network information. Bioinformatics 32(20):165–3174. doi: 10.1093/bioinformatics/
btw410

https://doi.org/10.1093/bioinformatics/btw410
https://doi.org/10.1093/bioinformatics/btw410
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See Also

netEst.undir

breastcancer2012_subset

Breast cancer data from TCGA (2012). This is a 750 gene subset

Description

An example data set consisting of RNA-seq gene expression data, KEGG pathways, edge list and
non-edge list.

Usage

data(breastcancer2012_subset)

Format

A list with components

x The p× n data matrix.

group The vector of class indicators of length n.

pathways A list of KEGG pathways.

edgelist A data frame of edges, each row corresponding to one edge.

nonedgelist A data frame of nonedges, each row corresponding to one negative edge.

pathways_mat Matrix with pathway indicators

References

Cancer Genome Atlas Network. (2012). Comprehensive molecular portraits of human breast tu-
mours. Nature, 490(7418), 61.

Examples

data("breastcancer2012_subset")
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edgelist A data frame of edges, each row corresponding to one edge

Description

A data frame of edges, each row corresponding to one edge

Usage

edgelist

Format

An object of class data.frame with 19 rows and 4 columns.

formatPathways Format cytoscape nested networks

Description

Format cytoscape nested networks using preset NetGSA format

Usage

formatPathways(x, pways, graph_layout = NULL)

Arguments

x A NetGSA object returned from calling NetGSA()

pways Character vector of pathways to format

graph_layout (Optional) Layout to pass to plots. Must be a string for Cytoscape which will be
passed to RCy3::layoutNetwork.

Details

Loads gene testing data into each pathway. Genes are tested using an F-test if there are 2 or more
conditions or a two-sided one-class t-test against the null hypothesis of mean = 0 if there is only one
condition. FDR corrected q-values are mapped to the color of the node. The scale ranges from 0 to
1 with red represents q-values of 0 and white representing q-values of 1. Loaded data includes: p-
value from the F-test/t-test (pval), FDR corrected q-value (pFdr), test statistic from the F-test/t-test
(teststat).

Custom formatting can be applied using the cytoscape GUI or the RCy3 pacakge.

Value

No return value, called for side effects
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Author(s)

Michael Hellstern

References

Ma, J., Shojaie, A. & Michailidis, G. (2016) Network-based pathway enrichment analysis with
incomplete network information. Bioinformatics 32(20):165–3174.

See Also

plot.NetGSA

Examples

## Not run:
## load the data
data("breastcancer2012_subset")

## consider genes from just 2 pathways
genenames <- unique(c(pathways[["Adipocytokine signaling pathway"]],

pathways[["Adrenergic signaling in cardiomyocytes"]]))
sx <- x[match(rownames(x), genenames, nomatch = 0L) > 0L,]

db_edges <- obtainEdgeList(rownames(sx), databases = c("kegg", "reactome"))
adj_cluster <- prepareAdjMat(sx, group, databases = db_edges, cluster = TRUE)
out_cluster <- NetGSA(adj_cluster[["Adj"]], sx, group,

pathways_mat[c(1,2), rownames(sx)], lklMethod = "REHE", sampling = FALSE)
plot(out_cluster)
formatPathways(out_netgsa, "Adipocytokine signaling pathway")

## End(Not run)

group The vector of class indicators

Description

The vector of class indicators

Usage

group

Format

An object of class numeric of length 520.
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netEst.dir Constrained estimation of directed networks

Description

Estimates a directed network using a lasso (L1) penalty.

Usage

netEst.dir(x, zero = NULL, one = NULL, lambda, verbose = FALSE, eps = 1e-08)

Arguments

x The p× n data matrix.

zero (Optional) indices of entries of the matrix to be constrained to be zero. The input
should be a matrix of p× p, with 1 at entries to be constrained to be zero and 0
elsewhere.

one (Optional) indices of entries of the matrix to be kept regardless of the regular-
ization parameter for lasso. The input is similar to that of zero.

lambda (Non-negative) numeric scalar or a vector of length p− 1 representing the regu-
larization parameters for nodewise lasso. If lambda is a scalar, the same penalty
will be used for all p−1 lasso regressions. By default (lambda=NULL), the vector
of lambda is defined as

λj(α) = 2n−1/2Z∗ α
2p(j−1)

, j = 2, . . . , p.

HereZ∗q represents the (1−q)-th quantile of the standard normal distribution and
α is a positive constant between 0 and 1. See Shojaie and Michailidis (2010a)
for details on the choice of tuning parameters.

verbose Whether to print out information as estimation proceeds. Default = FALSE.

eps (Non-negative) numeric scalar indicating the tolerance level for differentiating
zero and non-zero edges: entries with magnitude < eps will be set to 0.

Details

The function netEst.dir performs constrained estimation of a directed network using a lasso (L1)
penalty, as described in Shojaie and Michailidis (2010a). Two sets of constraints determine subsets
of entries of the weighted adjacency matrix that should be exactly zero (the option zero argument),
or should take non-zero values (option one argument). The remaining entries will be estimated from
data.

The arguments one and/or zero can come from external knowledge on the 0-1 structure of under-
lying network, such as a list of edges and/or non-edges learned from available databases.

In this function, it is assumed that the columns of x are ordered according to a correct (Wald)
causal order, such that no xj is a parent of xk (k ≤ j). Given the causal ordering of nodes, the
resulting adjacency matrix is lower triangular (see Shojaie & Michailidis, 2010b). Thus, only lower
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triangular parts of zero and one are used in this function. For this reason, it is important that both
of these matrices are also ordered according to the causal order of the nodes in x. To estimate the
network, first each node is regressed on the known edges (one). The residual obtained from this
regression is then used to find the additional edges, among the nodes that could potentially interact
with the given node (those not in zero).

This function is closely related to NetGSA, which requires the weighted adjacency matrix as input.
When the user does not have complete information on the weighted adjacency matrix, but has
data (not necessarily the same as the x in NetGSA) and external information (one and/or zero) on
the adjacency matrix, then netEst.dir can be used to estimate the remaining interactions in the
adjacency matrix using the data. Further, when it is anticipated that the adjacency matrices under
different conditions are different, and data from different conditions are available, the user needs to
run netEst.dir separately to obtain estimates of the adjacency matrices under each condition.

The algorithm used in netEst.undir is based on glmnet. Please refer to glmnet for computational
details.

Value

A list with components

Adj The weighted adjacency matrix of dimension p× p. This is the matrix that will
be used in NetGSA.

infmat The influence matrix of dimension p× p.

lambda The values of tuning parameters used.

Author(s)

Ali Shojaie

References

Shojaie, A., & Michailidis, G. (2010a). Penalized likelihood methods for estimation of sparse high-
dimensional directed acyclic graphs. Biometrika 97(3), 519-538. https://academic.oup.com/
biomet/article-abstract/97/3/519/243918

Shojaie, A., & Michailidis, G. (2010b). Network enrichment analysis in complex experiments.
Statistical applications in genetics and molecular biology, 9(1), Article 22. https://pubmed.ncbi.
nlm.nih.gov/20597848/.

Shojaie, A., & Michailidis, G. (2009). Analysis of gene sets based on the underlying regulatory
network. Journal of Computational Biology, 16(3), 407-426. https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC3131840/

See Also

prepareAdjMat, glmnet

https://academic.oup.com/biomet/article-abstract/97/3/519/243918
https://academic.oup.com/biomet/article-abstract/97/3/519/243918
https://pubmed.ncbi.nlm.nih.gov/20597848/
https://pubmed.ncbi.nlm.nih.gov/20597848/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131840/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131840/
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netEst.undir Constrained estimation of undirected networks

Description

Estimates a sparse inverse covariance matrix using a lasso (L1) penalty.

Usage

netEst.undir(x, zero = NULL, one = NULL, lambda, rho=NULL,
penalize_diag = TRUE, weight = NULL,
eta = 0, verbose = FALSE, eps = 1e-08)

Arguments

x The p× n data matrix with rows referring to genes and columns to samples.

zero (Optional) indices of entries of the weighted adjacency matrix to be constrained
to be zero. The input should be a matrix of p × p, with 1 at entries to be con-
strained to be zero and 0 elsewhere. The matrix must be symmetric.

one (Optional) indices of entries of the weighted adjacency matrix to be kept regard-
less of the regularization parameter for lasso. The input is similar to that of zero
and needs to be symmetric.

lambda (Non-negative) numeric vector representing the regularization parameters for
lasso. Can choose best based on BIC using bic.netEst.undir

rho (Non-negative) numeric scalar or symmetric p× p matrix representing the regu-
larization parameter for estimating the weights in the inverse covariance matrix.
This is the same as rho in the graphical lasso algorithm glassoFast.

penalize_diag Logical. Whether or not to penalize diagonal entries when estimating weighted
adjacency matrix. If TRUE a small penalty is used, otherwise no penalty is used.

weight (Optional) whether to add penalty to known edges. If NULL (default), then
the known edges are assumed to be true. If nonzero, then a penalty equal to
lambda * weight is added to penalize the known edges to account for possible
uncertainty. Only non-negative values are accepted for the weight parameter.

eta (Non-negative) a small constant added to the diagonal of the empirical covari-
ance matrix of X to ensure it is well conditioned. By default, eta is set to 0.

verbose Whether to print out information as estimation proceeds. Default = FALSE.

eps (Non-negative) numeric scalar indicating the tolerance level for differentiating
zero and non-zero edges: entries with magnitude < eps will be set to 0.

Details

The function netEst.undir performs constrained estimation of sparse inverse covariance (concen-
tration) matrices using a lasso (L1) penalty, as described in Ma, Shojaie and Michailidis (2016).
Two sets of constraints determine subsets of entries of the inverse covariance matrix that should
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be exactly zero (the option zero argument), or should take non-zero values (option one argument).
The remaining entries will be estimated from data.

The arguments one and/or zero can come from external knowledge on the 0-1 structure of underly-
ing concentration matrix, such as a list of edges and/or non-edges learned from available databases.

netEst.undir estimates both the support (0-1 structure) of the concentration matrix, or equiva-
lently, the adjacency matrix of the corresponding Gaussian graphical model, for a given tuning
parameter, lambda; and the concentration matrix with diagonal entries set to 0, or equivalently, the
weighted adjacency matrix. The weighted adjacency matrix is estimated using maximum likelihood
based on the estimated support. The parameter rho controls the amount of regularization used in
the maximum likelihood step. A small rho is recommended, as a large value of rho may result in
too much regularization in the maximum likelihood estimation, thus further penalizing the support
of the weighted adjacency matrix. Note this function is suitable only for estimating the adjacency
matrix of a undirected graph. The weight parameter allows one to specify whether to penalize the
known edges. If known edges obtained from external information contain uncertainty such that
some of them are spurious, then it is recommended to use a small positive weight parameter to
select the most probable edges from the collection of known ones.

This function is closely related to NetGSA, which requires the weighted adjacency matrix as input.
When the user does not have complete information on the weighted adjacency matrix, but has data
(x, not necessarily the same as the x in NetGSA) and external information (one and/or zero) on
the adjacency matrix, then netEst.undir can be used to estimate the remaining interactions in the
adjacency matrix using the data. Further, when it is anticipated that the adjacency matrices under
different conditions are different, and data from different conditions are available, the user needs to
run netEst.undir separately to obtain estimates of the adjacency matrices under each condition.

The algorithm used in netEst.undir is based on glmnet and glasso. Please refer to glmnet and
glasso for computational details.

Value

A list with components

Adj List of weighted adjacency matrices (partial correlations) of dimension p × p,
with diagonal entries set to 0. Each element in the list is the weighted adjacency
matric corresponding to each value in lambda. Each element is a matrix that
will be used in NetGSA.

invcov List of estimated inverse covariance matrix of dimension p× p.

lambda List of values of tuning parameters used.

Author(s)

Jing Ma & Michael Hellstern

References

Ma, J., Shojaie, A. & Michailidis, G. (2016) Network-based pathway enrichment analysis with
incomplete network information. Bioinformatics 32(20):165–3174. doi: 10.1093/bioinformatics/
btw410

https://doi.org/10.1093/bioinformatics/btw410
https://doi.org/10.1093/bioinformatics/btw410
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See Also

prepareAdjMat, bic.netEst.undir, glmnet

Examples

library(glassoFast)
library(graphite)
library(igraph)

set.seed(1)

## load the data
data(breastcancer2012_subset)

## consider genes from the "Estrogen signaling pathway" and "Jak-STAT signaling pathway"
genenames <- unique(c(pathways[[25]], pathways[[52]]))
sx <- x[match(genenames, rownames(x)),]
if (sum(is.na(rownames(sx)))>0){

sx <- sx[-which(is.na(rownames(sx))),]
}
p <- length(genenames)

## zero/one matrices should be based on known non-edges/known edges. Random used as an example
one <- matrix(sample(c(0,1), length(rownames(sx))**2,

replace = TRUE, prob = c(0.9, 0.1)), length(rownames(sx)),
dimnames = list(rownames(sx), rownames(sx)))

ncond <- length(unique(group))
Amat <- vector("list",ncond)
for (k in 1:ncond){

data_c <- sx[,(group==k)]
fitBIC <- bic.netEst.undir(data_c,one=one,

lambda=seq(1,10)*sqrt(log(p)/ncol(data_c)),eta=0.1)
fit <- netEst.undir(data_c,one=one,

lambda=which.min(fitBIC$BIC)*sqrt(log(p)/ncol(data_c)),eta=0.1)
Amat[[k]] <- fit$Adj

}

NetGSA Network-based Gene Set Analysis

Description

Tests the significance of pre-defined sets of genes (pathways) with respect to an outcome variable,
such as the condition indicator (e.g. cancer vs. normal, etc.), based on the underlying biological
networks.
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Usage

NetGSA(A, x, group, pathways, lklMethod = "REHE",
sampling=FALSE, sample_n = NULL, sample_p = NULL, minsize=5,
eta = 0.1, lim4kappa = 500)

Arguments

A A list of weighted adjacency matrices. Typically returned from prepareAdjMat

x The p × n data matrix with rows referring to genes and columns to samples. It
is very important that the adjacency matrices A share the same rownames as the
data matrix x.

group Vector of class indicators of length n.

pathways The npath by p indicator matrix for pathways.

lklMethod Method used for variance component calculation: options are ML (maximum
likelihood), REML (restricted maximum likelihood), HE (Haseman-Elston regres-
sion) or REHE (restricted Haseman-Elston regression). See details.

sampling (Logical) whether to subsample the observations and/or variables. See details.

sample_n The ratio for subsampling the observations if sampling=TRUE.

sample_p The ratio for subsampling the variables if sampling=TRUE.

minsize Minimum number of genes in pathways to be considered.

eta Approximation limit for the Influence matrix. See ’Details’.

lim4kappa Limit for condition number (used to adjust eta). See ’Details’.

Details

The function NetGSA carries out a Network-based Gene Set Analysis, using the method described
in Shojaie and Michailidis (2009) and Shojaie and Michailidis (2010). It can be used for gene set
(pathway) enrichment analysis where the data come fromK heterogeneous conditions, whereK, or
more. NetGSA differs from Gene Set Analysis (Efron and Tibshirani, 2007) in that it incorporates
the underlying biological networks. Therefore, when the networks encoded in A are empty, one
should instead consider alternative approaches such as Gene Set Analysis (Efron and Tibshirani,
2007).

The NetGSA method is formulated in terms of a mixed linear model. Let X represent the rear-
rangement of data x into an np× 1 column vector.

X = Ψβ + Πγ + ε

where β is the vector of fixed effects, γ and ε are random effects and random errors, respectively.
The underlying biological networks are encoded in the weighted adjacency matrices, which deter-
mine the influence matrix under each condition. The influence matrices further determine the design
matrices Ψ and Π in the mixed linear model. Formally, the influence matrix under each condition
represents the effect of each gene on all the other genes in the network and is calculated from the
adjacency matrix (A[[k]] for the k-th condition). A small value of eta is used to make sure that the
influence matrices are well-conditioned (i.e. their condition numbers are bounded by lim4kappa.)

The problem is then to test the null hypothesis `β = 0 against the alternative `β 6= 0, where ` is a
contrast vector, optimally defined through the underlying networks. For a one-sample or two-sample
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test, the test statistic T for each gene set has approximately a t-distribution under the null, whose
degrees of freedom are estimated using the Satterthwaite approximation method. When analyzing
complex experiments involving multiple conditions, often multiple contrast vectors of interest are
considered for a specific subnetwork. Alternatively, one can combine the contrast vectors into a
contrast matrix L. A different test statistic F will be used. Under the null, F has an F-distribution,
whose degrees of freedom are calculated based on the contrast matrix L as well as variances of γ
and ε. The fixed effects β are estimated by generalized least squares, and the estimate depends on
estimated variance components of γ and ε.

Estimation of the variance components (σ2
ε and σ2

γ) can be done in several different ways after pro-
filing out σ2

ε , including REML/ML which uses Newton’s method or HE/REHE which is based on the
Haseman-Elston regression method. The latter notes the fact that V ar(X) = σ2

γΠ ∗Π′ + σ2
ε I , and

uses an ordinary least squares to solve for the unknown coefficients after vectorizing both sides. In
particular, REHE uses nonnegative least squares for the regression and therefore ensures nonnegative
estimate of the variance components. Due to the simple formulation, HE/REHE also allows subsam-
pling with respect to both the samples and the variables, and is recommended especially when the
problem is large (i.e. large p and/or large n).

The pathway membership information is stored in pathways, which should be a matrix of npath x
p. See prepareAdjMat for details on how to prepare a suitable pathway membership object.

This function can deal with both directed and undirected networks, which are specified via the
option directed. Note NetGSA uses slightly different procedures to calculate the influence matrices
for directed and undirected networks. In either case, the user can still apply NetGSA if only partial
information on the adjacency matrices is available. The functions netEst.undir and netEst.dir
provide details on how to estimate the weighted adjacency matrices from data based on available
network information.

Value

A list with components

results A data frame with pathway names, pathway sizes, p-values and false discovery
rate corrected q-values, and test statistic for all pathways.

beta Vector of fixed effects of length kp, the first k elements corresponds to condition
1, the second k to condition 2, etc

s2.epsilon Variance of the random errors ε.

s2.gamma Variance of the random effects γ.

graph List of components needed in plot.NetGSA.

Author(s)

Ali Shojaie and Jing Ma

References

Ma, J., Shojaie, A. & Michailidis, G. (2016) Network-based pathway enrichment analysis with
incomplete network information. Bioinformatics 32(20):165–3174. doi: 10.1093/bioinformatics/
btw410

https://doi.org/10.1093/bioinformatics/btw410
https://doi.org/10.1093/bioinformatics/btw410


NetGSAq 15

Shojaie, A., & Michailidis, G. (2010). Network enrichment analysis in complex experiments. Sta-
tistical applications in genetics and molecular biology, 9(1), Article 22. https://pubmed.ncbi.
nlm.nih.gov/20597848/.

Shojaie, A., & Michailidis, G. (2009). Analysis of gene sets based on the underlying regulatory
network. Journal of Computational Biology, 16(3), 407-426. https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC3131840/

See Also

prepareAdjMat, netEst.dir, netEst.undir

Examples

## load the data
data("breastcancer2012_subset")

## consider genes from just 2 pathways
genenames <- unique(c(pathways[["Adipocytokine signaling pathway"]],

pathways[["Adrenergic signaling in cardiomyocytes"]]))
sx <- x[match(rownames(x), genenames, nomatch = 0L) > 0L,]

db_edges <- obtainEdgeList(rownames(sx), databases = c("kegg", "reactome"))
adj_cluster <- prepareAdjMat(sx, group, databases = db_edges, cluster = TRUE)
out_cluster <- NetGSA(adj_cluster[["Adj"]], sx, group,

pathways_mat[c(1,2), rownames(sx)], lklMethod = "REHE", sampling = FALSE)

NetGSAq "Quick" Network-based Gene Set Analysis

Description

Quick version of NetGSA

Usage

NetGSAq(x, group, pathways, lambda_c = 1, file_e = NULL, file_ne = NULL,
lklMethod="REHE", cluster = TRUE, sampling = TRUE, sample_n = NULL,
sample_p = NULL, minsize=5, eta=0.1, lim4kappa=500)

Arguments

x See x argument in NetGSA

group See group argument in NetGSA

pathways See pathways argument in NetGSA

lambda_c See lambda_c argument in prepareAdjMat

https://pubmed.ncbi.nlm.nih.gov/20597848/
https://pubmed.ncbi.nlm.nih.gov/20597848/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131840/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131840/
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file_e See file_e argument in prepareAdjMat

file_ne See file_ne argument in prepareAdjMat

lklMethod See lklMethod argument in NetGSA

cluster See cluster argument in prepareAdjMat

sampling See sampling argument in NetGSA

sample_n See sample_n argument in NetGSA

sample_p See sample_p argument in NetGSA

minsize See minsize argument in NetGSA

eta See eta argument in NetGSA

lim4kappa See lim4kappa argument in NetGSA

Details

This is a wrapper function to perform weighted adjacency matrix estimation and pathway enrich-
ment in one step. For more details see ?prepareAdjMat and ?NetGSA.

Value

A list with components

results A data frame with pathway names, pathway sizes, p-values and false discovery
rate corrected q-values, and test statistic for all pathways.

beta Vector of fixed effects of length kp, the first k elements corresponds to condition
1, the second k to condition 2, etc.

s2.epsilon Variance of the random errors ε.

s2.gamma Variance of the random effects γ.

graph List of components needed in plot.NetGSA.

Author(s)

Michael Hellstern

References

Ma, J., Shojaie, A. & Michailidis, G. (2016) Network-based pathway enrichment analysis with
incomplete network information. Bioinformatics 32(20):165–3174. doi: 10.1093/bioinformatics/
btw410

Shojaie, A., & Michailidis, G. (2010). Network enrichment analysis in complex experiments. Sta-
tistical applications in genetics and molecular biology, 9(1), Article 22. https://pubmed.ncbi.
nlm.nih.gov/20597848/.

Shojaie, A., & Michailidis, G. (2009). Analysis of gene sets based on the underlying regulatory
network. Journal of Computational Biology, 16(3), 407-426. https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC3131840/

https://doi.org/10.1093/bioinformatics/btw410
https://doi.org/10.1093/bioinformatics/btw410
https://pubmed.ncbi.nlm.nih.gov/20597848/
https://pubmed.ncbi.nlm.nih.gov/20597848/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131840/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131840/
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See Also

prepareAdjMat, netEst.dir, netEst.undir

Examples

# Example takes ~3 minutes to run depending on computer
## load the data
data("breastcancer2012_subset")

## consider genes from just 2 pathways
genenames <- unique(c(pathways[["Adipocytokine signaling pathway"]],

pathways[["Adrenergic signaling in cardiomyocytes"]]))
sx <- x[match(rownames(x), genenames, nomatch = 0L) > 0L,]

out_clusterq <- NetGSAq(sx, group, pathways_mat[c(1, 2), rownames(sx)])

nonedgelist A data frame of nonedges, each row corresponding to one negative
edge

Description

A data frame of nonedges, each row corresponding to one negative edge

Usage

nonedgelist

Format

An object of class data.frame with 1 rows and 4 columns.

obtainClusters Estimate optimal gene clustering structure

Description

Tries six different clustering methods and chooses the one with the best results. This is a helper
function in prepareAdjMat and should not be called by the user.

Usage

obtainClusters(A, order, cluster)
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Arguments

A A 0-1 adjacency matrix

order Final ordering of genes/metabs to be consistent with order you passed data in

cluster Whether or not to cluster (TRUE/FALSE). We always cluster connected com-
ponents, but if cluster = TRUE we cluster further

Details

This function tries the six different clustering methods in igraph and chooses the best one. As stated
in prepareAdjMat the six methods evaluated are: cluster_walktrap, cluster_leading_eigen,
cluster_fast_greedy, cluster_label_prop, cluster_infomap, and cluster_louvain. See
prepareAdjMat for how the best is chosen. Even if cluster = FALSE, connected components of
the 0-1 adjacency matrix are used as clusters.

It is essential that the order of the returned named numeric vector must be in the same order as the
rows of the data matrix.

Value

Named numeric vector of membership. The name of each element is the corresponding gene and
the value is the cluster it belongs to.

Author(s)

Michael Hellstern

References

Ma, J., Shojaie, A. & Michailidis, G. (2016) Network-based pathway enrichment analysis with
incomplete network information. Bioinformatics 32(20):165–3174.

See Also

prepareAdjMat

obtainEdgeList Obtain edgelist from graphite databases. To be used within pre-
pareAdjMat

Description

Find all edges between genes in the specified graphite databases.

Usage

obtainEdgeList(genes, databases)
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Arguments

genes Character vector of gene ID and gene value. The ID and gene value should be
separated by a colon. E.g. "ENTREZID:127550". It is very important to have
these separated by a colon since obtainEdgeList uses regular expressions to
split this into gene value and gene ID.

databases Character vector of graphite databases you wish to search for edges. Options
are: biocarta, kegg, nci, panther, pathbank, pharmgkb, reactome, smpdb, ndex.
Note NDEx is recommended for expert users and is only available for the devel-
opment version of netgsa (https://github.com/mikehellstern/netgsa), see details.

Details

obtainEdgeList searches through the specified databases to find edges between genes in the genes
argument. Since one can search in multiple databases with different identifiers, genes are converted
using AnnotationDbi::select and metabolites are converted using graphite:::metabolites().
Databases are also used to specify non-edges. This function searches through graphite databases
and also has the option to search NDEx (public databases only). However, since NDEx is open-
source and does not contain curated edge information like graphite, NDEx database search is a
beta function and is only recommended for expert users. When searching through NDEx, gene iden-
tifiers are not converted. Only, the gene identifiers passed to the genes argument are used to search
through NDEx. NDEx contains some very large networks with millions of edges and extracting
those of interest can be slow.

This function is particularly useful if the user wants to create an edgelist outside of prepareAdjMat.
graphite and it’s databases are constantly updated. Creating and storing an edgelist outside
of prepareAdjMat may help reproducibility as this guarantees the same external information is
used. It can also speed up computation since if only a character vector of databases is passed to
prepareAdjMat, it calls obtainEdgeList each time and each call can take several minutes. The
edges from obtainEdgeList are used to create the 0-1 adjacency matrices used in netEst.undir
and netEst.dir.

Using obtainEdgeList to generate edge information is highly recommended as this performs all
the searching and conversion of genes to common identifiers. Inclusion of additional edges, re-
moval of edges, or other user modifications to edgelists should be through the file_e and file_ne
arguments in prepareAdjMat.

Value

A list of class obtainedEdgeList with components

edgelist A data.table listing the edges. One row per edge. Edges are assumed to be
directed. So if an edge is undirected there will be two rows.

genes_not_in_dbs

A vector of genes specified, but were not found in the databases searched

Author(s)

Michael Hellstern
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See Also

prepareAdjMat, netEst.dir, netEst.undir

Examples

genes <- paste0("ENTREZID:", c("10000", "10298", "106821730",
"10718", "1398", "1399", "145957",
"1839", "1950", "1956"))

out <- obtainEdgeList(genes, c("kegg", "reactome"))

pathways A list of KEGG pathways

Description

A list of KEGG pathways

Usage

pathways

Format

An object of class list of length 100.

pathways_mat Matrix with pathway indicators

Description

Matrix with pathway indicators

Usage

pathways_mat

Format

An object of class matrix (inherits from array) with 51 rows and 250 columns.
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plot.NetGSA Generates NetGSA plots

Description

Generates network plots in Cytoscape and igraph

Usage

## S3 method for class 'NetGSA'
plot(x, graph_layout = NULL, rescale_node = c(2,10), rescale_label = c(0.5,0.6), ...)

Arguments

x An object of class "NetGSA" returned from calling NetGSA()

graph_layout (Optional) Layout to pass to plots. Either a function for igraph plots (when Cy-
toscape not open) or a string for Cytoscape. The igraph function should only
take one parameter (an igraph object). See igraph::layout_ for more details.
For example one might create a custom layout by setting the spring.length and
spring.constant with: my_layout <- function(graph) layout_with_graphopt(graph
= graph, spring.length = 1000, spring.constant = 0.00004). The string
for Cytoscape will be passed to RCy3::layoutNetwork.

rescale_node (Optional) Node size rescaling to pass to igraph plots. Must be a vector of length
2 with the first element being the minimum node size and the second being the
maximum.

rescale_label (Optional) Label size rescaling to pass to igraph plots. Must be a vector of length
2 with the first element being the minimum node size and the second being the
maximum.

... Other arguments not used by this method

Details

One of two options can occur.

(1) If Cytoscape is open on the user’s computer, a nested network will be created. The main network
is the interactions between pathways. In this graph, there is one node for each pathway. An edge is
drawn between pathways if there is at least one edge between genes of each pathway. That is if gene
A is in pathway 1 and gene B is in pathway 2, pathway 1 and pathway 2 will have an edge if gene
A and gene B have an edge. Note self-edges are not drawn. The value of the test statistic is mapped
to node color. Large negative values of the test statistic are orange, values around 0 are white and
large positive values are blue. FDR corrected q-values are mapped to the border color of the node.
The scale ranges from 0 to 1 with red representing q-values of 0 and white representing q-values
of 1. Pathway size is mapped to node size so pathways with more genes are larger. Each pathway
node is also linked to its network of genes so the user can see individual gene interactions within a
pathway. These can be accessed by right clicking the node -> Nested Networks -> Go To Nested
Network. Alternatively, the corresponding nested network has the same name as the pathway so
the user can click on the network directly in the Control Panel/Network menu. It is important to
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note that plot.NetGSA generates default plots and loads in data into Cytoscape, but the user can
customize the plots however they like using RCy3 or the Cytoscape GUI directly.

To save time, the nested networks are not formatted. One can apply NetGSA’s formatting using
formatPathways

For custom formatting, the node data that is loaded into Cytoscape includes the pathway results
from NetGSA: Pathway size (pSize), p-value (pval), FDR corrected q-value (pFDR), test statistic
(teststat) and pathway name. The edge data loaded into Cytoscape is: total number of edges between
two pathways (weight). For example weight of 10 between pathway 1 and pathway 2 means there
are 10 edges between the genes of pathway 1 and the genes of pathway 2.

There are two R plots also generated. The first is the legend for Cytoscape. The legend shows
the mapping for node color (test statistic) and node border color (FDR corrected q-value). This is
generated in R because there does not seem to be a reliable way to plot the legend for the main
network (interactions between pathways). The second plot is a plot of the main network created in
igraph. It mimics the Cytoscape plot as closely as possible. NetGSA exports the x and y coordinates
of the nodes in the Cytoscape layout and uses them in the igraph layout. Custom layouts can be
passed to this using the graph_layout argument. The user can also zoom-in on individual pathways
in igraph using the zoomPathway function.

(2) If Cytoscape is not open, the igraph::rglplot function is used to plot the main network
(interactions between pathways). The default layout used is layout_on_sphere, but custom layouts
can be specified with the graph_layout argument. The other plot generated is the legend since it
is difficult to plot on rglplot.

Value

No return value, called for plotting

Author(s)

Michael Hellstern

References

Ma, J., Shojaie, A. & Michailidis, G. (2016) Network-based pathway enrichment analysis with
incomplete network information. Bioinformatics 32(20):165–3174.

See Also

NetGSA

Examples

## Not run:
## load the data
data("breastcancer2012_subset")

## consider genes from just 2 pathways
genenames <- unique(c(pathways[["Adipocytokine signaling pathway"]],

pathways[["Adrenergic signaling in cardiomyocytes"]]))
sx <- x[match(rownames(x), genenames, nomatch = 0L) > 0L,]
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db_edges <- obtainEdgeList(rownames(sx), databases = c("kegg", "reactome"))
adj_cluster <- prepareAdjMat(sx, group, databases = db_edges, cluster = TRUE)
out_cluster <- NetGSA(adj_cluster[["Adj"]], sx, group,

pathways_mat[c(1,2), rownames(sx)], lklMethod = "REHE", sampling = FALSE)
plot(out_cluster)

## End(Not run)

prepareAdjMat Construct adjacency matrices from graphite databases and/or user
provided network information

Description

Read the network information from any of the graphite databases specified by the user and construct
the adjacency matrices needed for NetGSA. This function also allows for clustering. See details for
more information

Usage

prepareAdjMat(x, group, databases = NULL, cluster = TRUE,
file_e=NULL, file_ne=NULL, lambda_c=1, penalize_diag=TRUE, eta=0.5)

Arguments

x The p × n data matrix with rows referring to genes and columns to samples.
Row names should be unique and have gene ID types appended to them. The id
and gene number must be separated by a colon. E.g. "ENTREZID:127550"

group Vector of class indicators of length n. Identifies the condition for each of the n
samples

databases (Optional) Either (1) the result of a call to obtainEdgeList or (2) a char-
acter vector of graphite databases you wish to search for edges. Since one
can search in multiple databases with different identifiers, converts genes using
AnnotationDbi::select and convert metabolites using graphite:::metabolites().
Databases are also used to specify non-edges. If NULL no external database in-
formation will be used. See Details for more information

cluster (Optional) Logical indicating whether or not to cluster genes to estimate ad-
jacency matrix. If not specified, set to TRUE if there are > 2,500 genes (p >
2,500). The main use of clustering is to speed up calculation time. If the dimen-
sion of the problem, or equivalently the total number of unique genes across all
pathways, is large, prepareAdjMat may be slow.
If clustering is set to TRUE, the 0-1 adjacency matrix is used to detect clusters
of genes within the connected components. Once gene clusterings are chosen,
the weighted adjacency matrices are estimated for each cluster separately using
netEst.undir or netEst.dir. Thus, the adjacency matrix for the full network
is block diagonal with the blocks being the adjacency matrices from the clusters.
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Any edges between clusters are set to 0, so this can be thought of as an approx-
imate weighted adjacency matrix. Six clustering algorithms from the igraph
package are considered: cluster_walktrap, cluster_leading_eigen, cluster_fast_greedy,
cluster_label_prop, cluster_infomap, and cluster_louvain. Clustering
is performed on each connected component of size >1,000 genes. To ensure in-
creases in speed, algorithms which produce a maximum cluster size of < 1,000
genes are considered first. Among those, the algorithm with the smallest edge
loss is chosen. If all algorithms have a maximum cluster size > 1,000 genes the
one with the smallest maximum cluster size is chosen. Edge loss is defined as
the number of edges between genes of different clusters. These edges are "lost"
since they are set to 0 in the block diagonal adjacency matrix.
If clustering is set to FALSE, the 0-1 adjacency matrix is used to detect con-
nected components and the weighted adjacency matrices are estimated for each
connected component.
Singleton clusters are combined into one cluster. This should not affect perfor-
mance much since the gene in a singleton cluster should not have any edges to
other genes.

file_e (Optional) The name of the file which the list of edges is to read from. This
file is read in with data.table::fread. Must have 4 columns in the following
order. The columns do not necessarily need to be named, but they must be in
this specific order:

• 1st column - Source gene (base_gene_src), e.g. "7534""
• 2nd column - Gene identifier of the source gene (base_id_src), e.g. "EN-

TREZID"
• 3rd column - Destination gene (base_gene_dest), e.g. "8607"
• 4th column - Gene identifier of the destination gene (base_id_dest) e.g.

"UNIPROT"

This information cannot conflict with the user specified non-edges. That is,
one cannot have the same edge in file_e and file_ne. In the case where
the graph is undirected everything will be converted to an undirected edge or
non-edge. Thus if the user specifies A->B as a directed non-edge it will be
changed to an undirected non-edge if the graph is undirected. See Details for
more information.

file_ne (Optional) The name of the file which the list of non-edges is to read from. This
file is read in with data.table::fread. The edges in this file are negative in the
sense that the corresponding vertices are not connected. Format of the file must
be the same as file_e. Again, each observation is assumed to be a directed
edge. Thus for a negative undirected edge, input two separate negative edges.
In the case of conflicting information between file_ne and edges identified in a
database, user non-edges are used. That is if the user specifies A->B in file_ne,
but there is an edge between A->B in KEGG, the information in KEGG will be
ignored and A->B will be treated as a non-edge. In the case where the graph
is undirected everything will be converted to an undirected edge or non-edge.
Thus if the user specifies A->B as a directed non-edge it will be changed to an
undirected non-edge if the graph is undirected. See Details for more informa-
tion.
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lambda_c (Non-negative) a vector or constant. lambda_c is multiplied by a constant de-
pending on the data to determine the actual tuning parameter, lambda, used
in estimating the network. If lambda_c is a vector, the optimal lambda will
be chosen from this vector using bic.netEst.undir. Note that lambda is
only used if the network is undirected. If the network is directed, the default
value in netEst.dir is used instead . By default, lambda_c is set to 1. See
netEst.undir and netEst.dir for more details.

penalize_diag Logical. Whether or not to penalize diagonal entries when estimating weighted
adjacency matrix. If TRUE a small penalty is used, otherwise no penalty is used.

eta (Non-negative) a small constant needed for estimating the edge weights. By
default, eta is set to 0.5. See netEst.undir for more details.

Details

The function prepareAdjMat accepts both network information from user specified sources as well
as a list of graphite databases to search for edges in. prepareAdjMat calculates the 0-1 adjacency
matrices and runs netEst.undir or netEst.dir if the graph is undirected or directed.

When searching for network information, prepareAdjMat makes some important assumptions
about edges and non-edges. As already stated, the first is that in the case of conflicting information,
user specified non-edges are given precedence.

prepareAdjMat uses obtainEdgeList to standardize and search the graphite databases for edges.
For more information see ?obtainEdgeList. prepareAdjMat also uses database information to
identify non-edges. If two genes are identified in the databases edges but there is no edge between
them this will be coded as a non-edge. The rationale is that if there was an edge between these two
genes it would be present.

prepareAdjMat assumes no information about genes not identified in databases edgelists. That is,
if the user passes gene A, but gene A is not found in any of the edges in databases no information
about Gene A is assumed. Gene A will have neither edges nor non-edges.

Once all the network and clustering information has been compiled, prepareAdjMat estimates the
network. prepareAdjMat will automatically detect directed graphs, rearrange them to the correct
order and use netEst.dir to estimate the network. When the graph is undirected netEst.undir
will be used. For more information on these methods see ?netEst.dir and ?netEst.undir.

Importantly, prepareAdjMat returns the list of weighted adjacency matrices to be used as an input
in NetGSA.

Value

A list with components

Adj A list of weighted adjacency matrices estimated from either netEst.undir or
netEst.dir. That is length(Adj) = length(unique(group)). One list of
weighted adjacency matrix will be returned for each condition in group. If clus-
ter = TRUE is specified, the length of the list of adjacency matrices for each con-
dition will be the same length as the number of clusters. The structure of Adj is
Adj[[condition_number]][[cluster_adj_matrix]]. Note that even when cluster
= FALSE the connected components are used as clusters. The last element which
is needed for plotting and is passed through to the output of NetGSA is edgelist.
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invcov A list of inverse covariance matrices estimated from either netEst.undir or
netEst.dir. That is length(invcov) = length(unique(group)). One list of
inverse covariance matrix will be returned for each condition in group. If cluster
= TRUE is specified, the length of the list of inverse covariance matrices for
each condition will be the same length as the number of clusters. The structure
of invcov is invcov[[condition_number]][[cluster_adj_matrix]]

lambda A list of values of tuning parameters used for each condition in group. If cluster
= TRUE is specified, the length of the list of tuning parameters for each condi-
tion will be the same length as the number of clusters.

Author(s)

Michael Hellstern

References

Ma, J., Shojaie, A. & Michailidis, G. (2016) Network-based pathway enrichment analysis with
incomplete network information. Bioinformatics 32(20):165–3174.

See Also

NetGSA, netEst.dir, netEst.undir

Examples

## load the data
data("breastcancer2012_subset")

## consider genes from just 2 pathways
genenames <- unique(c(pathways[[1]], pathways[[2]]))
sx <- x[match(rownames(x), genenames, nomatch = 0L) > 0L,]

adj_cluster <- prepareAdjMat(sx, group,
databases = c("kegg", "reactome"),
cluster = TRUE)

adj_no_cluster <- prepareAdjMat(sx, group,
databases = c("kegg", "reactome"),
cluster = FALSE)

stackDatabases Combine edges from databases into a data.table

Description

Retrieves edges from specified databases and stacks them into one data.table.This is a helper func-
tion in prepareAdjMat and should not be called by the user.
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Usage

stackDatabases(databases)

Arguments

databases Character vector of databases to compile. Should be one of the options from
hspaiens in graphite::pathwayDatabases()

Details

This function compiles all the edges from all databases specified into one data.table

Value

A data.table with columns:

database Which database the edge comes from

src Source gene

src_type Source gene identifier type

dest Destination gene

dest_type Destination gene identifier type

direction Direction of edge. Either Directed or Undirected

Author(s)

Michael Hellstern

References

Ma, J., Shojaie, A. & Michailidis, G. (2016) Network-based pathway enrichment analysis with
incomplete network information. Bioinformatics 32(20):165–3174.

See Also

obtainEdgeList

x Data matrix p by n

Description

Data matrix p by n

Usage

x
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Format

An object of class matrix (inherits from array) with 250 rows and 520 columns.

zoomPathway Zoom in on pathway in igraph

Description

Plots the gene to gene interactions for a given pathway in igraph.

Usage

zoomPathway(x, pway, graph_layout = NULL)

Arguments

x A NetGSA object returned from calling NetGSA()

pway Name of pathway to plot

graph_layout (Optional) Layout function to pass to igraph plots. This function should only
take one parameter (an igraph object). For example one might create a cus-
tom layout by setting the spring.length and spring.constant with: my_layout <-
function(graph) layout_with_graphopt(graph = graph, spring.length =
1000, spring.constant = 0.00004)

Details

Generates igraph plot for gene to gene interactions for a given pathway

Value

No return value, called for side effects

Author(s)

Michael Hellstern

References

Ma, J., Shojaie, A. & Michailidis, G. (2016) Network-based pathway enrichment analysis with
incomplete network information. Bioinformatics 32(20):165–3174.

See Also

plot.NetGSA
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Examples

## Not run:
## load the data
data("breastcancer2012_subset")

## consider genes from just 2 pathways
genenames <- unique(c(pathways[["Adipocytokine signaling pathway"]],

pathways[["Adrenergic signaling in cardiomyocytes"]]))
sx <- x[match(rownames(x), genenames, nomatch = 0L) > 0L,]

db_edges <- obtainEdgeList(rownames(sx), databases = c("kegg", "reactome"))
adj_cluster <- prepareAdjMat(sx, group, databases = db_edges, cluster = TRUE)
out_cluster <- NetGSA(adj_cluster[["Adj"]], sx, group,

pathways_mat[c(1,2), rownames(sx)], lklMethod = "REHE", sampling = FALSE)
plot(out_cluster)
my_layout <- function(graph) layout_with_graphopt(graph = graph,

spring.length = 1000,
spring.constant = 0.00004)

zoomPathway(out_cluster, "Adipocytokine signaling pathway", my_layout)

## End(Not run)
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