
Package ‘nnlib2Rcpp’
October 13, 2022

Type Package

Title A Tool for Creating Custom Neural Networks in C++ and using Them
in R

Version 0.1.9

Author Vasilis Nikolaidis [aut, cph, cre]
(<https://orcid.org/0000-0003-1471-8788>)

Maintainer Vasilis Nikolaidis <vnikolaidis@us.uop.gr>

Description Contains a module to define neural networks from custom components and ver-
sions of Autoencoder, BP, LVQ, MAM NN.

LinkingTo Rcpp

Imports Rcpp , methods

License MIT + file LICENSE

URL https://github.com/VNNikolaidis/nnlib2Rcpp

BugReports https://github.com/VNNikolaidis/nnlib2Rcpp/issues

Encoding UTF-8

Suggests R.rsp

VignetteBuilder R.rsp

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-05-26 16:50:02 UTC

R topics documented:
nnlib2Rcpp-package . 2
Autoencoder . 3
BP-class . 5
LVQs-class . 8
LVQu . 9
MAM-class . 11
NN-class . 13

Index 20

1

https://orcid.org/0000-0003-1471-8788
https://github.com/VNNikolaidis/nnlib2Rcpp
https://github.com/VNNikolaidis/nnlib2Rcpp/issues

2 nnlib2Rcpp-package

nnlib2Rcpp-package A collection of Neural Networks and tools to create custom models

Description

This package provides a module (NN module) to define and control custom neural networks created
from user-defined nnlib2 NN components (written in C++).

It also contains a small collection of ready-to-use Neural Networks (NN), i.e. versions of Autoen-
coder, Back-Propagation, Learning Vector Quantization and Matrix Associative Memory NN. More
information and examples for each of the above can be found in its documentation (see below).

Ready-to-use Neural Networks:

• Plain Back-Propagation (BP-supervised) (BP)

• Learning Vector Quantization (LVQ-supervised) (LVQs)

• Learning Vector Quantization (LVQ-unsupervised) (LVQu)

• Matrix Associative Memory (MAM-supervised) (MAM)

• Autoencoder (unsupervised) (Autoencoder)

Custom Neural Networks:

• NN module (NN)

Author(s)

Author/Maintainer:

• Vasilis Nikolaidis <vnnikolaidis@gmail.com>

Contributors:

• Arfon Smith [contributor]

• Dirk Eddelbuettel [contributor]

References

• Nikolaidis, V. N., (2021). The nnlib2 library and nnlib2Rcpp R package for implementing
neural networks. Journal of Open Source Software, 6(61), 2876, doi:10.21105/joss.02876.
References for the ready-to-use NN models (can also be found in related documentation):

– Kohonen, T (1988). Self-Organization and Associative Memory, Springer-Verlag.; Simp-
son, P. K. (1991). Artificial neural systems: Foundations, paradigms, applications, and
implementations. New York: Pergamon Press.

– Pao Y (1989). Adaptive Pattern Recognition and Neural Networks. Reading, MA (US);
Addison-Wesley Publishing Co., Inc.

– Simpson, P. K. (1991). Artificial neural systems: Foundations, paradigms, applications,
and implementations. New York: Pergamon Press.

https://doi.org/10.21105/joss.02876

Autoencoder 3

– Philippidis, TP & Nikolaidis, VN & Kolaxis, JG. (1999). Unsupervised pattern recogni-
tion techniques for the prediction of composite failure. Journal of acoustic emission. 17.
69-81.

– Nikolaidis V.N., Makris I.A, Stavroyiannis S, "ANS-based preprocessing of company
performance indicators." Global Business and Economics Review 15.1 (2013): 49-58,
doi:10.1504/GBER.2013.050667.

See Also

More information and examples on using the package can be found in the following vignette:

vignette("manual", package='nnlib2Rcpp')

Related links:

• https://github.com/VNNikolaidis/nnlib2Rcpp

• Package manual in PDF format at https://github.com/VNNikolaidis/nnlib2Rcpp/blob/
master/doc/manual.pdf)

• Report bugs, issues and suggestions at https://github.com/VNNikolaidis/nnlib2Rcpp/
issues

Autoencoder Autoencoder NN

Description

A neural network for autoencoding data, projects data to a new set of variables.

Usage

Autoencoder(
data_in,
desired_new_dimension,
number_of_training_epochs,
learning_rate,
num_hidden_layers = 1L,
hidden_layer_size = 5L,
show_nn = FALSE)

Arguments

data_in data to be autoencoded, a numeric matrix, (2d, cases in rows, variables in columns).
It is recommended to be in [0 1] range.

desired_new_dimension

number of new variables to be produced. This is effectively the size (length) of
the special hidden layer that outputs the new variable values, thus the dimension
of the output vector space.

https://doi.org/10.1504/GBER.2013.050667
https://github.com/VNNikolaidis/nnlib2Rcpp
https://github.com/VNNikolaidis/nnlib2Rcpp/blob/master/doc/manual.pdf
https://github.com/VNNikolaidis/nnlib2Rcpp/blob/master/doc/manual.pdf
https://github.com/VNNikolaidis/nnlib2Rcpp/issues
https://github.com/VNNikolaidis/nnlib2Rcpp/issues

4 Autoencoder

number_of_training_epochs

number of training epochs, aka presentations of all training data to ANN during
training.

learning_rate the learning rate parameter of the Back-Propagation (BP) NN.
num_hidden_layers

number of hidden layers on each side of the special layer.
hidden_layer_size

number of nodes (processing elements or PEs) in each of the hidden layers. In
this implementation of Autoencoder all hidden layers are of the same length
(defined here), except for the special hidden layer (whose size is defined by
desired_new_dimension above).

show_nn boolean, option to display the (trained) ANN internal structure.

Value

Returns a numeric matrix containing the projected data.

Note

This Autoencoder NN employs a BP-type NN to perform a data pre-processing step baring simi-
larities to PCA since it too can be used for dimensionality reduction (Kramer 1991)(DeMers and
Cottrell 1993)(Hinton and Salakhutdinov 2006). Unlike PCA, an autoencoding NN can also ex-
pand the feature-space dimensions (as feature expansion methods do). The NN maps input vectors
to themselves via a special hidden layer (the coding layer, usually of different size than the input
vector length) from which the new data vectors are produced. Note: The internal BP PEs in com-
puting layers apply the logistic sigmoid threshold function, and their output is in [0 1] range. It
is recommended to use this range in your data as well. More for this particular autoencoder im-
plementation can be found in (Nikolaidis, Makris, and Stavroyiannis 2013). The method is not
deterministic and the mappings may be non-linear, depending on the NN topology.

(This function uses Rcpp to employ ’bpu_autoencoder_nn’ class in nnlib2.)

Author(s)

Vasilis N. Nikolaidis <vnnikolaidis@gmail.com>

References

Nikolaidis V.N., Makris I.A, Stavroyiannis S, "ANS-based preprocessing of company performance
indicators." Global Business and Economics Review 15.1 (2013): 49-58.

See Also

BP.

Examples

iris_s <- as.matrix(scale(iris[1:4]))
output_dim <- 2
epochs <- 100

BP-class 5

learning_rate <- 0.73
num_hidden_layers <-2
hidden_layer_size <- 5

out_data <- Autoencoder(iris_s, output_dim,
epochs, learning_rate,
num_hidden_layers, hidden_layer_size, FALSE)

plot(out_data,pch=21,
bg=c("red","green3","blue")[unclass(iris$Species)],
main="Randomly autoencoded Iris data")

BP-class Class "BP"

Description

Supervised Back-Propagation (BP) NN module, for encoding input-output mappings.

Extends

Class "RcppClass", directly.

All reference classes extend and inherit methods from "envRefClass".

Fields

.CppObject: Object of class C++Object ~~

.CppClassDef: Object of class activeBindingFunction ~~

.CppGenerator: Object of class activeBindingFunction ~~

Methods

encode(data_in, data_out, learning_rate, training_epochs, hidden_layers, hidden_layer_size):
Setup a new BP NN and encode input-output data pairs. Parameters are:

• data_in: numeric matrix, containing input vectors as rows. . It is recommended that
these values are in 0 to 1 range.

• data_out: numeric matrix, containing corresponding (desired) output vectors. It is rec-
ommended that these values are in 0 to 1 range.

• learning_rate: a number (preferably greater than 0 and less than 1) used in training.
• training_epochs: number of training epochs, aka single presentation iterations of all

training data pairs to the NN during training.
• hidden_layers: number of hidden layers to be created between input and output layers.
• hidden_layer_size: number of nodes (processing elements or PEs) in each of the hid-

den layers (all hidden layers are of the same length in this implementation of BP).

Note: to encode additional input-output vector pairs in an existing BP, use train_single or
train_multiple methods (see below).

6 BP-class

recall(data_in): Get output for a dataset (numeric matrix data_in) from the (trained) BP NN.

setup(input_dim, output_dim, learning_rate, hidden_layers, hidden_layer_size): Setup
the BP NN so it can be trained and used. Note: this is not needed if using encode. Parameters
are:

• input_dim: integer length of input vectors.
• output_dim: integer length of output vectors.
• learning_rate: a number (preferably greater than 0 and less than 1) used in training.
• hidden_layers: number of hidden layers to be created between input and output layers.
• hidden_layer_size: number of nodes (processing elements or PEs) in each of the hid-

den layers (all hidden layers are of the same length in this implementation of BP).

train_single (data_in, data_out): Encode an input-output vector pair in the BP NN. Only
performs a single training iteration (multiple may be required for proper encoding). Vector
sizes should be compatible to the current NN (as resulted from the encode or setup methods).
Returns error level indicator value.

train_multiple (data_in, data_out, training_epochs): Encode multiple input-output vec-
tor pairs stored in corresponding datasets. Performs multiple iterations in epochs (see encode).
Vector sizes should be compatible to the current NN (as resulted from the encode or setup
methods). Returns error level indicator value.

print(): print NN structure.

show(): print NN structure.

load(filename): retrieve the NN from specified file.

save(filename): save the NN to specified file.

The following methods are inherited (from the corresponding class): objectPointer ("RcppClass"),
initialize ("RcppClass"), show ("RcppClass")

Note

This R module maintains an internal Back-Propagation (BP) multilayer perceptron NN (described
in Simpson (1991) as the vanilla back-propagation algorithm), which can be used to store input-
output vector pairs. Since the nodes (PEs) in computing layers of this BP implementation apply the
logistic sigmoid threshold function, their output is in [0 1] range (and so should the desired output
vector values).

(This object uses Rcpp to employ ’bp_nn’ class in nnlib2.)

Author(s)

Vasilis N. Nikolaidis <vnnikolaidis@gmail.com>

References

Simpson, P. K. (1991). Artificial neural systems: Foundations, paradigms, applications, and imple-
mentations. New York: Pergamon Press.

See Also

Autoencoder.

BP-class 7

Examples

create some data...
iris_s <- as.matrix(scale(iris[1:4]))

use a randomply picked subset of (scaled) iris data for training
training_cases <- sample(1:nrow(iris_s), nrow(iris_s)/2,replace=FALSE)
train_set <- iris_s[training_cases,]
train_class_ids <- as.integer(iris$Species[training_cases])
train_num_cases <- nrow(train_set)
train_num_variables <- ncol(train_set)
train_num_classes <- max(train_class_ids)

create output dataset to be used for training, Here we encode class as 0s and 1s
train_set_data_out <- matrix(

data = 0,
nrow = train_num_cases,
ncol = train_num_classes)

now for each case, assign a 1 to the column corresponding to its class, 0 otherwise
(there must be a better R way to do this)
for(r in 1:train_num_cases) train_set_data_out[r,train_class_ids[r]]=1

done with data, let's use BP...
bp<-new("BP")

bp$encode(train_set,train_set_data_out,0.8,10000,2,4)

let's test by recalling the original training set...
bp_output <- bp$recall(train_set)

cat("- Using this demo's encoding, recalled class is:\n")
print(apply(bp_output,1,which.max))
cat("- BP success in recalling correct class is: ",

sum(apply(bp_output,1,which.max)==train_class_ids)," out of ",
train_num_cases, "\n")

Let's see how well it recalls the entire Iris set:
bp_output <- bp$recall(iris_s)

show output
cat("\n- Recalling entire Iris set returns:\n")
print(bp_output)
cat("- Using this demo's encoding, original class is:\n")
print(as.integer(iris$Species))
cat("- Using this demo's encoding, recalled class is:\n")
bp_classification <- apply(bp_output,1,which.max)
print(bp_classification)
cat("- BP success in recalling correct class is: ",

sum(apply(bp_output,1,which.max)==as.integer(iris$Species)),
"out of ", nrow(iris_s), "\n")

plot(iris_s, pch=bp_classification, main="Iris classified by a partialy trained BP (module)")

8 LVQs-class

LVQs-class Class "LVQs"

Description

Supervised Learning Vector Quantization (LVQ) NN module, for data classification.

Extends

Class "RcppClass", directly.

All reference classes extend and inherit methods from "envRefClass".

Fields

.CppObject: Object of class C++Object ~~

.CppClassDef: Object of class activeBindingFunction ~~

.CppGenerator: Object of class activeBindingFunction ~~

Methods

encode(data, desired_class_ids, training_epochs): Encode input and output (classification)
for a dataset using LVQ NN. Parameters are:

• data: training data, a numeric matrix, (2d, cases in rows, variables in columns). Data
should be in 0 to 1 range.

• desired_class_ids : vector of integers containing a desired class id for each training
data case (row). Should contain integers in 0 to n-1 range, where n is the number of
classes.

• training_epochs: integer, number of training epochs, aka presentations of all training
data to the NN during training.

recall(data_in): Get output (classification) for a dataset (numeric matrix data_in) from the
(trained) LVQ NN. The data_in dataset should be 2-d containing data cases (rows) to be
presented to the NN and is expected to have same number or columns as the original training
data. Returns a vector of integers containing a class id for each case (row).

print(): print NN structure.
show(): print NN structure.
load(filename): retrieve the NN from specified file.
save(filename): save the NN to specified file.

The following methods are inherited (from the corresponding class): objectPointer ("RcppClass"),
initialize ("RcppClass"), show ("RcppClass")

Note

The NN used in this module uses supervised training for data classification (described as Supervised
Learning LVQ in Simpson (1991)). Data should be scaled in 0 to 1 range.

(This module uses Rcpp to employ ’lvq_nn’ class in nnlib2.)

LVQu 9

Author(s)

Vasilis N. Nikolaidis <vnnikolaidis@gmail.com>

References

Simpson, P. K. (1991). Artificial neural systems: Foundations, paradigms, applications, and imple-
mentations. New York: Pergamon Press.

See Also

LVQu (unsupervised LVQ function).

Examples

LVQ expects data in 0 to 1 range, so scale some numeric data...
iris_s<-as.matrix(iris[1:4])
c_min<-apply(iris_s,2,FUN = "min")
c_max<-apply(iris_s,2,FUN = "max")
c_rng<-c_max-c_min
iris_s<-sweep(iris_s,2,FUN="-",c_min)
iris_s<-sweep(iris_s,2,FUN="/",c_rng)

create a vector of desired class ids (starting from 0):
iris_desired_class_ids<-as.integer(iris$Species)-1;

now create the NN:
lvq<-new("LVQs")

and train it:
lvq$encode(iris_s,iris_desired_class_ids,100)

recall the same data (a simple check of how well the LVQ was trained):
lvq_recalled_class_ids<-lvq$recall(iris_s);
plot(iris_s, pch=lvq_recalled_class_ids, main="LVQ recalled clusters (module)")

LVQu Unsupervised LVQ

Description

Unsupervised (clustering) Learning Vector Quantization (LVQ) NN.

Usage

LVQu(
data,
max_number_of_desired_clusters,
number_of_training_epochs,
neighborhood_size,
show_nn)

10 LVQu

Arguments

data data to be clustered, a numeric matrix, (2d, cases in rows, variables in columns).
Data should be in 0 to 1 range.

max_number_of_desired_clusters

clusters to be produced (at most)

number_of_training_epochs

number of training epochs, aka presentations of all training data to ANN during
training.

neighborhood_size

integer >=1, specifies affected neighbor output nodes during training. if 1 (Sin-
gle Winner) the ANN is somewhat similar to k-means.

show_nn boolean, option to display the (trained) ANN internal structure.

Value

Returns a vector of integers containing a cluster id for each data case (row).

Note

Function LVQu employs an unsupervised LVQ for clustering data (Kohonen 1988). This LVQ vari-
ant is described as Unsupervised Learning LVQ in Simpson (1991) and is a simplified 1-D version
of Self-Organizing-Map (SOM). Its parameter neighborhood_size controls the encoding mode
(where neighborhood_size=1 is Single-Winner Unsupervised encoding, similar to k-means, while
an odd valued neighborhood_size > 1 means Multiple-Winner Unsupervised encoding mode).
Initial weights are random (uniform distribution) in 0 to 1 range. As these weights represent cluster
center coordinates (the class reference vector), it is important that input data is also scaled to this
range.

(This function uses Rcpp to employ ’som_nn’ class in nnlib2.)

Author(s)

Vasilis N. Nikolaidis <vnnikolaidis@gmail.com>

References

Kohonen, T (1988). Self-Organization and Associative Memory, Springer-Verlag.; Simpson, P. K.
(1991). Artificial neural systems: Foundations, paradigms, applications, and implementations. New
York: Pergamon Press.

Philippidis, TP & Nikolaidis, VN & Kolaxis, JG. (1999). Unsupervised pattern recognition tech-
niques for the prediction of composite failure. Journal of acoustic emission. 17. 69-81.

See Also

LVQs (supervised LVQ module),

MAM-class 11

Examples

LVQ expects data in 0 to 1 range, so scale...
iris_s<-as.matrix(iris[1:4])
c_min<-apply(iris_s,2,FUN = "min")
c_max<-apply(iris_s,2,FUN = "max")
c_rng<-c_max-c_min
iris_s<-sweep(iris_s,2,FUN="-",c_min)
iris_s<-sweep(iris_s,2,FUN="/",c_rng)

cluster_ids<-LVQu(iris_s,5,100)
plot(iris_s, pch=cluster_ids, main="LVQ-clustered Iris data")

MAM-class Class "MAM"

Description

A single Matrix Associative Memory (MAM) implemented as a (supervised) NN.

Extends

Class "RcppClass", directly.

All reference classes extend and inherit methods from "envRefClass".

Fields

.CppObject: Object of class C++Object ~~

.CppClassDef: Object of class activeBindingFunction ~~

.CppGenerator: Object of class activeBindingFunction ~~

Methods

encode(data_in, data_out): Setup a new MAM NN and encode input-output data pairs. Pa-
rameters are:

• data_in: numeric matrix, input data to be encoded in MAM, a numeric matrix (2d, of
n rows). Each row will be paired to the corresponding data_out row, forming an input-
output vector pair.

• data_out: numeric matrix, output data to be encoded in MAM, a numeric matrix (2d,
also of n rows). Each row will be paired to the corresponding data_in row, forming an
input-output vector pair.

Note: to encode additional input-output vector pairs in an existing MAM, use train_single
method (see below).

recall(data): Get output for a dataset (numeric matrix data) from the (trained) MAM NN.

train_single (data_in, data_out): Encode an input-output vector pair in the MAM NN. Vec-
tor sizes should be compatible to the current NN (as resulted from the encode method).

12 MAM-class

print(): print NN structure.

show(): print NN structure.

load(filename): retrieve the NN from specified file.

save(filename): save the NN to specified file.

The following methods are inherited (from the corresponding class): objectPointer ("RcppClass"),
initialize ("RcppClass"), show ("RcppClass")

Note

The NN in this module uses supervised training to store input-output vector pairs.

(This function uses Rcpp to employ ’mam_nn’ class in nnlib2.)

Author(s)

Vasilis N. Nikolaidis <vnnikolaidis@gmail.com>

References

Pao Y (1989). Adaptive Pattern Recognition and Neural Networks. Reading, MA (US); Addison-
Wesley Publishing Co., Inc.

See Also

BP,LVQs.

Examples

iris_s <- as.matrix(scale(iris[1:4]))
class_ids <- as.integer(iris$Species)
num_classes <- max(class_ids)

create output dataset to be used for training, Here we encode class as -1s and 1s
iris_data_out <- matrix(data = -1, nrow = nrow(iris_s), ncol = num_classes)

now for each case, assign a 1 to the column corresponding to its class
for(r in 1:nrow(iris_data_out)) iris_data_out[r,class_ids[r]]=1

Finally apply MAM:
Encode train pairs in MAM and then get output dataset by recalling the test data.

mam <- new("MAM")

mam$encode(iris_s,iris_data_out)

test the encoding by recalling the original input data...
mam_data_out <- mam$recall(iris_s)

find which MAM output has the largest value and use this as the final cluster tag.
mam_recalled_cluster_ids = apply(mam_data_out,1,which.max)

NN-class 13

plot(iris_s, pch=mam_recalled_cluster_ids, main="MAM recalled Iris data classes")

cat("MAM recalled these IDs:\n")
print(mam_recalled_cluster_ids)

NN-class Class "NN"

Description

NN module, for defining and manipulating custom neural networks.

Extends

Class "RcppClass", directly.

All reference classes extend and inherit methods from "envRefClass".

Fields

.CppObject: Object of class C++Object ~~

.CppClassDef: Object of class activeBindingFunction ~~

.CppGenerator: Object of class activeBindingFunction ~~

Methods

add_layer(name, size): Setup a new layer component (a layer of processing nodes) and ap-
pend it to the NN topology. Parameters are:

• name: string, containing name (that also Specifies type) of new layer. Names of prede-
fined layers currently include 'pe'(same as 'generic'), 'pass-through', 'which-max',
'MAM', 'LVQ-input', 'LVQ-output', 'BP-hidden', 'BP-output', 'perceptron' (ad-
ditional names for user-defined components may be used, see note below.)

• size: integer, layer size i.e. number of pe (Processing Elements or nodes) to create in
the layer.

add_connection_set(name): Create a new empty connection_set component (a set of con-
nections between two layers). It does not connect any layers nor contain any connections
between specific layer nodes. The set is appended to the NN topology. Parameters are:

• name: string, containing name (that also specifies type) of new empty connection set.
Names of predefined connection sets currently include 'generic', 'pass-through'(which
does not multiply weights), 'wpass-through'(which does multiply weights), 'MAM',
'LVQ', 'BP', 'perceptron' (additional names for user-defined components may be used,
see note below).

create_connections_in_sets(min_random_weight, max_random_weight): Find empty, un-
connected connection_set components that are between two layers in the topology, and
set them up to connect the adjacent layers, adding connections to fully connect their nodes (n
x m connections are created, with n and m the number of nodes at each layer respectively).
Parameters are:

14 NN-class

• min_random_weight: double, minimum value for random initial connection weights.
• max_random_weight: double, maximum value for random initial connection weights.

connect_layers_at(source_pos, destin_pos, name): Insert a new empty connection_set
component (a set of connections between two layers) between the layers at specified topology
positions, and prepare it to connect them. No actual connections between any layer nodes are
created. Parameters are:

• source_pos: integer, position in topology of source layer.
• destin_pos: integer, position in topology of destination layer.
• name: string, containing name (that also specifies type) of new connection set (see above).

fully_connect_layers_at(source_pos, destin_pos, name, min_random_weight, max_random_weight):
Same as connect_layers_at but also fills the new connection_set with connections be-
tween the nodes of the two layers, fully connecting the layers (n x m connections are created,
with n and m the number of nodes at each layer respectively). Parameters are:

• source_pos: integer, position in topology of source layer.
• destin_pos: integer, position in topology of destination layer.
• name: string, containing name (that also specifies type) of new connection set (see above).
• min_random_weight: double, minimum value for random initial connection weights.
• max_random_weight: double, maximum value for random initial connection weights.

add_single_connection(pos, source_pe, destin_pe, weight): Add a connection to a connection_set
that already connects two layers. Parameters are:

• pos: integer, position in topology of connection_set to which the new connection will
be added.

• source_pe: integer, pe in source layer to connect.
• destin_pe: integer, pe in destination layer to connect.
• weight: double, value for initial connection weight.

remove_single_connection(pos, con): Remove a connection from a connection_set. Pa-
rameters are:

• pos: integer, position in topology of connection_set.
• con: integer, connection to remove.

size(): Returns neural network size, i.e. the number of components its topology.

sizes(): Returns sizes of components in topology.

component_ids(): Returns an integer vector containing the ids of the components in topology
(these ids are created at run-time and identify each NN component).

input_at(pos, data_in): Input a data vector to the component (layer) at specified topology
index. Returns TRUE if successful. Parameters are:

• pos: integer, position in topology of component to receive input.
• data_in: NumericVector, data to be sent as input to component (sizes must match).

encode_at(pos): Trigger the encoding operation of the component at specified topology index
(note: depending on implementation, an ’encode’ operation usually collects inputs, processes
the data, adjusts internal state variables and/or weights, and possibly produces output). Re-
turns TRUE if successful. Parameters are:

• pos: integer, position in topology of component to perform encoding.

NN-class 15

recall_at(pos): Trigger the recall (mapping, data retrieval) operation of the component at spec-
ified topology index (note: depending on implementation, a ’recall’ operation usually collects
inputs, processes the data, and produces output). Returns TRUE if successful. Parameters are:

• pos: integer, position in topology of component to perform recall.

encode_all(fwd): Trigger the encoding operation of all the components in the NN topology.
Returns TRUE if successful. Parameters are:

• fwd: logical, set to TRUE to encode forwards (first-to-last component), FALSE to encode
backwards (last-to-first component).

encode_dataset_unsupervised(data, pos, epochs, fwd): Encode a dataset using unsuper-
vised training. A faster method to encode a data set. All the components in the NN topology
will perform ’encode’ in specified direction. Returns TRUE if successful. Parameters are:

• data: numeric matrix, containing input vectors as rows.
• pos: integer, position in topology of component to receive input vectors.
• epochs: integer, number of training epochs (encoding repetitions of the entire dataset).
• fwd: logical, indicates direction, TRUE to trigger encoding forwards (first-to-last compo-

nent), FALSE to encode backwards (last-to-first component).

encode_datasets_supervised(i_data, i_pos, j_data, j_pos, j_destination_register, epochs, fwd):
Encode multiple (i,j) vector pairs stored in two corresponding data sets, using supervised train-
ing. A faster method to encode the data. All the components in the NN topology will perform
’encode’ in specified direction. Returns TRUE if successful. Parameters are:

• i_data: numeric matrix, data set, each row is a vector i of vector-pair (i,j).
• i_pos: integer, position in topology of component to receive i vectors.
• j_data: numeric matrix, data set, each row is a corresponding vector j of vector-pair (i,j).
• j_pos: integer, position in topology of component to receive j vectors.
• j_destination_selector: integer, selects which internal node (pe) registers will re-

ceive vector j, i.e. if 0 internal node register ’input’ will be used (j will become the
layer’s input), if 1 register ’output’ will be used (j will become the layer’s output), if
2 register ’misc’ will be used (implementations may use this as an alternative way to
transfer data to nodes without altering current input or output).

• epochs: integer, number of training epochs (encoding repetitions of the entire data).
• fwd: logical, indicates direction, TRUE to trigger encoding forwards (first-to-last compo-

nent), FALSE to encode backwards (last-to-first component).

recall_dataset(data_in, input_pos, output_pos, fwd): Recall (map, retrieve output for) a
dataset. A faster method to recall an entire data set. All the components in the NN topology
will perform ’recall’ in specified direction. Returns numeric matrix containing corresponding
output. Parameters are:

• data_in: numeric matrix, containing input vectors as rows.
• input_pos: integer, position in topology of component to receive input vectors.
• output_pos: integer, position in topology of component to produce output.
• fwd: logical, indicates direction, TRUE to trigger ’recall’ (mapping) forwards (first-to-last

component), FALSE to recall backwards (last-to-first component).

recall_all(fwd): Trigger the recall (mapping, data retrieval) operation of all the components in
the NN topology. Returns TRUE if successful. Parameters are:

16 NN-class

• fwd: logical, set to TRUE to recall forwards (first-to-last component), FALSE to recall
backwards (last-to-first component).

get_output_from(pos): Get the current output of the component at specified topology index. If
successful, returns NumericVector of output values. Parameters are:

• pos: integer, position in topology of component to use.
get_output_at(pos): Same as get_output_from, see above.
get_input_at(pos): Get the current input of the component at specified topology index (de-

pends on the implementation: for layers, this may be valid after the pes (nodes) have per-
formed their input_function on incoming values; pes have an overridable input_function
that collects all incoming values and produces a single value for further processing which is
stored at an internal input register (whose value is retrieved here); by default input_function
performs summation. If successful, returns NumericVector of final input values. Parameters
are:

• pos: integer, position in topology of component to use.
get_weights_at(pos): Get the current weights of the component (connection_set) at speci-

fied topology index. If successful, returns NumericVector of connection weights. Parameters
are:

• pos: integer, position in topology of component to use.
get_weight_at(pos, connection): Get the current weight of a connection in component (connection_set)

at specified topology index. If successful, returns weight, otherwise 0. Parameters are:
• pos: integer, position in topology of component to use.
• connection: connection to use.

set_weight_at(pos, connection, value): Set the weight of a connection in component (connection_set)
at specified topology index. If successful, returns TRUE. Parameters are:

• pos: integer, position in topology of component to use.
• connection: connection to use.
• value: new weight for connection.

set_misc_values_at(pos, data_in): Set the values in the misc data register that pe and connection
objects maintain, for objects at specified topology index. If successful, returns TRUE. Param-
eters are:

• pos: integer, position in topology of component to use.
• data_in: NumericVector, data to be used for new values in misc registers (sizes must

match).
set_output_at(pos, data_in): Set the values in the output data register that pe objects main-

tain, for layer at specified topology index (currenly only layer components are supported).
If successful, returns TRUE. Parameters are:

• pos: integer, position in topology of component to use.
• data_in: NumericVector, data to be used for new values in misc registers (sizes must

match).
outline(): Print a summary description of all components in topology.
print(): Print internal NN state, including all components in topology.
show(): Print summary description and internal NN state.

The following methods are inherited (from the corresponding class): objectPointer ("RcppClass"),
initialize ("RcppClass"), show ("RcppClass")

NN-class 17

Note

This R module maintains a generic neural network that can be manipulated using the provided meth-
ods. In addition to predefined, new neural network components can be defined and then employed
by the "NN" module. Currently, definition of new components must be done in C++, requires the
package source code (which includes the nnlib2 C++ library of neural network base classes) and
the ability to compile it. In particular:

• Any new component type or class definition can be added to a single header file called
"additional_parts.h" (which is included in the package source). All new components to
be employed by the NN module must be defined in this file (or be accessible from functions in
this file).

• New layer, connection_set, pe or connection definitions must comply (at least loosely)
to the nnlib2 base class hierarchy and structure and follow the related guidelines. Note: some
minimal examples of class and type definitions can be found in the "additional_parts.h"
file itself.

• A textual name must be assigned to any new layer or connection_set, to be used as pa-
rameter in NN module methods that require a name to create a component. This can be
as simple as a single line of code where given the textual name the corresponding com-
ponent object is created and returned. This code must be added (as appropriate) to either
generate_custom_layer() or generate_custom_connection_set() functions found in
the same "additional_parts.h" header file. Note: example entries can be found in these
functions at the "additional_parts.h" file.

More information on expanding the library with new types of NN components (nodes, layers, con-
nections etc) and models, can be found in the package’s vignette as well as the related repository on
Github). Please consider submitting any useful components you create, to enrich future versions of
the package.

Author(s)

Vasilis N. Nikolaidis <vnnikolaidis@gmail.com>

See Also

BP, LVQs, MAM.

Examples

Example 1:

(1.A) create new 'NN' object:

n <- new("NN")

(1.B) Add topology components:

1. add a layer of 4 generic nodes:
n$add_layer("generic",4)
2. add a set for connections that pass data unmodified:
n$add_connection_set("pass-through")

https://github.com/VNNikolaidis/nnlib2Rcpp
https://github.com/VNNikolaidis/nnlib2Rcpp

18 NN-class

3. add another layer of 2 generic nodes:
n$add_layer("generic",2)
4. add a set for connections that pass data x weight:
n$add_connection_set("wpass-through")
5. add a layer of 1 generic node:
n$add_layer("generic",1)
Create actual full connections in sets, random initial weights in [0,1]:
n$create_connections_in_sets(0,1)
Optionaly, show an outline of the topology:
n$outline()

(1.C) use the network.

input some data, and create output for it:
n$input_at(1,c(10,20,30,40))
n$recall_all(TRUE)
the final output:
n$get_output_from(5)

(1.D) optionally, examine the network:

the input at first layer at position 1:
n$get_input_at(1)
Data is passed unmodified through connections at position 2,
and (by default) summed together at each node of layer at position 3.
Final output from layer in position 3:
n$get_output_from(3)
Data is then passed multiplied by the random weights through
connections at position 4. The weights of these connections:
n$get_weights_at(4)
Data is finally summed together at the node of layer at position 5,
producing the final output, which (again) is:
n$get_output_from(5)

Example 2: A simple MAM NN

(2.A) Preparation:

Create data pairs

iris_data <- as.matrix(scale(iris[1:4]))
iris_species <- matrix(data=-1, nrow=nrow(iris_data), ncol=3)
for(r in 1:nrow(iris_data))
iris_species[r ,as.integer(iris$Species)[r]]=1

Create the NN and its components:

m <- new("NN")
m$add_layer("generic" , 4)
m$add_layer("generic" , 3)
m$fully_connect_layers_at(1, 2, "MAM", 0, 0)

(2.B) Use the NN to store iris (data,species) pair:

NN-class 19

encode pairs in NN:

m$encode_datasets_supervised(
iris_data,1,
iris_species,3,0,
1,TRUE)

(2.C) Recall iris species from NN:

recalled_data <- m$recall_dataset(iris_data,1,3,TRUE)

(2.D) Convert recalled data to ids and plot results:

recalled_ids <- apply(recalled_data, 1, which.max)
plot(iris_data, pch=recalled_ids)

Index

∗ classes
BP-class, 5
LVQs-class, 8
MAM-class, 11
NN-class, 13

∗ classif
LVQu, 9

∗ neural
Autoencoder, 3
LVQu, 9

Autoencoder, 2, 3, 6

BP, 2, 4, 12, 17
BP (BP-class), 5
BP-class, 5

C++Object-class (NN-class), 13

envRefClass, 5, 8, 11, 13

LVQs, 2, 10, 12, 17
LVQs (LVQs-class), 8
LVQs-class, 8
LVQu, 2, 9, 9

MAM, 2, 17
MAM (MAM-class), 11
MAM-class, 11

NN, 2
NN (NN-class), 13
NN-class, 13
nn-class (NN-class), 13
nnlib2Rcpp (nnlib2Rcpp-package), 2
nnlib2Rcpp-package, 2

Rcpp_BP (BP-class), 5
Rcpp_BP-class (BP-class), 5
Rcpp_LVQs-class (LVQs-class), 8
Rcpp_MAM (MAM-class), 11

Rcpp_MAM-class (MAM-class), 11
Rcpp_NN (NN-class), 13
Rcpp_NN-class (NN-class), 13
RcppClass, 5, 8, 11, 13
RcppClass-class (NN-class), 13

SOM (LVQu), 9

20

	nnlib2Rcpp-package
	Autoencoder
	BP-class
	LVQs-class
	LVQu
	MAM-class
	NN-class
	Index

