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2 desvar

optimStrat-package optimStrat

Description

OptimStrat is a package intended to assist in the choice of the sample strategy to implement in a
survey. It allows for calculating the variance and the expected variance of several sampling strate-
gies.

Details

The package includes a function to calculate the design variance of several sampling strategies. It
also includes a function to calculate the expected variance under a superpopuation model and a
web-based application where the user can compare five sampling strategies in order to determine
which one to implement in a survey.

Author(s)

Edgar Bueno

References

Bueno, E. (2018). A Comparison of Stratified Simple Random Sampling and Probability Proporional-
to-size Sampling. Research Report, Department of Statistics, Stockholm University 2018:6. http:
//gauss.stat.su.se/rr/RR2018_6.pdf.

desvar Design variance

Description

Compute the design variance of six sampling strategies.

Usage

desvar(y, x, n, H, d2, d4)

Arguments

y a numeric vector giving the values of the study variable.
x a positive numeric vector giving the values of the auxiliary variable.
n a positive integer indicating the desired sample size.
H a positive integer giving the desired number of strata/poststrata.
d2 a number giving the assumed shape of the trend term in the superpopulation

model.
d4 a number giving the assumed shape of the spread term in the superpopulation

model.

http://gauss.stat.su.se/rr/RR2018_6.pdf
http://gauss.stat.su.se/rr/RR2018_6.pdf
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Details

The design variance of a sample of size n is computed for six sampling strategies (stsi–HT, πps–
HT, stsi–pos, πps–pos, stsi–reg and πps–pos). The strategies are defined assuming that there is an
underlying superpopulation model of the form

Yk = δ0 + δ1x
δ2
k + εk

with Eεk = 0, V εk = δ23x
2δ4
k and Cov(εk, εl) = 0.

The number of strata/poststrata is given by H.

Value

A vector of length six with the variance of the six sampling strategies.

References

Bueno, E. (2018). A Comparison of Stratified Simple Random Sampling and Probability Proporional-
to-size Sampling. Research Report, Department of Statistics, Stockholm University 2018:6. http:
//gauss.stat.su.se/rr/RR2018_6.pdf.

See Also

expvar for the expected variance of five sampling strategies.

Examples

f<- function(x,b0,b1,b2,...) {b0+b1*x^b2}
g<- function(x,b3,...) {x^b3}
x<- 1 + sort( rgamma(5000, shape=4/9, scale=108) )
y<- simulatey(x,f,g,dist="gamma",b0=10,b1=1,b2=1.25,b3=0.5,rho=0.90)

desvar(y,x,n=500,H=6,d2=1.25,d4=0.50)
desvar(y,x,n=500,H=6,d2=1.00,d4=1.00)

expgreg Expected variance of the general regression estimator

Description

Compute the expected design variance of the general regression estimator of the total of a study
variable under different sampling designs.

Usage

expgreg(x, b11, b12, b21, b22, d12, Rfy, n, design = NULL,
stratum = NULL, x_des = NULL, inc.p = NULL, ...)

http://gauss.stat.su.se/rr/RR2018_6.pdf
http://gauss.stat.su.se/rr/RR2018_6.pdf
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Arguments

x design matrix with the variables to be used into the GREG estimator.

b11 a numeric vector of length equal to the number of variables in x giving the
coefficients of the trend term in the true superpopulation model (see ‘Details’).

b12 a numeric vector of length equal to the number of variables in x giving the
exponents of the trend term in the true superpopulation model (see ‘Details’).

b21 a numeric vector of length equal to the number of variables in x giving the
coefficients of the spread term in the true superpopulation model (see ‘Details’).

b22 a numeric vector of length equal to the number of variables in x giving the
exponents of the spread term in the true superpopulation model (see ‘Details’).

d12 a numeric vector of length equal to the number of variables in x giving the ex-
ponents of the trend term in the assumed superpopulation model (see ‘Details’).

Rfy a number giving the square root of the coefficient of determination between the
auxiliary variables and the study varible.

n either a positive number indicating the (expected) sample size (when design
is one of ’srs’, ’poi’, ’pips’ or NULL) or a numeric vector indicating the sample
size of the strata to which each element belongs (when design is ’stsi’) (see
‘Examples’).

design a character string giving the sampling design. It must be one of ’srs’ (simple ran-
dom sampling without replacement), ’poi’ (Poisson sampling), ’stsi’ (stratified
simple random sampling), ’pips’ (Pareto πps sampling) or NULL (see ‘Details’).

stratum a vector indicating the stratum to which every unit belongs. Only used if design
is ’stsi’.

x_des a positive numeric vector giving the values of the auxiliary variable that is used
for defining the inclusion probabilities. Only used if design is ’poi’ or ’pips’.

inc.p a matrix giving the first and second order inclusion probabilities. Only used if
design is NULL.

... other arguments passed to lm (see ‘Details’).

Details

The expected variance of the general regression estimator under different sampling designs is com-
puted.

It is assumed that the underlying superpopulation model is of the form

Yk = f(xk|δ1) + εk

with Eεk = 0, V εk = σ2
0g

2(xk|δ2) and Cov(εk, εl) = 0.

But the true generating model is in fact of the form

Yk = f(xk|β1) + εk

with Eεk = 0, V εk = σ2g2(xk|β2) and Cov(εk, εl) = 0.
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Where

f(xk|δ1) =

J∑
j=1

δ1,jx
δ1,J+j

jk ,

g(xk|δ2) =

J∑
j=1

δ2,jx
δ2,J+j

jk ,

f(xk|β1) =

J∑
j=1

β1,jx
β1,J+j

jk ,

g(xk|β2) =

J∑
j=1

β2,jx
β2,J+j

jk .

• the coefficients β1,j (j = 1, · · · , J) are given by b11;

• the exponents β1,j (j = J + 1, · · · , 2J) are given by b12;

• the coefficients β2,j (j = 1, · · · , J) are given by b21;

• the exponents β2,j (j = J + 1, · · · , 2J) are given by b22;

• the exponents δ1,j (j = J + 1, · · · , 2J) are given by d12.

The expected variance of the GREG estimator is approximated by

E
(
V
(
t̂
))

= V
(
t̂z
)

+ σ̂2
N∑
k=1

(
1

πk
− 1

)
g2(xk|β2)

where

V
(
t̂z
)

=

N∑
k=1

N∑
l=1

πkl
zk
πk

zl
πl
−

(
N∑
k=1

zk

)2

and

σ̂2 =
S2
f

ḡ2

(
1

R2
fy

− 1

)
,

zk =
(
xβk − x

δ
kA
)
β∗∗1 ,

S2
f =

N∑
k=1

(f(xk|β1)− f̄)2/N,

ḡ2 =

N∑
k=1

g(xk|β2)2/N,

xβk =
(
x
β1,J+1

1k , · · · , xβ1,2J

Jk

)
,

xδk =
(
x
δ1,J+1

1k , · · · , xδ1,2JJk

)
,

β∗∗1 = (β1,1, · · · , β1,J)′,
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A =

(
N∑
k=1

wkx
δ′

k x
δ
k

)−1 N∑
k=1

wkx
δ′

k x
β
k .

N is the population size and πk and πkl are, respectively, the first and second order inclusion prob-
abilities. wk is a weight associated to each element and it represents the inverse of the conditional
variance (up to a scalar) of the underlying superpopulation model (see ‘Examples’).

If design=NULL, the matrix of inclusion probabilities is obtained proportional to the matrix p.inc.
If design is other than NULL, the formula for the variance is simplified in such a way that the
inclusion probabilities matrix is no longer necessary. In particular:

• if design='srs', only the sample size n is required;

• if design='stsi', both the stratum ID stratum and the sample size per stratum n, are re-
quired;

• if design is either 'pips' or 'poi', the inclusion probabilities are obtained proportional to
the values of x_des, corrected if necessary.

Value

A numeric value giving the expected variance of the general regression estimator for the desired
design under the working and true models.

References

Bueno, E. (2018). A Comparison of Stratified Simple Random Sampling and Probability Proportional-
to-size Sampling. Research Report, Department of Statistics, Stockholm University 2018:6. http:
//gauss.stat.su.se/rr/RR2018_6.pdf.

See Also

expvar for the simultaneous calculation of the expected variance of five sampling strategies under
a superpopulation model; vargreg for the variance of the GREG estimator; desvar for the simulta-
neous calculation of the variance of six sampling strategies; optimApp for an interactive application
of expgreg.

Examples

x1<- 1 + sort( rgamma(5000, shape=4/9, scale=108) )
x2<- 1 + sort( rgamma(5000, shape=4/9, scale=108) )
x3<- 1 + sort( rgamma(5000, shape=4/9, scale=108) )
x<- cbind(x1,x2,x3)
expgreg(x,b11=c(1,-1,0),b12=c(1,1,0),b21=c(0,0,1),b22=c(0,0,0.5),

d12=c(1,1,0),Rfy=0.8,n=150,"pips",x_des=x3)
expgreg(x,b11=c(1,-1,0),b12=c(1,1,0),b21=c(0,0,1),b22=c(0,0,0.5),

d12=c(1,1,0),Rfy=0.8,n=150,"pips",x_des=x2)
expgreg(x,b11=c(1,-1,0),b12=c(1,1,0),b21=c(0,0,1),b22=c(0,0,0.5),

d12=c(1,1,0),Rfy=0.8,n=150,"pips",x_des=x2,weights=1/x1)

st1<- optiallo(n=150,x=x3,H=6)
expgreg(x,b11=c(1,-1,0),b12=c(1,1,0),b21=c(0,0,1),b22=c(0,0,0.5),

d12=c(1,1,0),Rfy=0.8,n=st1$nh,"stsi",stratum=st1$stratum)

http://gauss.stat.su.se/rr/RR2018_6.pdf
http://gauss.stat.su.se/rr/RR2018_6.pdf
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expgreg(x,b11=c(1,-1,0),b12=c(1,1,0),b21=c(0,0,1),b22=c(0,0,0.5),
d12=c(1,0,1),Rfy=0.8,n=st1$nh,"stsi",stratum=st1$stratum)

expgreg(x,b11=c(1,-1,0),b12=c(1,1,0),b21=c(0,0,1),b22=c(0,0,0.5),
d12=c(1,0,1),Rfy=0.8,n=st1$nh,"stsi",stratum=st1$stratum,weights=1/x1)

expvar Expected variance

Description

Compute the expected variance of five sampling strategies.

Usage

expvar(b, d, x, n, H, Rxy, stratum1 = NULL, stratum2 = NULL, st = 1:5,
short = FALSE)

Arguments

b a numeric vector of length two giving the true shapes of the trend and spread
terms.

d a numeric vector of length two giving the assumed shapes of the trend and spread
terms.

x a positive numeric vector giving the values of the auxiliary variable.

n a positive integer indicating the desired sample size.

H a positive integer giving the desired number of strata/poststrata. Ignored if
stratum1 and stratum2 are given.

Rxy a number giving the correlation between the auxiliary variable and the study
variable.

stratum1 a list giving stratum and sample sizes per stratum (see ‘Details’).

stratum2 a list giving stratum and sample sizes per stratum (see ‘Details’).

st a numeric vector indicating the strategies for which the expected variance is to
be calculated (see ‘Details’).

short logical. If FALSE (the default) a vector of length five is returned. If TRUE only
the strategies given by st are returned.

Details

The expected variance of a sample of size n is computed for five sampling strategies (πps–reg,
STSI–reg, STSI–HT, πps–pos and STSI–pos).

The strategies are defined assuming that the underlying superpopulation model is of the form

Yk = δ0 + δ1x
δ2
k + εk



8 expvar

with Eεk = 0, V εk = δ23x
2δ4
k and Cov(εk, εl) = 0. But the true generating model is of the form

Yk = β0 + β1x
β2

k + εk

with Eεk = 0, V εk = β2
3x

2β4

k and Cov(εk, εl) = 0.

The parameters β2 and β4 are given by b. The parameters δ2 and δ4 are given by d.

stratum1 and stratum2 are lists with two components (each with length length(x)): stratum
indicates the stratum to which each element belongs and nh indicates the sample sizes to be selected
in each stratum. They can be created via optiallo. stratum1 gives the stratification for STSI–
HT and the poststrata for πps–pos and STSI–pos; whereas stratum2 gives the stratification for
STSI–reg and STSI–pos. If NULL, optiallo is used for defining H strata/poststrata.

st indicates which variances to be calculated. If 1 in st, the expected variance of πps–reg is
calculated. If 2 in st, the expected variance of STSI–reg is calculated, and so on.

Value

If short=FALSE a vector of length five is returned giving the expected variance of the strategies
given in st. NA is returned for those strategies not given in st. If short=TRUE, the NAs are omitted.

References

Bueno, E. (2018). A Comparison of Stratified Simple Random Sampling and Probability Proportional-
to-size Sampling. Research Report, Department of Statistics, Stockholm University 2018:6. http:
//gauss.stat.su.se/rr/RR2018_6.pdf.

See Also

optiallo for how to stratify an auxiliary variable and allocate the sample size; desvar for calcu-
lating the variance of the five strategies.

Examples

x<- 1 + sort( rgamma(5000, shape=4/9, scale=108) )
expvar(b=c(1,1),d=c(1,1),x,n=500,H=6,Rxy=0.9)
expvar(b=c(1,1),d=c(1,1),x,n=500,H=6,Rxy=0.9,st=1:3)
expvar(b=c(1,1),d=c(1,1),x,n=500,H=6,Rxy=0.9,st=1:3,short=TRUE)

st1<- optiallo(n=500,x,H=6)
post1<- optiallo(n=500,x^1.5,H=10)
expvar(b=c(1,1),d=c(1,1),x,n=500,H=6,Rxy=0.9,

stratum1=post1,stratum2=st1)

http://gauss.stat.su.se/rr/RR2018_6.pdf
http://gauss.stat.su.se/rr/RR2018_6.pdf
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optiallo Optimal allocation in stratified simple random sampling

Description

Allocates a sample of size n using Neyman optimal allocation in Stratified Simple Random Sam-
pling.

Usage

optiallo(n, x, stratum = NULL, ...)

Arguments

n a positive integer indicating the desired sample size.

x a positive numeric vector giving the values of the auxiliary variable.

stratum a vector indicating the stratum to which every unit belongs (see ‘Details’).

... other arguments passed to stratify (see ‘Details’).

Details

Allocates a sample of size n using Neyman optimal allocation in Stratified Simple Random Sam-
pling.

If stratum==NULL, the stratification is generated via stratify. Then at least the number of strata
should be passed to stratify using the argument H.

Value

A list with two elements:

stratum a vector indicating the stratum to which each element belongs.

nh a vector indicating the sample size of the strata to which each element belongs.

See Also

stratify for defining the stratification using the cum-sqrt-rule.

Examples

x<- 1 + sort( rgamma(100, shape=4/9, scale=108) )
st1<- stratify(x,H=6)
optiallo(n=30,x,stratum=st1)

optiallo(n=30,x,H=6)
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optimApp Interactive Web-based Application of optimStrat

Description

Call Shiny to run a web-based application of optimStrat.

Usage

optimApp()

Author(s)

Edgar Bueno, <edgar.bueno@stat.su.se>

pinc Inclusion probabilities in a PIps design

Description

Compute the inclusion probabilities to be used in a PIps design with sample size equal to n.

Usage

pinc(n, x)

Arguments

n a positive integer indicating the desired sample size.

x a positive numeric vector giving the values of the auxiliary variable.

Details

The inclusion probabilities are calculated as n × xk/tx and corrected, if necessary, to ensure that
they are smaller or equal than one.

Value

A numeric vector giving the inclusion probability of each element.

Examples

x<- 1 + sort( rgamma(100, shape=4/9, scale=108) )
pinc(n=30,x)
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simulatey Simulate the Study Variable

Description

Simulate values for the study variable based on the auxiliary variable x and an assumed superpopu-
lation model.

Usage

simulatey(x, f, g, dist = "normal", rho = NULL, Sigma = NULL, ...)

Arguments

x a numeric vector giving the values of the auxiliary variable.

f the name of the function defining the desired trend (see ‘Details’).

g the name of the function defining the desired spread (see ‘Details’).

dist the desired distribution of the study variable conditioned on the auxiliary vari-
able. Either ’normal’ or ’gamma’ (see ‘Details’).

rho a number giving the absolute value of the desired correlation between x and the
vector to be simulated.

Sigma a nonnegative number giving the scale of the spread term in the superpopulation
model. Ignored if rho is given (see ‘Details’).

... other arguments passed to f and g (see ‘Details’).

Details

The values of the study variable y are simulated using a superpopulation model defined as:

Yk = f(xk) + εk

with E(εk) = 0, V (εk) = σ2g2(xk) and Cov(εk, εl) = 0 if k 6= l. Also Yk|f(xk) is distributed
according to dist.

f and g should return a vector of the same length of x. Their first argument should be x and they
should not share the name of any other argument. Both f and g should have the . . . argument (see
‘Examples’).

Note that Sigma defines the degree of association between x and y: the larger Sigma, the smaller
the correlation, rho, and vice versa. For this reason only one of them should be defined. If both are
defined, Sigma will be ignored.

Depending on the trend function f, some correlations cannot be reached. In those cases, Sigma will
automatically be set to zero, dist will automatically be set to ’normal’ and rho will be ignored (see
‘Examples’).

If the trend term takes negative values, dist will be automatically set to ’normal’.
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Value

A numeric vector giving the simulated value of y associated to each value in x.

Examples

f<- function(x,b0,b1,b2,...) {b0+b1*x^b2}
g<- function(x,b3,...) {x^b3}

x<- 1 + sort( rgamma(5000, shape=4/9, scale=108) )

#Linear trend and homocedasticity
y1<- simulatey(x,f,g,dist="normal",b0=0,b1=1,b2=1,b3=0,rho=0.90)
y2<- simulatey(x,f,g,dist="gamma",b0=0,b1=1,b2=1,b3=0,rho=0.90)

#Linear trend and heterocedasticity
y3<- simulatey(x,f,g,dist="normal",b0=0,b1=1,b2=1,b3=1,rho=0.90)
y4<- simulatey(x,f,g,dist="gamma",b0=0,b1=1,b2=1,b3=1,rho=0.90)

#Quadratic trend and homocedasticity
y5<- simulatey(x,f,g,dist="gamma",b0=0,b1=1,b2=2,b3=0,rho=0.80)

#Correlation of minus one
y6<- simulatey(x,f,g,dist="normal",b0=0,b1=-1,b2=1,b3=0,rho=1)

#Desired correlation cannot be attained
y7<- simulatey(x,f,g,dist="normal",b0=0,b1=1,b2=3,b3=0,rho=0.99)

#Negative expectation not possible under gamma distribution
y8<- simulatey(x,f,g,dist="gamma",b0=0,b1=-1,b2=1,b3=0,rho=1)

#Conditional variance of zero not possible under gamma distribution
y9<- simulatey(x,f,g,dist="gamma",b0=0,b1=1,b2=3,b3=0,rho=0.99)

skewness Sample Skewness

Description

Calculate the sample skewness.

Usage

skewness(x, na.rm = FALSE)

Arguments

x a numeric vector.

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.
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Details

Compute the sample skewness of x as

1
N

∑N
i=1 (xi − x̄)

3[
1

N−1
∑N
i=1 (xi − x̄)

2
]3/2

Value

A vector of length one giving the sample skewness of x.

Examples

x<- rnorm(1000)
skewness(x)

stratify Stratification of an Auxiliary Variable

Description

Stratify the auxiliary variable x into H strata using the cum-sqrt-rule.

Usage

stratify(x, H, forced = FALSE, J = NULL)

Arguments

x a positive numeric vector giving the values of the auxiliary variable.

H a positive integer smaller or equal than length(x) giving the desired number of
strata.

forced a logical value indicating if the number of strata must be exactly equal to H (see
‘Details’).

J a positive integer indicating the number of bins used for the cum-sqrt-rule.

Details

The cum-sqrt-rule is used in order to define H strata from the auxiliary vector x.

Depending on some characteristics of x, e.g. high skewness, few observations or too many ties, the
resulting stratification may have a number of strata other than H. Using forced = TRUE tries its best
to obtain exactly H strata.

Note that if length(x) < H then forced will be set to FALSE.

Value

A numeric vector giving the stratum to which each observation in x belongs.
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References

Sarndal, C.E., Swensson, B. and Wretman, J. (1992). Model Assisted Survey Sampling. Springer.

See Also

optiallo for allocating the sample into the strata using Neyman optimal allocation.

Examples

x<- 1 + sort( rgamma(100, shape=4/9, scale=108) )
stratify(x, H=3)

vargreg Design variance of the general regression estimator.

Description

Compute the (approximated) design variance of the general regression estimator of the total of a
study variable under different sampling designs.

Usage

vargreg(formula, design = NULL, n, stratum = NULL,
x_des = NULL, inc.p = NULL, ...)

Arguments

formula an object of class formula: a symbolic description of the model to be fitted. The
details of model specification are given under ‘Details’.

design a character string giving the sampling design. It must be one of ’srs’ (simple ran-
dom sampling without replacement), ’poi’ (Poisson sampling), ’stsi’ (stratified
simple random sampling), ’pips’ (Pareto πps sampling) or NULL (see ‘Details’).

n either a positive number indicating the (expected) sample size (when design
is one of ’srs’, ’poi’, ’pips’ or NULL) or a numeric vector indicating the sample
size of the strata to which each element belongs (when design is ’stsi’) (see
‘Examples’).

stratum a vector indicating the stratum to which every unit belongs. Only used if design
is ’stsi’.

x_des a positive numeric vector giving the values of the auxiliary variable that is used
for defining the inclusion probabilities. Only used if design is ’poi’ or ’pips’.

inc.p a matrix giving the first and second order inclusion probabilities. Only used if
design is NULL.

... other arguments passed to lm (see ‘Details’).
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Details

The formula should be of the form y~x, where y is the study variable and x are the auxiliary
variables used by the general regression (GREG) estimator, t̂,. See formula for more details and
‘Examples’ for typical expressions for some well-known estimators (e.g. the Horvitz-Thompson,
ratio, regression and poststratification estimators).

The variance of the GREG estimator is approximated by

AV
(
t̂
)

=

N∑
k=1

N∑
l=1

πkl
Ek
πk

El
πl
−

(
N∑
k=1

Ek

)2

where

Ek = yk − ŷk and ŷk = xkB with B =

(
N∑
k=1

wkx
′

kxk

)
N∑
k=1

wkx
′

kyk

N is the population size and πk and πkl are, respectively, the first and second order inclusion prob-
abilities. wk is a weight associated to each element and it represents the inverse of the conditional
variance (up to a scalar) of the underlying superpopulation model (see ‘Examples’).

If design=NULL, the matrix of inclusion probabilities is obtained proportional to the matrix p.inc.
If design is other than NULL, the formula for the variance is simplified in such a way that the
inclusion probabilities matrix is no longer necessary. In particular:

• if design='srs', only the sample size n is required;

• if design='stsi', both the stratum ID stratum and the sample size per stratum n, are re-
quired;

• if design is either 'pips' or 'poi', the inclusion probabilities are obtained proportional to
the values of x_des, corrected if necessary.

Value

A numeric value giving the variance of the general regression estimator under the desired design.

References

Sarndal, C.E., Swensson, B. and Wretman, J. (1992). Model Assisted Survey Sampling. Springer.

Rosen, B. (1997). On Sampling with Probability Proportional to Size. Journal of Statistical Plan-
ning and Inference 62, 159-191.

See Also

desvar for the simultaneous calculation of the variance of six sampling strategies; expgreg for the
expected variance of the GREG estimator under a superpopulation model; expvar for the simul-
taneous calculation of the expected variance of five sampling strategies under a superpopulation
model; optimApp for an interactive application of expgreg.
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Examples

f<- function(x,b0,b1,b2,...) {b0+b1*x^b2}
g<- function(x,b3,...) {x^b3}
x<- 1 + sort( rgamma(5000, shape=4/9, scale=108) )
y<- simulatey(x,f,g,dist="gamma",b0=10,b1=1,b2=1,b3=1,rho=0.95)

st1<- optiallo(n=100,x=x,H=6)
vargreg("y~0",design="srs",n=100) #SRS-HT
vargreg("y~0",design="poi",n=100,x_des=x) #Poi-HT
vargreg("y~0",design="stsi",n=st1$nh,stratum=st1$stratum) #STSI-HT
vargreg("y~0",design="pips",n=100,x_des=x) #PIPS-HT

vargreg("y~x-1",design="srs",n=100,weights=1/x) #SRS-ratio
vargreg("y~x-1",design="poi",n=100,x_des=x,weights=1/x) #Poi-ratio
vargreg("y~x-1",design="stsi",n=st1$nh,

stratum=st1$stratum,weights=1/x) #STSI-ratio
vargreg("y~x-1",design="pips",n=100,x_des=x,weights=1/x) #PIPS-ratio

vargreg("y~x",design="srs",n=100) #SRS-reg
vargreg("y~x",design="poi",n=100,x_des=x) #Poi-reg
vargreg("y~x",design="stsi",n=st1$nh,stratum=st1$stratum) #STSI-reg
vargreg("y~x",design="pips",n=100,x_des=x) #PIPS-reg

x2<- as.factor(st1$stratum)
vargreg("y~x2",design="srs",n=100) #SRS-pos
vargreg("y~x2",design="poi",n=100,x_des=x) #Poi-pos
vargreg("y~x2",design="stsi",n=st1$nh,stratum=st1$stratum) #STSI-pos
vargreg("y~x2",design="pips",n=100,x_des=x) #PIPS-pos

y2<- c(16,21,18)
x2<- y2
inc.probs<- matrix(c(8,5,4,5,7,3,4,3,6),3,3)
vargreg("y2~0",n=2.1,inc.p=inc.probs) #HT
vargreg("y2~x2-1",n=2.1,inc.p=inc.probs,weights=1/x2) #Ratio
vargreg("y2~x2",n=2.1,inc.p=inc.probs) #Regression
x3<- as.factor(c(1,2,2))
vargreg("y2~x3",n=2.1,inc.p=inc.probs) #Post.
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