optimizeR

CRAN status metacran downloads R-CMD-check Codecov test coverage

The {optimizeR} package provides a unified framework for numerical optimizers in R, particularly for their inputs and outputs.

What is the problem?

Look at the popular R optimizers nlm() and optim(): The function argument in nlm() is called f, in optim() it is fn. The argument for the initial values is called p in nlm(), and par in optim(). The optimal parameters and the optimal function values in the output of nlm() are labeled estimate and minimum, respectively, in optim() it is par and value. And all is different again with pracma::nelder_mead(). This inconsistency is painful, especially if one wants to apply and compare different optimizers.

Our solution

Simply specify optimizers with define_optimizer() and apply them with apply_optimizer(). The outputs are in a standardized format.

For demonstration, say we want to minimize the Ackley function

f_ackley <- function(x) {
  stopifnot(is.numeric(x), length(x) == 2)
  -20 * exp(-0.2 * sqrt(0.5 * (x[1]^2 + x[2]^2))) -
    exp(0.5 * (cos(2 * pi * x[1]) + cos(2 * pi * x[2]))) + exp(1) + 20
}

… and compare three optimizers: nlm(), optim(), and pracma::nelder_mead(). The first two are already pre-specified…

library("optimizeR")
#> ℹ Loading optimizeR
#> Thanks for using {optimizeR} 0.3.0.
optimizer_nlm()
#> <optimizer 'stats::nlm'>
optimizer_optim()
#> <optimizer 'stats::optim'>

… and for the latter (as for any other optimizer) we can use the general constructor:

optimizer_nelder_mead <- define_optimizer(
    optimizer = pracma::nelder_mead,
    objective = "fn",
    initial = "x0",
    value = "fmin",
    parameter = "xmin"
  )

Now we optimize (with initial parameter vector initial = c(-1,1)):

res <- lapply(
  list(optimizer_nlm(), optimizer_optim(), optimizer_nelder_mead),
  apply_optimizer, 
  objective = f_ackley, 
  initial = c(-1,1)
)
names(res) <- c("nlm", "optim", "nelder_mead")

In the optimization results, value and parameter consistently denote the optimal function values and the optimal parameters, while optimizer-specific outputs are preserved. The optimization time in seconds, seconds is automatically added.

str(res)
#> List of 3
#>  $ nlm        :List of 7
#>   ..$ value     : num 1.66e-06
#>   ..$ parameter : num [1:2] -2.91e-07 5.08e-07
#>   ..$ seconds   : num 0.0012
#>   ..$ initial   : num [1:2] -1 1
#>   ..$ gradient  : num [1:2] -0.00824 0.0144
#>   ..$ code      : int 2
#>   ..$ iterations: int 33
#>  $ optim      :List of 7
#>   ..$ value      : num 3.57
#>   ..$ parameter  : num [1:2] -0.969 0.969
#>   ..$ seconds    : num 0.000548
#>   ..$ initial    : num [1:2] -1 1
#>   ..$ counts     : Named int [1:2] 45 NA
#>   .. ..- attr(*, "names")= chr [1:2] "function" "gradient"
#>   ..$ convergence: int 0
#>   ..$ message    : NULL
#>  $ nelder_mead:List of 7
#>   ..$ value      : num 0
#>   ..$ parameter  : num [1:2] 0 0
#>   ..$ seconds    : num 0.00246
#>   ..$ initial    : num [1:2] -1 1
#>   ..$ count      : num 111
#>   ..$ convergence: num 0
#>   ..$ info       :List of 2
#>   .. ..$ solver  : chr "Nelder-Mead"
#>   .. ..$ restarts: num 0

P.S. Surprised that the optim result differs from the others? It seems that this optimizer got stuck in a local minimum.

Installation

You can install the released version of {optimizeR} from CRAN with:

install.packages("optimizeR")

…and the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("loelschlaeger/optimizeR")

Contact

Have a question, found a bug, request a feature, want to contribute? Please file an issue.