Package 'optrefine'

November 8, 2022

Title Optimally Refine Strata

Version 1.0.0

Description Splits initial strata into refined strata that optimize covariate balance. For more information, please email the author for a copy of the accompanying manuscript. To solve the linear program, the 'Gurobi' commercial optimization software is recommended, but not required. The 'gurobi' R package can be installed following the instructions at <https: //www.gurobi.com/documentation/9.1/refman/ins_the_r_package.html>.

URL https://github.com/kkbrum/optrefine,

https://kkbrum.github.io/optrefine/,

https://www.gurobi.com/documentation/9.1/refman/ins_the_r_package.html

BugReports https://github.com/kkbrum/optrefine/issues

License GPL (\geq = 3)

Encoding UTF-8

LazyData true

RoxygenNote 7.2.1

Depends R (>= 2.10), MASS, Rglpk, sampling, ggplot2

Suggests covr, gurobi, testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Author Katherine Brumberg [aut, cre] (<https://orcid.org/0000-0002-5193-6250>)

Maintainer Katherine Brumberg <kbrum@wharton.upenn.edu>

Repository CRAN

Date/Publication 2022-11-08 14:20:08 UTC

R topics documented:

best_sp	olit .											 •														2	2
calc_sn	nds .		•	•	•	•		•	•	•	•	 •						•	•	•				•	•	4	1
new_st	rat .	•	•	•	•	•		•	•	•	•	 •					•	•	•	•				•	•	5	5

olot.strat	5
print.strat	7
prop_strat	7
and_pvals	8
efine	10
hc_X	12
plit_stratum	13
strat	15
able_rand_pvals	16
/alidate_strat	17
	18

Index

best_split

Find the best split for a stratum

Description

Runs split_stratum() many times and selects the best result.

Usage

```
best_split(
    z,
    X,
    strata,
    ist,
    nc_list,
    nt_list,
    wMax = 5,
    wEach = 1,
    solver = "Rglpk",
    integer = FALSE,
    min_split = 10,
    threads = threads
)
```

Z	Vector of treatment assignment
Х	Covariate matrix or data.frame
strata	vector of initial strata assignments; only used if object is not supplied. Can be NULL, in which case an initial stratification using the quintiles of the propensity score is generated using prop_strat() and the generated propensity score is also added to the X matrix as an extra covariate
ist	the stratum to be split

best_split

nc_list	a list of choices for the nc parameter in split_stratum(). Each element is a vector with entries corresponding to the number of control units that should be placed in each new stratum
nt_list	a list of choices for the nt parameter in <pre>split_stratum()</pre> . Each element is a vector with entries corresponding to the number of treated units that should be placed in each new stratum
wMax	the weight the objective places on the maximum epsilon
wEach	the weight the objective places on each epsilon
solver	character specifying the optimization software to use. Options are "Rglpk" or "gurobi". The default is "gurobi"
integer	boolean whether to use integer programming instead of randomized rounding. Default is FALSE. It is not recommended to set this to TRUE as the problem may never finish
min_split	a numeric specifying the minimum number of each control and treated units to be tolerated in a stratum. Any combination of elements from nc_list and nt_list that violate this are skipped
threads	how many threads to use in the optimization if using "gurobi" as the solver. Default will use all available threads

Value

A list containing the following elements:

- valuesIP, valuesLP: matrices containing integer and linear programming scaled objective values for each sample size tried, with rows corresponding to the elements of nc_list and columns corresponding to the elements of nt_list
- besti, bestj: indices of the best sample sizes in nc_list and in nt_list, respectively
- n_smds: number of standardized mean differences contributing to the objective values (multiply the scaled objective values by this number to get the true objective values)
- n_fracs: number of units with fractional LP solutions in the best split
- rand_c_prop, rand_t_prop: proportions of the control and treated units in each stratum that were selected with randomness for the best split
- pr: linear programming solution for the best split, with rows corresponding to the strata and columns to the units
- selection: vector of selected strata for each unit in the initial stratum to be split for the best split

Examples

```
# Generate a small data set
set.seed(25)
samp <- sample(1:nrow(rhc_X), 1000)
cov_samp <- sample(1:26, 10)</pre>
```

```
calc_smds
```

Calculate standardized mean differences for initial and refined strata

Description

Summarizes initial and/or refined strata in terms of standardized mean differences (SMDs).

Usage

```
calc_smds(
  object = NULL,
  z = NULL,
  X = NULL,
  base_strata = NULL,
  refined_strata = NULL,
  abs = TRUE
)
```

Arguments

object	an optional object of class strat, typically created using strat() or as a result of a call to prop_strat(). If not provided, z and X must be specified
z	vector of treatment assignment; only used if object is not supplied
Х	covariate matrix/data.frame; only used if object is not supplied
base_strata	optional initial stratification for which to calculate SMDs; only used if object is not supplied
refined_strata	optional refined stratification for which to calculate SMDs; only used if object is not supplied
abs	boolean whether to return absolute standardized mean differences or raw values. Default is TRUE for absolute values

Value

List with two elements, "base" and "refined", each containing a matrix of standardized mean differences for each stratum (row) and covariate (column).

new_strat

Examples

```
# Choose 500 patients and 5 covariates to work with for the example
set.seed(15)
samp <- sample(1:nrow(rhc_X), 500)
cov_samp <- sample(1:26, 5)
# Let it create propensity score strata for you and then refine them
ref <- refine(X = rhc_X[samp, cov_samp], z = rhc_X[samp, "z"])
# Look at covariate balance for propensity score and refined strata
calc_smds(object = ref)
```

new_strat

Constructor for object of class "strat"

Description

Creates an object of S3 class "strat"

Usage

```
new_strat(z, X, base_strata = NULL, refined_strata = NULL, details = NULL)
```

Arguments

Z	Vector of treatment assignment
Х	Covariate matrix or data.frame
base_strata	Original strata, if they exist
refined_strata	Refined strata, if they exist
details	A list of details from the linear program. Also includes X_std if calculated

plot.strat

Plot diagnostics for a "strat" object

Description

Plots the standardized mean differences for strat objects in the format of Love (2002).

plot.strat

Usage

```
## S3 method for class 'strat'
plot(
    x,
    incl_none = TRUE,
    incl_base = TRUE,
    by_strata = FALSE,
    weighted_avg = FALSE,
    legend = c("No strata", "Base strata", "Refined strata"),
    ...
)
```

Arguments

х	object of S3 class 'strat'
incl_none	whether to plot imbalances before any stratification
incl_base	whether to plot imbalances for the base stratification (if one exists)
by_strata	whether to generate a list of plots, one for each base stratum if incl_base is TRUE, or one for each refined stratum if incl_base is FALSE. Not used if incl_none is TRUE
weighted_avg	whether to take the weighted average instead of the straight average when collapsing standardized mean differences across strata. Default is FALSE
legend	a vector of labels to use for the three stratifications on the plot. The correspond- ing label for any stratification that is not to be plotted must still be provided but will be ignored and can be set to NA
	further arguments passed to or from other methods

Value

Either a ggplot object for the Love plot of standardized mean differences or a list of such ggplot objects if by_strata is TRUE

References

Love, T. E. (2002), "Displaying covariate balance after adjustment for selection bias", Joint Statistical Meetings, yumpu.com/en/document/read/41664623.

Examples

```
# Choose 800 patients and 5 covariates to work with for the example
set.seed(28)
samp <- sample(1:nrow(rhc_X), 800)
cov_samp <- sample(1:26, 5)
ref <- refine(X = rhc_X[samp, cov_samp], z = rhc_X[samp, "z"])
plot(ref)
```

print.strat

Description

Print method for class "strat". Prints tables of numbers of control and treated units without strata and in initial and/or improved strata. Also displays average and maximum standardized mean difference for each stratification.

Usage

S3 method for class 'strat'
print(x, ...)

Arguments

х	object of S3 class 'strat'
	further arguments passed to or from other methods

Value

Returns x back invisibly and prints tables and statistics to the console

Examples

```
# Choose 750 patients and 5 covariates to work with for the example
set.seed(21)
samp <- sample(1:nrow(rhc_X), 750)
cov_samp <- sample(1:26, 5)
ref <- refine(X = rhc_X[samp, cov_samp], z = rhc_X[samp, "z"])
print(ref)
```

prop_strat Form propensity score strata

Description

Form initial propensity score strata to be improved upon by refine().

Usage

prop_strat(z, X, nstrata = 5)

rand_pvals

Arguments

Z	Vector of treatment assignment
Х	Covariate matrix or data.frame
nstrata	The number of strata to form

Value

Object of class "strat", which is a list containing z, X with the propensity score as an additional column, base_strata (a factor of the resulting propensity score strata), and details, (a list containing X_std , which is the standardized version of the new X)

Examples

```
rand_pvals
```

Generate P-values using empirical randomization null distribution

Description

Randomize the treatment assignment within strata to generate the randomization distribution of covariate balance given the strata and observed covariate values. Compare the observed covariate balance to this null distribution to calculate P-values.

Usage

```
rand_pvals(
   object = NULL,
   z = NULL,
   X = NULL,
   base_strata = NULL,
   refined_strata = NULL,
   options = list()
)
```

object	an optional object of class strat, typically created using strat() or as a result of a call to prop_strat() or refine(). If not provided, z and X must be specified
z	vector of treatment assignment; only used if object is not supplied
Х	covariate matrix/data.frame; only used if object is not supplied
base_strata	optional initial stratification for which to calculate the empirical randomization null distribution; only used if object is not supplied

rand_pvals

9

refined_strata	optional refined stratification for which to calculate the empirical randomization
	null distribution; only used if object is not supplied
options	list of additional options, listed in the details below

Details

The literature on multivariate matching has recently developed a new way of evaluating covariate imbalances, comparing the imbalances found in an observational matched sample to the imbalances that would have been produced in the same data by randomization (Pimentel et al. 2015, Yu 2021). We modify that approach for use with strata, randomizing patients within strata. For a given stratification, we create a large number of stratified randomized experiments, taking the actual patients in their actual strata, and randomizing them to treatment or control with fixed within-stratum sample sizes.

To investigate how the actual observational imbalance in covariates compares to covariate imbalance in the randomized experiments built from the same strata, patients and covariates, we look at 4 metrics- the scaled objective value, which is a weighted combination of the maximum and the sum of all SMDs, depending on the criterion argument, the maximum and average SMDs across covariates and strata, and the average SMD across strata for each covariate individually. For each of these metrics, we record the observational value, the median and minimum of the randomized values, and the proportion of randomized values more imbalanced than the observational value (the P-value).

The options list argument can contain any of the following elements:

- nrand: how many times to randomize the treatment assignment when forming the null distribution. Default is 10000
- criterion: which optimization criterion to use when calculating the objective value. Options are "max", "sum", or "combo", referring to whether to include the maximum standardized mean difference (SMD), the sum of all SMDs, or a combination of the maximum and the sum. The default is "combo"
- wMax: how much to weight the maximum standardized mean difference compared to the sum. Only used if criterion is set to "combo". Default is 5
- incl_base: whether to include columns for the initial stratification in the table. Default is TRUE if a base stratification is provided

Value

List with three components:

- pvals: list containing base and refined elements, each of which is a list with randomization P-values for the objective value (NULL for the base stratification), the maximum standardized mean difference (SMD), the average SMD across covariates and strata, and for the average SMD across strata for each covariate (this element is a vector)
- obs_details: list containing base and refined elements, each of which is a list with the observed values for the objective value (NULL for the base stratification), the maximum standardized mean difference (SMD), and for the average SMD across strata for each covariate (this element is a vector)

Examples

```
# Choose 500 patients and 5 covariates to work with for the example
set.seed(15)
samp <- sample(1:nrow(rhc_X), 500)
cov_samp <- sample(1:26, 5)
# Let it create propensity score strata for you and then refine them
ref <- refine(X = rhc_X[samp, cov_samp], z = rhc_X[samp, "z"])
# Calculate info for covariate balance randomization distribution
rpvals <- rand_pvals(object = ref, options = list(nrand = 100))
# Look at pvals before and after
rpvals$pvals
```

covariate (this element is a matrix with nrand rows and a column for each covariate)

refine

Refine initial stratification

Description

Refine an initial stratification by splitting each stratum or specified subset of strata into two refined strata. If no initial stratification is provided, one is first generated using prop_strat().

Usage

refine(object = NULL, z = NULL, X = NULL, strata = NULL, options = list())

object	an optional object of class strat, typically created using strat() or as a result of a call to prop_strat(). If not provided, z and X must be specified
Z	vector of treatment assignment; only used if object is not supplied
Х	covariate matrix/data.frame; only used if object is not supplied
strata	vector of initial strata assignments; only used if object is not supplied. Can be NULL, in which case an initial stratification using the quintiles of the propensity score is generated using prop_strat() and the generated propensity score is also added to the X matrix as an extra covariate
options	list containing various options described in the Details below

refine

Details

The options argument can contain any of the following elements:

- solver: character specifying the optimization software to use. Options are "Rglpk" or "gurobi". The default is "Rglpk" unless a gurobi installation is detected, in which case it is set to "gurobi". It is recommended to use "gurobi" if available.
- standardize: boolean whether or not to standardize the covariates in X. Default is TRUE
- criterion: which optimization criterion to use. Options are "max", "sum", or "combo", referring to whether to optimize the maximum standardized mean difference (SMD), the sum of all SMDs, or a combination of the maximum and the sum. The default is "combo"
- integer: boolean whether to use integer programming as opposed to randomized rounding of linear programs. Note that setting this to TRUE may cause this function to never finish depending on the size of the data and is not recommended except for tiny data sets
- wMax: how much to weight the maximum standardized mean difference compared to the sum. Only used if criterion is set to "combo". Default is 5
- ist: which strata to split. Should be a level from the specified strata or a vector of multiple levels. Default is to split all strata

Note that setting a seed before using this function will ensure that the results are reproducible on the same machine, but results may vary across machines due to how the optimization solvers work.

Value

Object of class "strat", which is a list object with the following components:

- z: treatment vector
- X: covariate matrix
- base_strata: initial stratification
- refined_strata: refined_stratification
- details: various details about the optimization that can be ignored in practice, but may be interesting:
 - valueIP, valueLP: integer (determined via randomized rounding, unless integer option set to true) and linear programming scaled objective values
 - n_fracs: number of units with fractional LP solutions
 - rand_c_prop, rand_t_prop: proportions of the control and treated units in each stratum that were selected with randomness
 - pr: linear programming solution, with rows corresponding to the strata and columns to the units
 - criterion: criterion used in the optimization (see the details about the options for the optimization)
 - wMax: weight placed on the maximum standardized mean difference in the optimization (see the details about the options for the optimization)
 - X_std: standardized version of X
 - threads: how many threads you'd like the optimization to use if using the "gurobi" solver. Uses all available threads by default

Examples

```
rhc_X
```

Right Heart Catheterization Data

Description

The data in the example are from Frank Harrell's Hmisc package. The data there are very similar to the data in Connors et al. (1996), but do not exactly reproduce analyses from that article. So, we employ the version of that analysis in the documentation for Ruoqi Yu's RBestMatch package, which attempts to be close to the analysis in Connors et al. In Yu's version, the propensity score (her pr) is built using 76 covariates, and the focus of attention is on 26 "priority" covariates (her X) and the propensity score that were emphasized in the Connors et al. article, including those in that article's Table 3.

Usage

rhc_X

Format

Matrix with 5,735 rows and 28 columns:

aps1 APACHE score

surv2md1 Support model estimate of the prob. of surviving 2 months

age Age

NumComorbid Number of comorbidities

adld3p_impute ADL with missing data imputed

adld3p_na ADL missing

das2d3pc DASI (Duke Activity Status Index)

temp1 Temperature hrt1 Heart rate meanbp1 Mean blood pressure resp1 Respiratory rate wblc1 WBC pafi1 PaO2/FIO2 ratio paco21 PaCo2 ph1 PH crea1 Creatinine alb1 Albumin scoma1 Glasgow Coma Score cat1_copd Primary disease category COPD cat1_mosfsep Primary disease category MOSF w sepsis cat1_mosfmal Primary disease category MOSF w malignancy cat1_chf Primary disease category CHF cat1_coma Primary disease category coma cat1_cirr Primary disease category cirrhosis cat1_lung Primary disease category lung cancer cat1_colon Primary disease category colon cancer pr Propensity score using 76 covariates z Treatment indicator

References

Connors et al. (1996): The effectiveness of RHC in the initial care of critically ill patients. J American Medical Association 276:889-897.

https://hbiostat.org/data/.

split_stratum Split one stratum into multiple strata

Description

Split one stratum into multiple with specified sample sizes.

Usage

```
split_stratum(
    z,
    X,
    strata,
    ist,
    nc,
    nt,
    wMax = 5,
    wEach = 1,
    solver = "Rglpk",
    integer = FALSE,
    threads = NULL
)
```

Arguments

Z	Vector of treatment assignment
Х	Covariate matrix or data.frame
strata	vector of initial strata assignments; only used if object is not supplied. Can be NULL, in which case an initial stratification using the quintiles of the propensity score is generated using prop_strat() and the generated propensity score is also added to the X matrix as an extra covariate
ist	the stratum to be split
nc	a vector stating how many control units to place in each of the new split strata. The sum must be the total number of controls in the stratum to be split
nt	a vector stating how many treated units to place in each of the new split strata. The sum must be the total number of treated units in the stratum to be split
wMax	the weight the objective places on the maximum epsilon
wEach	the weight the objective places on each epsilon
solver	character specifying the optimization software to use. Options are "Rglpk" or "gurobi". The default is "gurobi"
integer	boolean whether to use integer programming instead of randomized rounding. Default is FALSE. It is not recommended to set this to TRUE as the problem may never finish
threads	how many threads to use in the optimization if using "gurobi" as the solver. Default will use all available threads

Value

A list containing the following elements:

- valueIP, valueLP: integer and linear programming scaled objective values
- n_smds: number of standardized mean differences contributing to the objective values (multiply the scaled objective values by this number to get the true objective values)

- n_fracs: the number of units with fractional linear programming solutions
- rand_c_prop, rand_t_prop: proportions of the control and treated units in each stratum that were selected with randomness
- pr: linear programming solution, with rows corresponding to the strata and columns to the units
- selection: vector of selected strata for each unit in the initial stratum to be split

Examples

strat

Helper for object of class "strat"

Description

Creates an object of S3 class "strat"

Usage

```
strat(z, X, base_strata = NULL, refined_strata = NULL, details = NULL)
```

Z	Vector of treatment assignment
Х	Covariate matrix or data.frame
base_strata	Original strata, if they exist
refined_strata	Refined strata, if they exist
details	A list of details from the linear program. Include X_std if calculated

Value

Object of class strat if valid

Examples

table_rand_pvals	Generate a covariate balance table from the empirical randomization
	null distribution

Description

Generate a table using the information collected in rand_pvals(). See rand_pvals() for more details about the methods used.

Usage

```
table_rand_pvals(
   object = NULL,
   z = NULL,
   X = NULL,
   base_strata = NULL,
   refined_strata = NULL,
   options = list()
)
```

Arguments

object	an optional object of class strat, typically created using strat() or as a result of a call to prop_strat() or refine(). If not provided, z and X must be specified
Z	vector of treatment assignment; only used if object is not supplied
Х	covariate matrix/data.frame; only used if object is not supplied
base_strata	optional initial stratification for which to calculate the empirical randomization null distribution; only used if object is not supplied
refined_strata	optional refined stratification for which to calculate the empirical randomization null distribution; only used if object is not supplied
options	list of additional options, listed in the details below

validate_strat

Details

The options list argument can contain any of the following elements:

- nrand: how many times to randomize the treatment assignment when forming the null distribution. Default is 10000
- criterion: which optimization criterion to use when calculating the objective value. Options are "max", "sum", or "combo", referring to whether to include the maximum standardized mean difference (SMD), the sum of all SMDs, or a combination of the maximum and the sum. The default is "combo"
- wMax: how much to weight the maximum standardized mean difference compared to the sum. Only used if criterion is set to "combo". Default is 5
- incl_base: whether to include columns for the initial stratification in the table. Default is TRUE if a base stratification is provided
- rand_pvals: if already calculated, the returned list of information from rand_pvals(). If NULL, this will be calculated

Value

Matrix with 4 or 8 columns, depending whether one or both of base and refined strata are provided and the incl_base option. The columns give the observed standardized mean difference or objective value, the median and maximum across nrand null simulations, and the P-value which is the proportion of the null simulations that have worse covariate balance than the observed value. The top three rows give the scaled objective value and the average and maximum standardized mean differences across all strata and covariates. The following rows, one for each covariate, give the standardized mean difference for that covariate, averaged across strata. The first row for the scaled objective value is NULL for the base stratification, if included, as the base stratification does not generally minimize a mathematical objective function.

validate_strat Validator for object of class "strat"

Description

Checks validity of an object of S3 class "strat"

Usage

```
validate_strat(object)
```

Arguments

object An object of class strat

Value

Error or object of class strat if valid

Index

* datasets rhc_X, 12 best_split, 2 calc_smds, 4 new_strat, 5 plot.strat, 5 print.strat, 7 prop_strat, 2, 4, 7, 8, 10, 14, 16 rand_pvals, 8, 16, 17 refine, 7, 8, 10, 16 rhc_X, 12 split_stratum, 2, 3, 13 strat, 4, 8, 10, 15, 16 table_rand_pvals, 16

validate_strat, 17