
Package ‘pak’
January 15, 2023

Version 0.4.0

Title Another Approach to Package Installation

Description The goal of 'pak' is to make package installation faster and
more reliable. In particular, it performs all HTTP operations in parallel,
so metadata resolution and package downloads are fast. Metadata and package
files are cached on the local disk as well. 'pak' has a dependency solver,
so it finds version conflicts before performing the installation. This
version of 'pak' supports CRAN, 'Bioconductor' and 'GitHub' packages as well.

License GPL-3

Encoding UTF-8

LazyData true

ByteCompile true

RoxygenNote 7.2.1.9000

Depends R (>= 3.2)

Imports tools, utils

Suggests callr (>= 3.7.0), cli (>= 3.2.0), covr, curl (>= 4.3.2), desc
(>= 1.4.1), digest, distro, filelock (>= 1.0.2), gitcreds, glue
(>= 1.6.2), mockery, pingr, jsonlite (>= 1.8.0), pkgcache (>=
2.0.4), pkgdepends (>= 0.4.0), pkgsearch (>= 3.1.0),
prettyunits, processx (>= 3.5.2), ps (>= 1.6.0), rprojroot (>=
2.0.2), rstudioapi, testthat, withr

Note This field has Remotes syntax, but repeat remotes in `Remotes`!

Config/needs/dependencies callr, desc, cli, curl, distro, filelock,
glue, jsonlite, pkgcache, pkgdepends, pkgsearch, prettyunits,
processx, ps, rprojroot

Config/Needs/website r-lib/asciicast, r-lib/roxygen2,
tidyverse/tidytemplate

Config/testthat/edition 3

Config/build/extra-sources configure*

URL https://pak.r-lib.org/

1

https://pak.r-lib.org/

2 R topics documented:

BugReports https://github.com/r-lib/pak/issues

BuildResaveData no

NeedsCompilation no

Author Gábor Csárdi [aut, cre],
Jim Hester [aut],
RStudio [cph, fnd]

Maintainer Gábor Csárdi <csardi.gabor@gmail.com>

Repository CRAN

Date/Publication 2023-01-15 21:50:02 UTC

R topics documented:
cache_summary . 3
FAQ . 4
Get started with pak . 5
Great pak features . 9
handle_package_not_found . 10
Installing pak . 11
lib_status . 13
local_deps . 14
local_deps_explain . 15
local_install . 15
local_install_deps . 17
local_install_dev_deps . 18
local_package_trees . 19
local_system_requirements . 20
lockfile_create . 21
lockfile_install . 22
meta_summary . 23
Package dependency types . 25
Package sources . 25
pak . 26
pak configuration . 26
pak_cleanup . 27
pak_install_extra . 28
pak_setup . 28
pak_sitrep . 29
pak_update . 30
pkg_deps . 30
pkg_deps_explain . 32
pkg_deps_tree . 33
pkg_download . 34
pkg_history . 35
pkg_install . 36
pkg_name_check . 37
pkg_remove . 38

https://github.com/r-lib/pak/issues

cache_summary 3

pkg_search . 39
pkg_status . 40
repo_add . 40
repo_get . 42
repo_status . 43
The dependency solver . 44

Index 46

cache_summary Package cache utilities

Description

Various utilities to inspect and clean the package cache. See the pkgcache package if you need for
control over the package cache.

Usage

cache_summary()

cache_list(...)

cache_delete(...)

cache_clean()

Arguments

... For cache_list() and cache_delete(), ... may contain filters, where the ar-
gument name is the column name. E.g. package, version, etc. Call cache_list()
without arguments to see the available column names. If you call cache_delete()
without arguments, it will delete all cached files.

Details

cache_summary() returns a summary of the package cache.

cache_list() lists all (by default), or a subset of packages in the package cache.

cache_delete() deletes files from the cache.

cache_clean() deletes all files from the cache.

Value

cache_summary() returns a list with elements:

• cachepath: absolute path to the package cache

• files: number of files (packages) in the cache

4 FAQ

• size: total size of package cache in bytes

cache_list() returns a data frame with the data about the cache.

cache_delete() returns nothing.

cache_clean() returns nothing.

Examples

cache_summary()

cache_list()

cache_list(package = "recipes")

cache_list(platform = "source")

cache_delete(package = "knitr")
cache_delete(platform = "macos")

cache_clean()

FAQ Frequently Asked Questions

Description

Please take a look at this list before asking questions.

Package installation

How do I reinstall a package?:
pak does not reinstall a package, if the same version is already installed. Sometimes you still want
a reinstall, e.g. to fix a broken installation. In this case you can delete the package and then install
it, or use the ?reinstall parameter:

pak::pkg_install("tibble")

pak::pkg_install("tibble?reinstall")

How do I install a dependency from a binary package:
Sometimes it is suffifient to install the binary package of an older version of a dependency, instead
of the newer source package that potentially needs compilers, system tools or libraries.
pkg_install() and lockfile_create() default to upgrade = FALSE, which always chooses
binaries over source packages, so if you use pkg_install() you don’t need to do anything extra.
The local_install_* functions default to upgrade = TRUE, as does pak() with pkf = NULL, so
for these you need to explicitly use upgrade = FALSE.

Get started with pak 5

How do I install a package from source?:
To force the installation of a source package (instead of a binary package), use the ?source
parameter:

pak::pkg_install("tibble?source")

How do I install the latest version of a dependency?:
If you want to always install a dependency from source, because you want the latest version or
some other reason, you can use the source parameter with the <package>= form: <package>=?source.
For example to install tibble, with its cli dependency installed from source you could write:

pak::pkg_install(c("tibble", "cli=?source"))

How do I ignore an optional dependency?:

pak::pkg_install(
c("tibble", "DiagrammeR=?ignore", "formattable=?ignore"),
dependencies = TRUE

)

The syntax is

<packagename>=?ignore

Note that you can only ignore optional dependencies, i.e. packages in Suggests and Enhances.

Others

How can I use pak with renv?:
You cannot currently, but keep on eye on this issue: https://github.com/r-lib/pak/issues/343

Get started with pak Simplified manual. Start here!

Description

You don’t need to read long manual pages for a simple task. This manual page collects the most
common pak use cases.

Package installation

Install a package from CRAN or Bioconductor:

pak::pkg_install("tibble")

pak automatically sets a CRAN repository and the Bioconductor repositories that correspons to
the current R version.

Install a package from GitHub:

pak::pkg_install("tidyverse/tibble")

6 Get started with pak

Use the user/repo form. You can specify a branch or tag: user/repo@branch or user/repo@tag.

Install a package from a URL:

pak::pkg_install(
"url::https://cran.r-project.org/src/contrib/Archive/tibble/tibble_3.1.7.tar.gz"

)

The URL may point to an R package file, made with R CMD build, or a .tar.gz or .zip archive
of a package tree.

Package updates

Update a package:

pak::pkg_install("tibble")

pak::pkg_install() automatically updates the package.

Update all dependencies of a package:

pak::pkg_install("tibble", upgrade = TRUE)

update = TRUE updates the package itself and all of its dependencies, if necessary.

Reinstall a package:
Add ?reinstall to the package name or package reference in general:

pak::pkg_install("tibble?reinstall")

Dependency lookup

Dependencies of a CRAN or Bioconductor package:

pak::pkg_deps("tibble")

The results are returned in a data frame.

Dependency tree of a CRAN / Bioconductor package:

pak::pkg_deps_tree("tibble")

The results are also silently returned in a data frame.

Dependency tree of a package on GitHub:

pak::pkg_deps_tree("tidyverse/tibble")

Use the user/repo form. As usual, you can also select a branch, tag, or sha, with the user/repo@branch,
user/repo@tag or user/repo@sha forms.

Dependency tree of the package in the current directory:

pak::local_deps_tree("tibble")

Assuming package is in directory tibble.

Get started with pak 7

Explain a recursive dependency:
How does tibble depend on rlang?

pak::pkg_deps_explain("tibble", "rlang")

Use can also use the user/repo form for packages from GitHub, url::... for packages at URLs,
etc.

Package development

Install dependencies of local package:

pak::local_install_deps()

Install local package:

pak::local_install()

Install all dependencies of local package:

pak::local_install_dev_deps()

Installs development and optional dependencies as well.

Repositories

List current repositories:

pak::repo_get()

If you haven’t set a CRAN or Bioconductor repository, pak does that automatically.

Add custom repository:

pak::repo_add(rhub = 'https://r-hub.r-universe.dev')
pak::repo_get()

Remove custom repositories:

options(repos = getOption("repos")["CRAN"])
pak::repo_get()

If you set the repos option to a CRAN repo only, or unset it completely, then pak keeps only
CRAN and (by default) Bioconductor.

Time travel using RSPM:

pak::repo_add(CRAN = "RSPM@2022-06-30")
pak::repo_get()

Sets a repository that is equivalent to CRAN’s state closest to the specified date. Name this
repository CRAN, otherwise pak will also add a default CRAN repository.

Time travel using MRAN:

pak::repo_add(CRAN = "MRAN@2022-06-30")
pak::repo_get()

Sets a repository that is equivalent to CRAN’s state at the specified date. Name this repository
CRAN, otherwise pak will also add a default CRAN repository.

8 Get started with pak

Caches

By default pak caches both metadata and downloaded packages.

Inspect metadata cache:

pak::meta_list()

Update metadata cache:
By default pkg_install() and similar functions automatically update the metadata for the cur-
rently set repositories if it is older than 24 hours. You can also force an update manually:

pak::meta_update()

Clean metadata cache:

pak::meta_clean(force = TRUE)
pak::meta_summary()

Inspect package cache:
Downloaded packages are also cached.

pak::cache_list()

View a package cache summary:

pak::cache_summary()

Clean package cache:

pak::cache_clean()

Libraries

List packages in a library:

pak::lib_status(Sys.getenv("R_LIBS_USER"))

Pass the directory of the library as the argument.

Great pak features 9

Great pak features A list of the most important pak features

Description

A list of the most important pak features.

pak is fast

Parallel HTTP:
pak performs HTTP queries concurrently. This is true when

• it downloads package metadata from package repositories,
• it resolves packages from CRAN, GitHub, URLs, etc,
• it downloads the actual package files,
• etc.

Parallel installation:
pak installs packages concurrently, as much as their dependency graph allows this.

Caching:
pak caches metadata and package files, so you don’t need to re-download the same files over and
over.

pak is safe

Plan installation up front:
pak creates an installation plan before downloading any packages. If the plan is unsuccessful,
then it fails without downloading any packages.

Auto-install missing dependencies:
When requesting the installation of a package, pak makes sure that all of its dependencies are also
installed.

Keeping binary packages up-to-date:
pak automatically discards binary packages from the cache, if a new build of the same version is
available on CRAN.

Correct CRAN metadata errors:
pak can correct some of CRAN’s metadata issues, e.g.:

• New version of the package was released since we obtained the metadata.
• macOS binary package is only available at https://mac.r-project.org/ because of a synchro-

nization issue.

Graceful handling of locked package DLLs on Windows:
pak handles the situation of locked package DLLs, as well as possible. It detects which process
locked them, and offers the choice of terminating these processes. It also unloads packages from
the current R session as needed.

10 handle_package_not_found

pak keeps its own dependencies isolated:
pak keeps its own dependencies in a private package library and never loads any packages. (Only
in background processes).

pak is convenient

pak comes as a self-contained binary package:
On the most common platforms. No dependencies, no system dependencies, no compiler needed.
(See also the installation manual.)

Install packages from multiple sources:

• CRAN, Bioconductor
• GitHub
• URLs
• Local files or directories.

Ignore certain optional dependencies:
pak can ignore certain optional dependencies if requested.

CRAN package file sizes:
pak knows the sizes of CRAN package files, so it can estimate how much data you need to down-
load, before the installation.

Bioconductor version detection:
pak automatically selects the Bioconductor version that is appropriate for your R version. No
need to set any repositories.

Time travel with MRAN or RSPM:
pak can use MRAN (Microsoft R Application Network, https://mran.microsoft.com/) or RSPM
(RStudio Public Package Manager, https://packagemanager.rstudio.com/client/#/) to install from
snapshots or CRAN.

pak can install dependencies of local packages:
Very handy for package development!

handle_package_not_found

Install missing packages on the fly

Description

Use this function to set up a global error handler, that is called if R fails to load a package. This
handler will offer you the choice of installing the missing package (and all its dependencies), and
in some cases it can also remedy the error and restart the code.

Installing pak 11

Usage

handle_package_not_found(err)

Arguments

err The error object, of class packageNotFoundError.

Details

You are not supposed to call this function directly. Instead, set it up as a global error handler,
possibly in your .Rprofile file:

if (interactive() && getRversion() >= "4.0.0") {
globalCallingHandlers(
packageNotFoundError = function(err) {
try(pak::handle_package_not_found(err))

}
)

}

Global error handlers are only supported in R 4.0.0 and later.

Currently handle_package_not_found() does not do anything in non-interactive mode (including
in knitr, testthat and RStudio notebooks), this might change in the future.

In some cases it is possible to remedy the original computation that tried to load the missing pack-
age, and pak will offer you to do so after a successful installation. Currently, in R 4.0.4, it is not
possible to continue a failed library() call.

Value

Nothing.

Installing pak All about installing pak.

Description

Read this if the default installation methods do not work for you or if you want the release candidate
or development version.

Pre-built binaries:
Our pre-built binaries have the advantage that they are completely self-containted and dependency
free. No additional R packages, system libraries or tools (e.g. compilers) are needed for them.
Install a pre-built binary build of pak from our repository on GitHub:

12 Installing pak

install.packages("pak", repos = sprintf(
"https://r-lib.github.io/p/pak/stable/%s/%s/%s",
.Platform$pkgType,
R.Version()$os,
R.Version()$arch

))

This is supported for the following systems:

OS CPU R version
Linux x86_64 R 3.4.0 - R-devel
Linux aarch64 R 3.4.0 - R-devel
macOS High Sierra+ x86_64 R 3.4.0 - R-devel
macOS Big Sur+ aarch64 R 4.1.0 - R-devel
Windows x86_64 R 3.4.0 - R-devel

Notes:
• For macOS we only support the official CRAN R build. Other builds, e.g. Homebrew R,

are not supported.
• We only support R builds that have an R shared library. CRAN’s Windows and macOS

installers are such, so the the R builds in the common Linux distributions. But this might be
an issue if you build R yourself without the --enable-R-shlib option.

Install from CRAN:
Install the released version of the package from CRAN as usual:

install.packages("pak")

This potentially needs a C compiler on platforms CRAN does not have binaries packages for.

Nightly builds:
We have nightly binary builds, for the same systems as the table above:

install.packages("pak", repos = sprintf(
"https://r-lib.github.io/p/pak/devel/%s/%s/%s",
.Platform$pkgType,
R.Version()$os,
R.Version()$arch

))

stable, rc and devel streams:
We have three types of binaries available:

• stable corresponds to the latest CRAN release of CRAN.
• rc is a release candidate build, and it is available about 1-2 weeks before a release. Other-

wise it is the same as the stable build.
• devel has builds from the development tree. Before release it might be the same as the rc

build.
The streams are available under different repository URLs:

lib_status 13

stream <- "rc"
install.packages("pak", repos = sprintf(
"https://r-lib.github.io/p/pak/%s/%s/%s/%s",
stream,
.Platform$pkgType,
R.Version()$os,
R.Version()$arch

))

lib_status Status of packages in a library

Description

Status of packages in a library

Usage

lib_status(lib = .libPaths()[1])

pkg_list(lib = .libPaths()[1])

Arguments

lib Path to library.

Value

Data frame the contains data about the packages installed in the library. pak:::include_docs("pkgdepends",
"docs/lib-status-return.rds")

Examples

lib_status(.Library)

See Also

Other package functions: pak(), pkg_deps_tree(), pkg_deps(), pkg_download(), pkg_install(),
pkg_remove(), pkg_status()

14 local_deps

local_deps Dependencies of a package tree

Description

Dependencies of a package tree

Usage

local_deps(root = ".", upgrade = TRUE, dependencies = NA)

local_deps_tree(root = ".", upgrade = TRUE, dependencies = NA)

local_dev_deps(root = ".", upgrade = TRUE, dependencies = TRUE)

local_dev_deps_tree(root = ".", upgrade = TRUE, dependencies = TRUE)

Arguments

root Path to the package tree.

upgrade Whether to use the most recent available package versions.

dependencies What kinds of dependencies to install. Most commonly one of the following
values:

• NA: only required (hard) dependencies,

• TRUE: required dependencies plus optional and development dependencies,

• FALSE: do not install any dependencies. (You might end up with a non-
working package, and/or the installation might fail.) See Package depen-
dency types for other possible values and more information about package
dependencies.

Value

All of these functions return the dependencies in a data frame. local_deps_tree() and local_dev_deps_tree()
also print the dependency tree.

See Also

Other local package trees: local_deps_explain(), local_install_deps(), local_install_dev_deps(),
local_install(), local_package_trees, pak()

local_deps_explain 15

local_deps_explain Explain dependencies of a package tree

Description

These functions are similar to pkg_deps_explain(), but work on a local package tree. local_dev_deps_explain()
also includes development dependencies.

Usage

local_deps_explain(deps, root = ".", upgrade = TRUE, dependencies = NA)

local_dev_deps_explain(deps, root = ".", upgrade = TRUE, dependencies = TRUE)

Arguments

deps Package names of the dependencies to explain.

root Path to the package tree.

upgrade Whether to use the most recent available package versions.

dependencies What kinds of dependencies to install. Most commonly one of the following
values:

• NA: only required (hard) dependencies,
• TRUE: required dependencies plus optional and development dependencies,
• FALSE: do not install any dependencies. (You might end up with a non-

working package, and/or the installation might fail.) See Package depen-
dency types for other possible values and more information about package
dependencies.

See Also

Other local package trees: local_deps(), local_install_deps(), local_install_dev_deps(),
local_install(), local_package_trees, pak()

local_install Install a package tree

Description

Installs a package tree (or source package file), together with its dependencies.

16 local_install

Usage

local_install(
root = ".",
lib = .libPaths()[1],
upgrade = TRUE,
ask = interactive(),
dependencies = NA

)

Arguments

root Path to the package tree.

lib Package library to install the packages to. Note that all dependent packages will
be installed here, even if they are already installed in another library. The only
exceptions are base and recommended packages installed in .Library. These
are not duplicated in lib, unless a newer version of a recommemded package is
needed.

upgrade When FALSE, the default, pak does the minimum amount of work to give you the
latest version(s) of pkg. It will only upgrade dependent packages if pkg, or one
of their dependencies explicitly require a higher version than what you currently
have. It will also prefer a binary package over to source package, even it the
binary package is older.

When upgrade = TRUE, pak will ensure that you have the latest version(s) of pkg
and all their dependencies.

ask Whether to ask for confirmation when installing a different version of a package
that is already installed. Installations that only add new packages never require
confirmation.

dependencies What kinds of dependencies to install. Most commonly one of the following
values:

• NA: only required (hard) dependencies,

• TRUE: required dependencies plus optional and development dependencies,

• FALSE: do not install any dependencies. (You might end up with a non-
working package, and/or the installation might fail.) See Package depen-
dency types for other possible values and more information about package
dependencies.

Details

local_install() is equivalent to pkg_install("local::.").

Value

Data frame, with information about the installed package(s).

local_install_deps 17

See Also

Other local package trees: local_deps_explain(), local_deps(), local_install_deps(), local_install_dev_deps(),
local_package_trees, pak()

local_install_deps Install the dependencies of a package tree

Description

Installs the hard dependencies of a package tree (or source package file), without installing the
package tree itself.

Usage

local_install_deps(
root = ".",
lib = .libPaths()[1],
upgrade = TRUE,
ask = interactive(),
dependencies = NA

)

Arguments

root Path to the package tree.

lib Package library to install the packages to. Note that all dependent packages will
be installed here, even if they are already installed in another library. The only
exceptions are base and recommended packages installed in .Library. These
are not duplicated in lib, unless a newer version of a recommemded package is
needed.

upgrade When FALSE, the default, pak does the minimum amount of work to give you the
latest version(s) of pkg. It will only upgrade dependent packages if pkg, or one
of their dependencies explicitly require a higher version than what you currently
have. It will also prefer a binary package over to source package, even it the
binary package is older.
When upgrade = TRUE, pak will ensure that you have the latest version(s) of pkg
and all their dependencies.

ask Whether to ask for confirmation when installing a different version of a package
that is already installed. Installations that only add new packages never require
confirmation.

dependencies What kinds of dependencies to install. Most commonly one of the following
values:

• NA: only required (hard) dependencies,
• TRUE: required dependencies plus optional and development dependencies,

18 local_install_dev_deps

• FALSE: do not install any dependencies. (You might end up with a non-
working package, and/or the installation might fail.) See Package depen-
dency types for other possible values and more information about package
dependencies.

Details

Note that development (and optional) dependencies, under Suggests in DESCRIPTION, are not in-
stalled. If you want to install them as well, use local_install_dev_deps().

Value

Data frame, with information about the installed package(s).

See Also

Other local package trees: local_deps_explain(), local_deps(), local_install_dev_deps(),
local_install(), local_package_trees, pak()

local_install_dev_deps

Install all (development) dependencies of a package tree

Description

Installs all dependencies of a package tree (or source package file), without installing the package
tree itself. It installs the development dependencies as well, specified in the Suggests field of
DESCRIPTION.

Usage

local_install_dev_deps(
root = ".",
lib = .libPaths()[1],
upgrade = TRUE,
ask = interactive(),
dependencies = TRUE

)

Arguments

root Path to the package tree.

lib Package library to install the packages to. Note that all dependent packages will
be installed here, even if they are already installed in another library. The only
exceptions are base and recommended packages installed in .Library. These
are not duplicated in lib, unless a newer version of a recommemded package is
needed.

local_package_trees 19

upgrade When FALSE, the default, pak does the minimum amount of work to give you the
latest version(s) of pkg. It will only upgrade dependent packages if pkg, or one
of their dependencies explicitly require a higher version than what you currently
have. It will also prefer a binary package over to source package, even it the
binary package is older.
When upgrade = TRUE, pak will ensure that you have the latest version(s) of pkg
and all their dependencies.

ask Whether to ask for confirmation when installing a different version of a package
that is already installed. Installations that only add new packages never require
confirmation.

dependencies What kinds of dependencies to install. Most commonly one of the following
values:

• NA: only required (hard) dependencies,
• TRUE: required dependencies plus optional and development dependencies,
• FALSE: do not install any dependencies. (You might end up with a non-

working package, and/or the installation might fail.) See Package depen-
dency types for other possible values and more information about package
dependencies.

See Also

Other local package trees: local_deps_explain(), local_deps(), local_install_deps(), local_install(),
local_package_trees, pak()

local_package_trees About local package trees

Description

pak can install packages from local package trees. This is convenient for package development. See
the following functions:

• local_install() installs a package from a package tree and all of its dependencies.
• local_install_deps() installs all hard dependencies of a package.
• local_install_dev_deps() installs all hard and soft dependencies of a package. This func-

tion is intended for package development.

Details

Note that the last two functions do not install the package in the specified package tree itself, only
its dependencies. This is convenient if the package itself is loaded via some other means, e.g.
devtools::load_all(), for development.

See Also

Other local package trees: local_deps_explain(), local_deps(), local_install_deps(), local_install_dev_deps(),
local_install(), pak()

20 local_system_requirements

local_system_requirements

Query system requirements

Description

Returns a character vector of commands to run that will install system requirements for the queried
operating system.

local_system_requirements() queries system requirements for a dev package (and its depen-
dencies) given its root path.

pkg_system_requirements() queries system requirements for existing packages (and their de-
pendencies).

Usage

local_system_requirements(
os = NULL,
os_release = NULL,
root = ".",
execute = FALSE,
sudo = execute,
echo = FALSE

)

pkg_system_requirements(
package,
os = NULL,
os_release = NULL,
execute = FALSE,
sudo = execute,
echo = FALSE

)

Arguments

os, os_release The operating system and operating system release version, e.g. "ubuntu", "de-
bian", "centos", "redhat". See https://github.com/rstudio/r-system-requirements#
operating-systems for all full list of supported operating systems.
If NULL, the default, these will be looked up using distro::distro().

root Path to the package tree.

execute, sudo If execute is TRUE, pak will execute the system commands (if any). If sudo is
TRUE, pak will prepend the commands with sudo.

echo If echo is TRUE and execute is TRUE, echo the command output.

package Package names to lookup system requirements for.

https://github.com/rstudio/r-system-requirements#operating-systems
https://github.com/rstudio/r-system-requirements#operating-systems
https://en.wikipedia.org/wiki/Sudo

lockfile_create 21

Value

A character vector of commands needed to install the system requirements for the package.

Examples

local_system_requirements("ubuntu", "20.04")

pkg_system_requirements("pak", "ubuntu", "20.04")
pkg_system_requirements("pak", "redhat", "7")
pkg_system_requirements("config", "ubuntu", "20.04") # no sys reqs
pkg_system_requirements("curl", "ubuntu", "20.04")
pkg_system_requirements("git2r", "ubuntu", "20.04")
pkg_system_requirements(c("config", "git2r", "curl"), "ubuntu", "20.04")
queried packages must exist
pkg_system_requirements("iDontExist", "ubuntu", "20.04")
pkg_system_requirements(c("curl", "iDontExist"), "ubuntu", "20.04")

lockfile_create Create a lock file

Description

The lock file can be used later, possibly in a new R session, to carry out the installation of the
dependencies, with lockfile_install().

Usage

lockfile_create(
pkg = "deps::.",
lockfile = "pkg.lock",
lib = NULL,
upgrade = FALSE,
dependencies = NA

)

Arguments

pkg Package names or package references. E.g.

• ggplot2: package from CRAN, Bioconductor or a CRAN-like repository
in general,

• tidyverse/ggplot2: package from GitHub,
• tidyverse/ggplot2@v3.4.0: package from GitHub tag or branch,
• https://examples.com/.../ggplot2_3.3.6.tar.gz: package from URL,
• .: package in the current working directory.

22 lockfile_install

See "Package sources" for more details.

lockfile Path to the lock file.

lib Package library to install the packages to. Note that all dependent packages will
be installed here, even if they are already installed in another library. The only
exceptions are base and recommended packages installed in .Library. These
are not duplicated in lib, unless a newer version of a recommemded package is
needed.

upgrade When FALSE, the default, pak does the minimum amount of work to give you the
latest version(s) of pkg. It will only upgrade dependent packages if pkg, or one
of their dependencies explicitly require a higher version than what you currently
have. It will also prefer a binary package over to source package, even it the
binary package is older.
When upgrade = TRUE, pak will ensure that you have the latest version(s) of pkg
and all their dependencies.

dependencies What kinds of dependencies to install. Most commonly one of the following
values:

• NA: only required (hard) dependencies,
• TRUE: required dependencies plus optional and development dependencies,
• FALSE: do not install any dependencies. (You might end up with a non-

working package, and/or the installation might fail.) See Package depen-
dency types for other possible values and more information about package
dependencies.

Details

Note, since the URLs of CRAN and most CRAN-like repositories change over time, in practice you
cannot use the lock file much later. For example, binary packages of older package version might
be deleted from the repository, breaking the URLs in the lock file.

Currently the intended use case of lock files in on CI systems, to facilitate caching. The (hash of
the) lock file provides a good key for caching systems.

See Also

Other lock files: lockfile_install()

lockfile_install Install packages based on a lock file

Description

Install a lock file that was created with lockfile_create().

Usage

lockfile_install(lockfile = "pkg.lock", lib = .libPaths()[1], update = TRUE)

meta_summary 23

Arguments

lockfile Path to the lock file.

lib Library to carry out the installation on.

update Whether to online install the packages that either not installed in lib, or a dif-
ferent version is installed for them.

See Also

Other lock files: lockfile_create()

meta_summary Metadata cache utilities

Description

Various utilities to inspect, update and clean the metadata cache. See the pkgcache package if you
need for control over the metadata cache.

Usage

meta_summary()

meta_list(pkg = NULL)

meta_update()

meta_clean(force = FALSE)

Arguments

pkg Package names, if specified then only entries for pkg are returned.

force If FALSE, then pak will ask for confirmation.

Details

meta_summary() returns a summary of the metadata cache.

meta_list() lists all (or some) packages in the metadata database.

meta_update() updates the metadata database. You don’t normally need to call this function man-
ually, because all pak functions (e.g. pkg_install(), pkg_download(), etc.) call it automatically,
to make sure that they use the latest available metadata.

meta_clean() deletes the whole metadata DB.

24 meta_summary

Value

meta_summary() returns a list with entries:

• cachepath: absolute path of the metadata cache.

• current_db: the file that contains the current metadata database. It is currently an RDS file,
but this might change in the future.

• raw_files: the files that are the downloaded PACKAGES* files.

• db_files: all metadata database files.

• size: total size of the metadata cache.

meta_list() returns a data frame of all available packages in the configured repositories.

meta_update() returns nothing.

meta_clean() returns nothing

Examples

Metadata cache summary:

meta_summary()
#> $cachepath
#> [1] "/Users/gaborcsardi/Library/Caches/org.R-project.R/R/pkgcache/_metadata"
#>
#> $current_db
#> [1] "/Users/gaborcsardi/Library/Caches/org.R-project.R/R/pkgcache/_metadata/pkgs-34444e3072.rds"
#>
#> $raw_files
#> [1] "/Users/gaborcsardi/Library/Caches/org.R-project.R/R/pkgcache/_metadata/BioCann-59693086a0/bin/macosx/big-sur-arm64/contrib/4.2/PACKAGES.gz"
#> [2] "/Users/gaborcsardi/Library/Caches/org.R-project.R/R/pkgcache/_metadata/BioCann-59693086a0/src/contrib/PACKAGES.gz"
#> [3] "/Users/gaborcsardi/Library/Caches/org.R-project.R/R/pkgcache/_metadata/BioCexp-90d4a3978b/bin/macosx/big-sur-arm64/contrib/4.2/PACKAGES.gz"
#> [4] "/Users/gaborcsardi/Library/Caches/org.R-project.R/R/pkgcache/_metadata/BioCexp-90d4a3978b/src/contrib/PACKAGES.gz"
#> [5] "/Users/gaborcsardi/Library/Caches/org.R-project.R/R/pkgcache/_metadata/BioCsoft-2a43920999/bin/macosx/big-sur-arm64/contrib/4.2/PACKAGES.gz"
#> [6] "/Users/gaborcsardi/Library/Caches/org.R-project.R/R/pkgcache/_metadata/BioCsoft-2a43920999/src/contrib/PACKAGES.gz"
#> [7] "/Users/gaborcsardi/Library/Caches/org.R-project.R/R/pkgcache/_metadata/BioCworkflows-26330ba3ca/bin/macosx/big-sur-arm64/contrib/4.2/PACKAGES.gz"
#> [8] "/Users/gaborcsardi/Library/Caches/org.R-project.R/R/pkgcache/_metadata/BioCworkflows-26330ba3ca/src/contrib/PACKAGES.gz"
#> [9] "/Users/gaborcsardi/Library/Caches/org.R-project.R/R/pkgcache/_metadata/CRAN-075c426938/bin/macosx/big-sur-arm64/contrib/4.2/PACKAGES.gz"
#> [10] "/Users/gaborcsardi/Library/Caches/org.R-project.R/R/pkgcache/_metadata/CRAN-075c426938/src/contrib/PACKAGES.gz"
#>
#> $db_files
#> [1] "/Users/gaborcsardi/Library/Caches/org.R-project.R/R/pkgcache/_metadata/pkgs-34444e3072.rds"
#> [2] "/Users/gaborcsardi/Library/Caches/org.R-project.R/R/pkgcache/_metadata/pkgs-ccacf1b389.rds"
#>
#> $size
#> [1] 174848200

The current metadata DB:

meta_list()

Package dependency types 25

Selected packages only:

meta_list(pkg = c("shiny", "htmlwidgets"))

Update the metadata DB

meta_update()

Delete the metadata DB

meta_clean()

Package dependency types

Various types of R package dependencies

Description

Various types of R package dependencies

Details

pak:::include_docs("pkgdepends", "docs/deps.rds")

Package sources Install packages from CRAN, Bioconductor, GitHub, URLs, etc.

Description

Install packages from CRAN, Bioconductor, GitHub, URLs, etc. Learn how to tell pak which
packages to install, and where those packages can be found.

If you want a quick overview of package sources, see "Get started with pak".

Details

pak:::include_docs("pkgdepends", "docs/pkg-refs.rds", top = FALSE)

26 pak configuration

pak Install specified required packages

Description

Install the specified packages, or the ones required by the package or project in the current working
directory.

Usage

pak(pkg = NULL, ...)

Arguments

pkg Package names or remote package specifications to install. See pak package
sources for details. If NULL, will install all development dependencies for the
current package.

... Extra arguments are passed to pkg_install() or local_install_dev_deps().

Details

This is a convenience function:

• If you want to install some packages, it is easier to type than pkg_install().

• If you want to install all the packages that are needed for the development of a package or
project, then it is easier to type than local_install_dev_deps().

• You don’t need to remember two functions to install packages, just one.

See Also

Other package functions: lib_status(), pkg_deps_tree(), pkg_deps(), pkg_download(), pkg_install(),
pkg_remove(), pkg_status()

Other local package trees: local_deps_explain(), local_deps(), local_install_deps(), local_install_dev_deps(),
local_install(), local_package_trees

pak configuration Environment variables and options that modify the defualt behavior

Description

pak behavior can be finetuned with environment variables and options (as in base::options()).

pak_cleanup 27

R options affecting pak’s behavior

Ncpus:
Set to the desired number of worker processes for package installation. If not set, then pak will
use the number of logical processors in the machine.

repos:
The CRAN-like repositories to use. See base::options() for details.

pak configuration

Configuration entries (unless noted otherwise on this manual page) have a corresponding environ-
ment variable, and a corresponding option.

The environment variable is always uppercase and uses underscores as the word separator. It always
has the PKG_ prefix.

The option is typically lowercase, use it uses underscores as the word separator, but it always has
the pkg. prefix (notice the dot!).

Some examples:

Config entry name Env var name Option name
platforms PKG_PLATFORMS pkg.platforms
cran_mirror PKG_CRAN_MIRROR pkg.cran_mirror

pak configuration entries:
pak:::doc_config()

Notes:
From version 0.4.0 pak copies the PKG_* environment variables and the pkg.* options to the pak
subprocess, where they are actually used, so you don’t need to restart R or reaload pak after a
configuration change.

pak_cleanup Clean up pak caches

Description

Clean up pak caches

Usage

pak_cleanup(
package_cache = TRUE,
metadata_cache = TRUE,
pak_lib = TRUE,
force = FALSE

)

28 pak_setup

Arguments

package_cache Whether to clean up the cache of package files.

metadata_cache Whether to clean up the cache of package meta data.

pak_lib This argument is now deprecated and does nothing.

force Do not ask for confirmation. Note that to use this function in non-interactive
mode, you have to specify force = FALSE.

See Also

Other pak housekeeping: pak_sitrep()

pak_install_extra Install all optional dependencies of pak

Description

These packages are not required for any pak functionality. They are recommended for some func-
tions that return values that are best used with these packages. E.g. many functions return data
frames, which print nicer when the pillar package is available.

Usage

pak_install_extra(upgrade = FALSE)

Arguments

upgrade Whether to install or upgrade to the latest versions of the optional packages.

Details

Currently only one package is optional: pillar.

pak_setup Set up private pak library (deprecated)

Description

This function is deprecated and does nothing. Recent versions of pak do not need a pak_setup()
call.

Usage

pak_setup(mode = c("auto", "download", "copy"), quiet = FALSE)

pak_sitrep 29

Arguments

mode Where to get the packages from. "download" will try to download them from
CRAN. "copy" will try to copy them from your current "regular" package li-
brary. "auto" will try to copy first, and if that fails, then it tries to download.

quiet Whether to omit messages.

Value

The path to the private library, invisibly.

pak_sitrep pak SITuation REPort

Description

It prints

• pak version,

• the current library path,

• location of the private library,

• whether the pak private library exists,

• whether the pak private library is functional.

Usage

pak_sitrep()

Examples

pak_sitrep()

See Also

Other pak housekeeping: pak_cleanup()

30 pkg_deps

pak_update Update pak itself

Description

Use this function to update the released or development version of pak.

Usage

pak_update(force = FALSE, stream = c("auto", "stable", "rc", "devel"))

Arguments

force Whether to force an update, even if no newer version is available.

stream Whether to update to the

• "stable",

• "rc" (release candidate) or

• "devel" (development) version.

• "auto" updates to the same stream as the current one.

Often there is no release candidate version, then "rc" also installs the stable
version.

Value

Nothing.

pkg_deps Look up the dependencies of a package

Description

Look up the dependencies of a package

Usage

pkg_deps(pkg, upgrade = TRUE, dependencies = NA)

pkg_deps 31

Arguments

pkg Package names or package references. E.g.

• ggplot2: package from CRAN, Bioconductor or a CRAN-like repository
in general,

• tidyverse/ggplot2: package from GitHub,

• tidyverse/ggplot2@v3.4.0: package from GitHub tag or branch,

• https://examples.com/.../ggplot2_3.3.6.tar.gz: package from URL,

• .: package in the current working directory.

See "Package sources" for more details.

upgrade Whether to use the most recent available package versions.

dependencies What kinds of dependencies to install. Most commonly one of the following
values:

• NA: only required (hard) dependencies,

• TRUE: required dependencies plus optional and development dependencies,

• FALSE: do not install any dependencies. (You might end up with a non-
working package, and/or the installation might fail.) See Package depen-
dency types for other possible values and more information about package
dependencies.

Value

A data frame with the dependency data, it includes pkg as well. It has the following columns.
pak:::include_docs("pkgdepends", "docs/resolution-result.rds")

Examples

pkg_deps("dplyr")

For a package on GitHub:

pkg_deps("r-lib/callr")

See Also

Other package functions: lib_status(), pak(), pkg_deps_tree(), pkg_download(), pkg_install(),
pkg_remove(), pkg_status()

32 pkg_deps_explain

pkg_deps_explain Explain how a package depends on other packages

Description

Extract dependency chains from pkg to deps.

Usage

pkg_deps_explain(pkg, deps, upgrade = TRUE, dependencies = NA)

Arguments

pkg Package names or package references. E.g.

• ggplot2: package from CRAN, Bioconductor or a CRAN-like repository
in general,

• tidyverse/ggplot2: package from GitHub,
• tidyverse/ggplot2@v3.4.0: package from GitHub tag or branch,
• https://examples.com/.../ggplot2_3.3.6.tar.gz: package from URL,
• .: package in the current working directory.

See "Package sources" for more details.

deps Package names of the dependencies to explain.

upgrade Whether to use the most recent available package versions.

dependencies What kinds of dependencies to install. Most commonly one of the following
values:

• NA: only required (hard) dependencies,
• TRUE: required dependencies plus optional and development dependencies,
• FALSE: do not install any dependencies. (You might end up with a non-

working package, and/or the installation might fail.) See Package depen-
dency types for other possible values and more information about package
dependencies.

Details

This function is similar to pkg_deps_tree(), but its output is easier to read if you are only inter-
ested is certain packages (deps).

Value

A named list with a print method. First entries are the function arguments: pkg, deps, dependencies,
the last one is paths and it contains the results in a named list, the names are the package names in
deps.

pkg_deps_tree 33

Examples

How does dplyr depend on rlang?

pkg_deps_explain("dplyr", "rlang")

How does the GH version of usethis depend on cli and ps?

pkg_deps_explain("r-lib/usethis", c("cli", "ps"))

pkg_deps_tree Draw the dependency tree of a package

Description

Draw the dependency tree of a package

Usage

pkg_deps_tree(pkg, upgrade = TRUE, dependencies = NA)

Arguments

pkg Package names or package references. E.g.

• ggplot2: package from CRAN, Bioconductor or a CRAN-like repository
in general,

• tidyverse/ggplot2: package from GitHub,
• tidyverse/ggplot2@v3.4.0: package from GitHub tag or branch,
• https://examples.com/.../ggplot2_3.3.6.tar.gz: package from URL,
• .: package in the current working directory.

See "Package sources" for more details.

upgrade Whether to use the most recent available package versions.

dependencies What kinds of dependencies to install. Most commonly one of the following
values:

• NA: only required (hard) dependencies,
• TRUE: required dependencies plus optional and development dependencies,
• FALSE: do not install any dependencies. (You might end up with a non-

working package, and/or the installation might fail.) See Package depen-
dency types for other possible values and more information about package
dependencies.

Value

The same data frame as pkg_deps(), invisibly.

34 pkg_download

Examples

pkg_deps_tree("dplyr")

pkg_deps_tree("r-lib/usethis")

See Also

Other package functions: lib_status(), pak(), pkg_deps(), pkg_download(), pkg_install(),
pkg_remove(), pkg_status()

pkg_download Download a package and its dependencies

Description

TODO: explain result

Usage

pkg_download(
pkg,
dest_dir = ".",
dependencies = FALSE,
platforms = NULL,
r_versions = NULL

)

Arguments

pkg Package names or package references. E.g.

• ggplot2: package from CRAN, Bioconductor or a CRAN-like repository
in general,

• tidyverse/ggplot2: package from GitHub,
• tidyverse/ggplot2@v3.4.0: package from GitHub tag or branch,
• https://examples.com/.../ggplot2_3.3.6.tar.gz: package from URL,
• .: package in the current working directory.

See "Package sources" for more details.

dest_dir Destination directory for the packages. If it does not exist, then it will be created.

dependencies What kinds of dependencies to install. Most commonly one of the following
values:

• NA: only required (hard) dependencies,
• TRUE: required dependencies plus optional and development dependencies,

pkg_history 35

• FALSE: do not install any dependencies. (You might end up with a non-
working package, and/or the installation might fail.) See Package depen-
dency types for other possible values and more information about package
dependencies.

platforms Types of binary or source packages to download. The default is the value of
pkgdepends::default_platforms().

r_versions R version(s) to download packages for. (This does not matter for source pack-
ages, but it does for binaries.) It defaults to the current R version.

Value

Data frame with information about the downloaded packages, invisibly. Columns: pak:::include_docs("pkgdepends",
"docs/download-result.rds")

Examples

dl <- pkg_download("forcats")

dl

dl$fulltarget

pkg_download("r-lib/pak", platforms = "source")

See Also

Other package functions: lib_status(), pak(), pkg_deps_tree(), pkg_deps(), pkg_install(),
pkg_remove(), pkg_status()

pkg_history Query the history of a CRAN package

Description

Query the history of a CRAN package

Usage

pkg_history(pkg)

Arguments

pkg Package name.

Value

A data frame, with one row per package version. The columns are the entries of the DESCRIPTION
files in the released package versions.

36 pkg_install

Examples

pkg_history("ggplot2")

pkg_install Install packages

Description

Install one or more packages and their dependencies into a single package library.

Usage

pkg_install(
pkg,
lib = .libPaths()[[1L]],
upgrade = FALSE,
ask = interactive(),
dependencies = NA

)

Arguments

pkg Package names or package references. E.g.

• ggplot2: package from CRAN, Bioconductor or a CRAN-like repository
in general,

• tidyverse/ggplot2: package from GitHub,
• tidyverse/ggplot2@v3.4.0: package from GitHub tag or branch,
• https://examples.com/.../ggplot2_3.3.6.tar.gz: package from URL,
• .: package in the current working directory.

See "Package sources" for more details.

lib Package library to install the packages to. Note that all dependent packages will
be installed here, even if they are already installed in another library. The only
exceptions are base and recommended packages installed in .Library. These
are not duplicated in lib, unless a newer version of a recommemded package is
needed.

upgrade When FALSE, the default, pak does the minimum amount of work to give you the
latest version(s) of pkg. It will only upgrade dependent packages if pkg, or one
of their dependencies explicitly require a higher version than what you currently
have. It will also prefer a binary package over to source package, even it the
binary package is older.
When upgrade = TRUE, pak will ensure that you have the latest version(s) of pkg
and all their dependencies.

ask Whether to ask for confirmation when installing a different version of a package
that is already installed. Installations that only add new packages never require
confirmation.

pkg_name_check 37

dependencies What kinds of dependencies to install. Most commonly one of the following
values:

• NA: only required (hard) dependencies,
• TRUE: required dependencies plus optional and development dependencies,
• FALSE: do not install any dependencies. (You might end up with a non-

working package, and/or the installation might fail.) See Package depen-
dency types for other possible values and more information about package
dependencies.

Value

(Invisibly) A data frame with information about the installed package(s).

Examples

pkg_install("dplyr")

Upgrade dplyr and all its dependencies:

pkg_install("dplyr", upgrade = TRUE)

Install the development version of dplyr:

pkg_install("tidyverse/dplyr")

Switch back to the CRAN version. This will be fast because pak will have cached the prior install.

pkg_install("dplyr")

See Also

Get started with pak, Package sources, FAQ, The dependency solver.

Other package functions: lib_status(), pak(), pkg_deps_tree(), pkg_deps(), pkg_download(),
pkg_remove(), pkg_status()

pkg_name_check Check if an R package name is available

Description

Additionally, look up the candidate name in a number of dictionaries, to make sure that it does not
have a negative meaning.

Usage

pkg_name_check(name, dictionaries = NULL)

38 pkg_remove

Arguments

name Package name candidate.

dictionaries Character vector, the dictionaries to query. Available dictionaries: * wikipedia
* wiktionary, * acromine (http://www.nactem.ac.uk/software/acromine/),
* sentiment (https://github.com/fnielsen/afinn), * urban (Urban Dic-
tionary). If NULL (by default), the Urban Dictionary is omitted, as it is often
offensive.

Details

Valid package name check:
Check the validity of name as a package name. See ’Writing R Extensions’ for the allowed pack-
age names. Also checked against a list of names that are known to cause problems.

CRAN checks:
Check name against the names of all past and current packages on CRAN, including base and
recommended packages.

Bioconductor checks:
Check name against all past and current Bioconductor packages.

Profanity check:
Check name with https://www.purgomalum.com/service/containsprofanity to make sure
it is not a profanity.

Dictionaries:
See the dictionaries argument.

Value

pkg_name_check object with a custom print method.

Examples

pkg_name_check("sicily")

pkg_remove Remove installed packages

Description

Remove installed packages

Usage

pkg_remove(pkg, lib = .libPaths()[[1L]])

http://www.nactem.ac.uk/software/acromine/
https://github.com/fnielsen/afinn
https://www.purgomalum.com/service/containsprofanity

pkg_search 39

Arguments

pkg A character vector of packages to remove.

lib library to remove packages from.

Value

Nothing.

See Also

Other package functions: lib_status(), pak(), pkg_deps_tree(), pkg_deps(), pkg_download(),
pkg_install(), pkg_status()

pkg_search Search CRAN packages

Description

Search the indexed database of current CRAN packages. It uses the pkgsearch package. See
that package for more details and also pkgsearch::pkg_search() for pagination, more advanced
searching, etc.

Usage

pkg_search(query, ...)

Arguments

query Search query string.

... Additional arguments passed to pkgsearch::pkg_search()

Value

A data frame, that is also a pak_search_result object with a custom print method. To see the
underlying table, you can use [] to drop the extra classes. See examples below.

Examples

Simple search

pkg_search("survival")

See the underlying data frame

psro <- pkg_search("ropensci")
psro[]

40 repo_add

pkg_status Display installed locations of a package

Description

Display installed locations of a package

Usage

pkg_status(pkg, lib = .libPaths())

Arguments

pkg Name of one or more installed packages to display status for.

lib One or more library paths to lookup packages status in. By default all libraries
are used.

Value

Data frame with data about installations of pkg. pak:::include_docs("pkgdepends", "docs/lib-status-return.rds")

Examples

pkg_status("MASS")

See Also

Other package functions: lib_status(), pak(), pkg_deps_tree(), pkg_deps(), pkg_download(),
pkg_install(), pkg_remove()

repo_add Add a new CRAN-like repository

Description

Add a new repository to the list of repositories that pak uses to look for packages.

Usage

repo_add(..., .list = NULL)

repo_resolve(spec)

repo_add 41

Arguments

... Repository specifications, possibly named character vectors. See details below.

.list List or character vector of repository specifications. This argument is easier to
use programmatically than See details below.

spec Repository specification, a possibly named character scalar.

Details

repo_add() adds new repositories. It resolves the specified repositories using repo_resolve()
and then modifies the repos global option.

repo_add() only has an effect in the current R session. If you want to keep your configuration
between R sessions, then set the repos option to the desired value in your user or project .Rprofile
file.

Value

repo_resolve() returns a named character scalar, the URL of the repository.

Repository specifications

The format of a repository specification is a named or unnamed character scalar. If the name is
missing, pak adds a name automatically. The repository named CRAN is the main CRAN repository,
but otherwise names are informational.

Currently supported repository specifications:

• URL pointing to the root of the CRAN-like repository. Example:

https://cloud.r-project.org

• RSPM@<date>, RSPM (RStudio Package Manager) snapshot, at the specified date.
• RSPM@<package>-<version> RSPM snapshot, for the day after the release of <version> of
<package>.

• RSPM@R-<version> RSPM snapshot, for the day after R <version> was released.
• MRAN@<date>, MRAN (Microsoft R Application Network) snapshot, at the specified date.
• MRAN@<package>-<version> MRAN snapshot, for the day after the release of <version> of
<package>.

• MRAN@R-<version> MRAN snapshot, for the day after R <version> was released.

Notes:

• See more about RSPM at https://packagemanager.rstudio.com/client/#/.

• See more about MRAN snapshots at https://mran.microsoft.com/timemachine.

• All dates (or times) can be specified in the ISO 8601 format.

• If RSPM does not have a snapshot available for a date, the next available date is used.

• Dates that are before the first, or after the last RSPM snapshot will trigger an error.

• Dates before the first, or after the last MRAN snapshot will trigger an error.

• Unknown R or package versions will trigger an error.

https://mran.microsoft.com/timemachine

42 repo_get

Exaples

repo_add(RSPMdplyr100 = "RSPM@dplyr-1.0.0")
repo_get()

repo_resolve("MRAN@2020-01-21")

repo_resolve("RSPM@2020-01-21")

repo_resolve("MRAN@dplyr-1.0.0")

repo_resolve("RSPM@dplyr-1.0.0")

repo_resolve("MRAN@R-4.0.0")

repo_resolve("RSPM@R-4.0.0")

See Also

Other repository functions: repo_get(), repo_status()

repo_get Query the currently configured CRAN-like repositories

Description

pak uses the repos option, see options(). It also automatically adds a CRAN mirror if none is
set up, and the correct version of the Bioconductor repositories. See the cran_mirror and bioc
arguments.

Usage

repo_get(r_version = getRversion(), bioc = TRUE, cran_mirror = NULL)

Arguments

r_version R version to use to determine the correct Bioconductor version, if bioc = TRUE.

bioc Whether to automatically add the Bioconductor repositories to the result.

cran_mirror CRAN mirror to use. Leave it at NULL to use the mirror in getOption("repos")
or an automatically selected one.

Details

repo_get() returns the table of the currently configured repositories.

Examples

repo_get()

repo_status 43

See Also

Other repository functions: repo_add(), repo_status()

repo_status Show the status of CRAN-like repositories

Description

It checks the status of the configured or supplied repositories.

Usage

repo_status(
platforms = NULL,
r_version = getRversion(),
bioc = TRUE,
cran_mirror = NULL

)

repo_ping(
platforms = NULL,
r_version = getRversion(),
bioc = TRUE,
cran_mirror = NULL

)

Arguments

platforms Platforms to use, default is the current platform, plus source packages.

r_version R version(s) to use, the default is the current R version, via getRversion().

bioc Whether to add the Bioconductor repositories. If you already configured them
via options(repos), then you can set this to FALSE.

cran_mirror The CRAN mirror to use.

Details

repo_ping() is similar to repo_status() but also prints a short summary of the data, and it returns
its result invisibly.

Value

A data frame that has a row for every repository, on every queried platform and R version. It has
these columns:

• name: the name of the repository. This comes from the names of the configured repositories
in options("repos"), or added by pkgcache. It is typically CRAN for CRAN, and the current
Bioconductor repositories are BioCsoft, BioCann, BioCexp, BioCworkflows.

44 The dependency solver

• url: base URL of the repository.

• bioc_version: Bioconductor version, or NA for non-Bioconductor repositories.

• platform: platform, possible values are source, macos and windows currently.

• path: the path to the packages within the base URL, for a given platform and R version.

• r_version: R version, one of the specified R versions.

• ok: Logical flag, whether the repository contains a metadata file for the given platform and R
version.

• ping: HTTP response time of the repository in seconds. If the ok column is FALSE, then this
columns in NA.

• error: the error object if the HTTP query failed for this repository, platform and R version.

Examples

repo_status()

repo_status(
platforms = c("windows", "macos"),
r_version = c("4.0", "4.1")

)

repo_ping()

See Also

Other repository functions: repo_add(), repo_get()

The dependency solver Find the ideal set of packages and versions to install

Description

pak contains a package dependency solver, that makes sure that the package source and version
requirements of all packages are satisfied, before starting an installation. For CRAN and BioC
packages this is usually automatic, because these repositories are generally in a consistent state. If
packages depend on other other package sources, however, this is not the case.

Details

Here is an example of a conflict detected:

> pak::pkg_install(c("r-lib/pkgcache@conflict", "r-lib/cli@message"))
Error: Cannot install packages:

* Cannot install `r-lib/pkgcache@conflict`.
- Cannot install dependency r-lib/cli@main

* Cannot install `r-lib/cli@main`.
- Conflicts r-lib/cli@message

The dependency solver 45

r-lib/pkgcache@conflict depends on the main branch of r-lib/cli, whereas, we explicitly
requested the message branch. Since it cannot install both versions into a single library, pak quits.

When pak considers a package for installation, and the package is given with its name only, (e.g.
as a dependency of another package), then the package may have any package source. This is
necessary, because one R package library may contain only at most one version of a package with
a given name.

pak’s behavior is best explained via an example. Assume that you are installing a local package (see
below), e.g. local::., and the local package depends on pkgA and user/pkgB, the latter being a
package from GitHub (see below), and that pkgA also depends on pkgB. Now pak must install pkgB
and user/pkgB. In this case pak interprets pkgB as a package from any package source, instead of
a standard package, so installing user/pkgB satisfies both requirements.

Note that that cran::pkgB and user/pkgB requirements result a conflict that pak cannot resolve.
This is because the first one must be a CRAN package, and the second one must be a GitHub
package, and two different packages with the same cannot be installed into an R package library.

Index

∗ library functions
lib_status, 13

∗ local package trees
local_deps, 14
local_deps_explain, 15
local_install, 15
local_install_deps, 17
local_install_dev_deps, 18
local_package_trees, 19
pak, 26

∗ lock files
lockfile_create, 21
lockfile_install, 22

∗ package functions
lib_status, 13
pak, 26
pkg_deps, 30
pkg_deps_tree, 33
pkg_download, 34
pkg_install, 36
pkg_remove, 38
pkg_status, 40

∗ pak housekeeping
pak_cleanup, 27
pak_sitrep, 29

∗ repository functions
repo_add, 40
repo_get, 42
repo_status, 43

base::options(), 26, 27

cache_clean (cache_summary), 3
cache_delete (cache_summary), 3
cache_list (cache_summary), 3
cache_summary, 3

distro::distro(), 20

FAQ, 4, 37

Get started with pak, 5, 25, 37
getRversion(), 43
Great pak features, 9

handle_package_not_found, 10

installation, 10
Installing pak, 11

lib_status, 13, 26, 31, 34, 35, 37, 39, 40
local_deps, 14, 15, 17–19, 26
local_deps_explain, 14, 15, 17–19, 26
local_deps_tree (local_deps), 14
local_dev_deps (local_deps), 14
local_dev_deps_explain

(local_deps_explain), 15
local_dev_deps_tree (local_deps), 14
local_install, 14, 15, 15, 18, 19, 26
local_install(), 19
local_install_deps, 14, 15, 17, 17, 19, 26
local_install_deps(), 19
local_install_dev_deps, 14, 15, 17, 18, 18,

19, 26
local_install_dev_deps(), 18, 19, 26
local_package_trees, 14, 15, 17–19, 19, 26
local_system_requirements, 20
lockfile_create, 21, 23
lockfile_create(), 22
lockfile_install, 22, 22
lockfile_install(), 21

meta_clean (meta_summary), 23
meta_list (meta_summary), 23
meta_summary, 23
meta_update (meta_summary), 23

options(), 42

Package dependency types, 14–16, 18, 19,
22, 25, 31–33, 35, 37

Package sources, 22, 25, 31–34, 36, 37

46

INDEX 47

pak, 13–15, 17–19, 26, 31, 34, 35, 37, 39, 40
pak configuration, 26
pak package sources, 26
pak_cleanup, 27, 29
pak_install_extra, 28
pak_setup, 28
pak_sitrep, 28, 29
pak_sitrep_data (pak_sitrep), 29
pak_update, 30
pkg_deps, 13, 26, 30, 34, 35, 37, 39, 40
pkg_deps(), 33
pkg_deps_explain, 32
pkg_deps_explain(), 15
pkg_deps_tree, 13, 26, 31, 33, 35, 37, 39, 40
pkg_deps_tree(), 32
pkg_download, 13, 26, 31, 34, 34, 37, 39, 40
pkg_download(), 23
pkg_history, 35
pkg_install, 13, 26, 31, 34, 35, 36, 39, 40
pkg_install(), 23, 26
pkg_list (lib_status), 13
pkg_name_check, 37
pkg_remove, 13, 26, 31, 34, 35, 37, 38, 40
pkg_search, 39
pkg_status, 13, 26, 31, 34, 35, 37, 39, 40
pkg_system_requirements

(local_system_requirements), 20
pkgdepends::default_platforms(), 35
pkgsearch::pkg_search(), 39

repo_add, 40, 43, 44
repo_get, 42, 42, 44
repo_ping (repo_status), 43
repo_resolve (repo_add), 40
repo_status, 42, 43, 43

The dependency solver, 37, 44

	cache_summary
	FAQ
	Get started with pak
	Great pak features
	handle_package_not_found
	Installing pak
	lib_status
	local_deps
	local_deps_explain
	local_install
	local_install_deps
	local_install_dev_deps
	local_package_trees
	local_system_requirements
	lockfile_create
	lockfile_install
	meta_summary
	Package dependency types
	Package sources
	pak
	pak configuration
	pak_cleanup
	pak_install_extra
	pak_setup
	pak_sitrep
	pak_update
	pkg_deps
	pkg_deps_explain
	pkg_deps_tree
	pkg_download
	pkg_history
	pkg_install
	pkg_name_check
	pkg_remove
	pkg_search
	pkg_status
	repo_add
	repo_get
	repo_status
	The dependency solver
	Index

