
Package ‘palaeoverse’
January 12, 2023

Title Prepare and Explore Data for Palaeobiological Analyses

Version 1.1.0

Description Provides functionality to support data preparation and exploration for
palaeobiological analyses, improving code reproducibility and accessibility. The
wider aim of 'palaeoverse' is to bring the palaeobiological community together
to establish agreed standards. The package currently includes functionality for
data cleaning, binning (time and space), exploration, summarisation and
visualisation. Reference datasets (i.e. Geological Time Scales <https:
//stratigraphy.org/chart>)
and auxiliary functions are also provided. Details can be found in:
Jones et al., (2022) <doi:10.31223/X5Z94Q>.

License GPL (>= 3)

Language en-GB

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Depends R (>= 4.0)

Imports stats, utils, graphics, methods, curl, deeptime (>= 0.2.1),
ape, sf, stringdist, geosphere, h3jsr (>= 1.3.0), httr, pbapply

Suggests rmarkdown, knitr, testthat (>= 3.0.0), vdiffr (>= 1.0.0),
paleotree, phytools, covr

VignetteBuilder knitr

Config/testthat/edition 3

URL https://palaeoverse.palaeoverse.org,

https://github.com/palaeoverse-community/palaeoverse,

https://palaeoverse.org

BugReports https://github.com/palaeoverse-community/palaeoverse/issues

NeedsCompilation no

1

https://stratigraphy.org/chart
https://stratigraphy.org/chart
https://doi.org/10.31223/X5Z94Q
https://palaeoverse.palaeoverse.org
https://github.com/palaeoverse-community/palaeoverse
https://palaeoverse.org
https://github.com/palaeoverse-community/palaeoverse/issues

2 R topics documented:

Author Lewis A. Jones [aut, cre] (<https://orcid.org/0000-0003-3902-8986>),
William Gearty [aut] (<https://orcid.org/0000-0003-0076-3262>),
Bethany J. Allen [aut] (<https://orcid.org/0000-0003-0282-6407>),
Kilian Eichenseer [aut] (<https://orcid.org/0000-0002-0477-8878>),
Christopher D. Dean [aut] (<https://orcid.org/0000-0001-6471-6903>),
Sofia Galvan [ctb] (<https://orcid.org/0000-0002-3092-4314>),
Miranta Kouvari [ctb] (<https://orcid.org/0000-0002-5442-6221>),
Pedro L. Godoy [ctb] (<https://orcid.org/0000-0003-4519-5094>),
Cecily Nicholl [ctb] (<https://orcid.org/0000-0003-2860-2604>),
Lucas Buffan [ctb] (<https://orcid.org/0000-0002-2353-1432>),
Erin M. Dillon [ctb] (<https://orcid.org/0000-0003-0249-027X>),
Joseph T. Flannery-Sutherland [aut]

(<https://orcid.org/0000-0001-8232-6773>),
A. Alessandro Chiarenza [ctb] (<https://orcid.org/0000-0001-5525-6730>)

Maintainer Lewis A. Jones <LewisAlan.Jones@uvigo.es>

Repository CRAN

Date/Publication 2023-01-12 17:50:02 UTC

R topics documented:

axis_geo . 3
bin_lat . 7
bin_space . 8
bin_time . 11
group_apply . 13
GTS2012 . 15
GTS2020 . 16
interval_key . 17
lat_bins . 17
look_up . 18
palaeorotate . 21
phylo_check . 25
reefs . 26
tax_check . 27
tax_expand_lat . 29
tax_expand_time . 30
tax_range_space . 32
tax_range_time . 34
tax_unique . 36
tetrapods . 39
time_bins . 40

Index 43

https://orcid.org/0000-0003-3902-8986
https://orcid.org/0000-0003-0076-3262
https://orcid.org/0000-0003-0282-6407
https://orcid.org/0000-0002-0477-8878
https://orcid.org/0000-0001-6471-6903
https://orcid.org/0000-0002-3092-4314
https://orcid.org/0000-0002-5442-6221
https://orcid.org/0000-0003-4519-5094
https://orcid.org/0000-0003-2860-2604
https://orcid.org/0000-0002-2353-1432
https://orcid.org/0000-0003-0249-027X
https://orcid.org/0000-0001-8232-6773
https://orcid.org/0000-0001-5525-6730

axis_geo 3

axis_geo Add an axis with a geological timescale

Description

axis_geo behaves similarly to axis in that it adds an axis to the specified side of a base R plot.
The main difference is that it also adds a geological timescale between the plot and the axis. The
default scale includes international periods from ICS. However, international epochs, stages,
eons, and eras and any interval data hosted by Macrostrat are also available from the deeptime
package (see getScaleData). A custom interval dataset can also be provided (see Details below).
The appearance of the axis is highly customizable (see Usage below), with the intent that plots will
be publication-ready.

Usage

axis_geo(
side = 1,
intervals = "epochs",
height = 0.05,
fill = NULL,
lab = TRUE,
lab_col = NULL,
lab_size = 1,
rot = 0,
abbr = TRUE,
center_end_labels = TRUE,
skip = c("Quaternary", "Holocene", "Late Pleistocene"),
bord_col = "black",
lty = par("lty"),
lwd = par("lwd"),
bkgd = "grey90",
neg = FALSE,
exact = FALSE,
round = FALSE,
tick_at = NULL,
tick_labels = TRUE,
phylo = FALSE,
root.time = NULL,
...

)

axis_geo_phylo(...)

Arguments

side integer. Which side to add the axis to (1: bottom, the default; 2: left; 3: top;
4: right).

4 axis_geo

intervals The interval information to use to plot the axis: either A) a character string
indicating a built-in or remotely hosted data.frame (see getScaleData), or B)
a custom data.frame of time interval boundaries (see Details).

height numeric. The relative height (or width if side is 2 or 4) of the scale. This is
relative to the height (if side is 1 or 3) or width (if side is 2 or 4) of the plot.

fill character. The fill color of the boxes. The default is to use the color column
included in intervals. If a custom dataset is provided with intervals without
a color column and without specifying fill, a greyscale will be used. Custom
fill colors can be provided with this option (overriding the color column) and
will be recycled if/as necessary.

lab logical. Should interval labels be included?

lab_col character. The color of the labels. The default is to use the lab_color or
lab_colour column included in intervals. If a custom dataset is provided
with intervals without a lab_color or lab_colour column and without spec-
ifying lab_col, all labels will be black. Custom label colors can be provided
with this option (overriding the lab_color or lab_colour column) and will be
recycled if/as necessary.

lab_size numeric. The size of the labels (see cex in graphics parameters).

rot numeric. The amount of counter-clockwise rotation to add to the labels (in
degrees). Note, labels for axes added to the left or right sides are already rotated
90 degrees.

abbr logical. Should labels be abbreviated? This only works if the data has an abbr
column, otherwise the name column will be used regardless of this setting.

center_end_labels

logical. Should labels be centered within the visible range of intervals at the
ends of the axis?

skip A character vector of interval names indicating which intervals should not be
labeled. If abbr is TRUE, this can also include interval abbreviations. Quaternary,
Holocene, and Late Pleistocene are skipped by default. Set to NULL if this is
not desired.

bord_col character. The border color of the interval boxes.

lty character. Line type (see lty in graphics parameters).

lwd numeric. Line width (see lwd in graphics parameters).

bkgd character. The color of the background color of the scale when no intervals
are being shown.

neg logical. Set this to TRUE if your x-axis is using negative values. If the entire
axis is already negative, this will be set to TRUE for you.

exact logical. Set this to TRUE if you want axis tick marks and numeric tick labels
placed at the interval boundaries.

round integer. Number of decimal places to which exact axis labels should be rounded
(using round). If no value is specified, the exact values will be used. Trailing
zeros are always removed. tick_at and tick_labels can be used to include
labels with trailing zeros.

axis_geo 5

tick_at A numeric vector specifying custom points at which tick marks are to be drawn
on the axis. If specified, this is passed directly to axis. The default is to compute
tick mark locations automatically (see axTicks).

tick_labels Either a) a logical value specifying whether (numerical) annotations should be
made at the tick marks specified by at, or b) a custom character or expression
vector of labels to be placed at the tick marks. If at is specified, this argument
is passed directly to axis.

phylo logical. Is the base plot a phylogeny generated by plot.phylo, plotTree,
plotSimmap, etc?

root.time numeric. If phylo is TRUE, this is the time assigned to the root node of the tree.
By default, this is taken from the root.time element of the plotted tree.

... Further arguments that are passed directly to axis.

Details

If a custom data.frame is provided (with intervals), it should consist of at least 3 columns of
data. See deeptime::periods for an example.

• The name column (interval_name is also allowed) lists the names of each time interval.
These will be used as labels if no abbreviations are provided.

• The max_age column (max_ma is also allowed) lists the oldest boundary of each time interval.
Values should always be positive.

• The min_age column (min_ma is also allowed) lists the youngest boundary of each time inter-
val. Values should always be positive.

• The abbr column is optional and lists abbreviations that may be used as labels.

• The color column (colour is also allowed) is also optional and lists a color for the back-
ground for each time interval (see the Color Specification section here).

• The lab_color (lab_colour is also allowed) column is also optional and lists a color for the
label for each time interval (see the Color Specification section here).

intervals may also be a list if multiple time scales should be added to a single side of the plot.
In this case, height, fill, lab, lab_col, lab_size, rot, abbr, center_end_labels, skip,
bord_col, lty, and lwd can also be lists. If these lists are not as long as intervals, the elements
will be recycled. If individual values (or vectors, e.g. for skip) are used for these parameters, they
will be applied to all time scales (and recycled as necessary). If multiple scales are requested they
will be added sequentially outwards starting from the plot border. The axis will always be placed
on the outside of the last scale.

axis_geo_phylo(...) is shorthand for axis_geo(..., phylo = TRUE).

Value

No return value. Function is used for its side effect, which is to add an axis of the geological
timescale to an already existing plot.

Authors

William Gearty & Kilian Eichenseer

6 axis_geo

Reviewer

Lewis A. Jones

Examples

track user par
oldpar <- par(no.readonly = TRUE)
single scale on bottom
par(mar = c(6.1, 4.1, 4.1, 2.1)) # modify margin
plot(0:100, axes = FALSE, xlim = c(100, 0), ylim = c(100, 0),

xlab = NA, ylab = "Depth (m)")
box()
axis(2)
axis_geo(side = 1, intervals = "periods")
the line argument here depends on the absolute size of the plot
title(xlab = "Time (Ma)", line = 4)

stack multiple scales
par(mar = c(7.1, 4.1, 4.1, 2.1)) # further expand bottom margin
plot(0:100, axes = FALSE, xlim = c(100, 0), ylim = c(100, 0),

xlab = NA, ylab = "Depth (m)")
box()
axis(2)
axis_geo(side = 1, intervals = list("epochs", "periods"))
the line argument here depends on the absolute size of the plot
title(xlab = "Time (Ma)", line = 6)

scale with MacroStrat intervals
par(mar = c(6.1, 4.1, 4.1, 2.1)) # modify margin
plot(0:30, axes = FALSE, xlim = c(30, 0), ylim = c(30, 0),

xlab = NA, ylab = "Depth (m)")
box()
axis(2)
axis_geo(side = 1, intervals = "North American land mammal ages")
the line argument here depends on the absolute size of the plot
title(xlab = "Time (Ma)", line = 4)

scale with old GTS intervals
par(mar = c(6.1, 4.1, 4.1, 2.1)) # modify margin
plot(0:100, axes = FALSE, xlim = c(100, 0), ylim = c(100, 0),

xlab = NA, ylab = "Depth (m)")
box()
axis(2)
axis_geo(side = 1, intervals = time_bins(rank = "period"))
the line argument here depends on the absolute size of the plot
title(xlab = "Time (Ma)", line = 4)

scale with custom intervals
intervals <- data.frame(min_age = c(0, 10, 25, 32),

max_age = c(10, 25, 32, 40),
name = c("A", "B", "C", "D"))

par(mar = c(6.1, 4.1, 4.1, 2.1)) # modify margin

bin_lat 7

plot(0:40, axes = FALSE, xlim = c(40, 0), ylim = c(40, 0),
xlab = NA, ylab = "Depth (m)")

box()
axis(2)
axis_geo(side = 1, intervals = intervals)
the line argument here depends on the absolute size of the plot
title(xlab = "Time (Ma)", line = 4)

scale with phylogeny
library(phytools)
data(mammal.tree)
plot(mammal.tree)
axis_geo_phylo()
title(xlab = "Time (Ma)", line = 4)

scale with fossil phylogeny
library(paleotree)
data(RaiaCopesRule)
plot(ceratopsianTreeRaia)
axis_geo_phylo()
title(xlab = "Time (Ma)", line = 4)

reset user par
par(oldpar)

bin_lat Assign fossil occurrences to latitudinal bins

Description

A function to assign fossil occurrences to user-specified latitudinal bins.

Usage

bin_lat(occdf, bins, lat = "lat", boundary = FALSE)

Arguments

occdf dataframe. A dataframe of the fossil occurrences you wish to bin. This dataframe
should contain a column with the latitudinal coordinates of occurrence data.

bins dataframe. A dataframe of the bins that you wish to allocate fossil occurrences
to, such as that returned by lat_bins(). This dataframe must contain at least
the following named columns: "bin", "max" and "min".

lat character. The name of the column you wish to be treated as the input latitude
(e.g. "lat" or "p_lat"). This column should contain numerical values. Defaults
to "lat".

8 bin_space

boundary logical. If TRUE, occurrences falling on the boundaries of latitudinal bins will
be duplicated and assigned to both bins. If FALSE, occurrences will be binned
into the upper bin only (i.e. highest row number).

Value

A dataframe of the original input occdf with appended columns containing respective latitudinal
bin information.

Developer(s)

Lewis A. Jones

Reviewer(s)

Sofia Galvan

Examples

Load occurrence data
occdf <- tetrapods
Generate latitudinal bins
bins <- lat_bins(size = 10)
Bin data
occdf <- bin_lat(occdf = occdf, bins = bins, lat = "lat")

bin_space Assign fossil occurrences to spatial bins

Description

A function to assign fossil occurrences (or localities) to spatial bins/samples using a hexagonal
equal-area grid.

Usage

bin_space(
occdf,
lng = "lng",
lat = "lat",
spacing = 100,
sub_grid = NULL,
return = FALSE,
plot = FALSE

)

bin_space 9

Arguments

occdf dataframe. A dataframe of the fossil occurrences (or localities) you wish to
bin. This dataframe should contain the decimal degree coordinates of your oc-
currences, and they should be of class numeric.

lng character. The name of the column you wish to be treated as the input longi-
tude (e.g. "lng" or "p_lng").

lat character. The name of the column you wish to be treated as the input latitude
(e.g. "lat" or "p_lat").

spacing numeric. The desired spacing between the center of adjacent cells. This value
should be provided in kilometres.

sub_grid numeric. For an optional sub-grid, the desired spacing between the center of
adjacent cells in the sub-grid. This value should be provided in kilometres. See
details for information on sub-grid usage.

return logical. Should the equal-area grid information and polygons be returned?

plot logical. Should the occupied cells of the equal-area grid be plotted?

Details

This function assigns fossil occurrence data into equal-area grid cells using discrete hexagonal grids
via the h3jsr package. This package relies on Uber’s H3 library, a geospatial indexing system
that partitions the world into hexagonal cells. In H3, 16 different resolutions are available (see
here). In the implementation of the bin_space() function, the resolution is defined by the user-
input spacing which represents the distance between the centroid of adjacent cells. Using this
distance, the function identifies which resolution is most similar to the input spacing, and uses this
resolution.

Additional functionality allows the user to simultaneously assign occurrence data to equal-area grid
cells of a finer-scale grid (i.e. a ‘sub-grid’) within the primary grid via the sub_grid argument.
This might be desirable for users to evaluate the differences in the amount of area occupied by
occurrences within their primary grid cells. This functionality also allows the user to easily rarefy
across sub-grid cells within primary cells to further standardise spatial sampling (see example for
basic implementation).

Note: prior to implementation, coordinate reference system (CRS) for input data is defined as
EPSG:4326 (World Geodetic System 1984). The user should transform their data accordingly if this
is not appropriate. If you are unfamiliar with working with geographic data, we highly recommend
checking out Geocomputation with R.

Value

If the return argument is set to FALSE, a dataframe is returned of the original input occdf with
cell information. If return is set to TRUE, a list is returned with both the input occdf and grid
information and polygons.

Developer(s)

Lewis A. Jones

https://h3geo.org/docs/
https://h3geo.org/docs/core-library/restable/
https://h3geo.org/docs/core-library/restable/
https://geocompr.robinlovelace.net/index.html

10 bin_space

Reviewer(s)

Bethany Allen & Kilian Eichenseer

Examples

Get internal data
data("reefs")

Reduce data for plotting
occdf <- reefs[1:250,]

Bin data using a hexagonal equal-area grid
ex1 <- bin_space(occdf = occdf, spacing = 500, plot = TRUE)

Bin data using a hexagonal equal-area grid and sub-grid
ex2 <- bin_space(occdf = occdf, spacing = 1000, sub_grid = 250, plot = TRUE)

EXAMPLE: rarefy
Load data
occdf <- tetrapods[1:250,]

Assign to spatial bin
occdf <- bin_space(occdf = occdf, spacing = 1000, sub_grid = 250)

Get unique bins
bins <- unique(occdf$cell_ID)

n reps
n <- 10

Rarefy data across sub-grid grid cells
Returns a list with each element a bin with respective mean genus richness
df <- lapply(bins, function(x) {

subset occdf for respective grid cell
tmp <- occdf[which(occdf$cell_ID == x),]

Which sub-grid cells are there within this bin?
sub_bin <- unique(tmp$cell_ID_sub)

Sample 1 sub-grid cell n times
s <- sample(sub_bin, size = n, replace = TRUE)

Count the number of unique genera within each sub_grid cell for each rep
counts <- sapply(s, function(i) {
Number of unique genera within each sample
length(unique(tmp[which(tmp$cell_ID_sub == i),]$genus))

})

Mean richness across subsamples
mean(counts)

})

bin_time 11

bin_time Assign fossil occurrences to time bins

Description

A function to assign fossil occurrences to specified time bins based on different approaches com-
monly applied in palaeobiology.

Usage

bin_time(occdf, bins, method = "mid", reps = 100, fun = dunif, ...)

Arguments

occdf dataframe. A dataframe of the fossil occurrences you wish to bin. This dataframe
should contain the following named columns: "max_ma" and "min_ma". These
columns should contain numeric values. If required, numeric ages can be gen-
erated from interval names via the look_up() function.

bins dataframe. A dataframe of the bins that you wish to allocate fossil occur-
rences to such as that returned by time_bins(). This dataframe must contain at
least the following named columns: "bin", "max_ma" and "min_ma". Columns
"max_ma" and "min_ma" must be numeric values.

method character. The method desired for binning fossil occurrences. Currently, five
methods exist in this function: "mid", "majority", "all", "random", and "point".
See Details for a description of each.

reps numeric. A non-negative numeric specifying the number of replications for
sampling. This argument is only useful in the case of the "random" or "point"
method being specified in the method argument. Defaults to 100.

fun function. A probability density function from the stats package such as dunif
or dnorm. This argument is only useful if the "point" method is specified in the
method argument.

... Additional arguments available in the called function (fun). These arguments
may be required for function arguments without default values, or if you wish to
overwrite the default argument value (see example). x input values are generated
internally based on the age range of the fossil occurrence and should not be
manually provided. Note that x input values range between 0 and 1, and function
arguments should therefore be scaled to be within these bounds.

Details

Five approaches (methods) exist in the bin_time() function for assigning occurrences to time bins:

• Midpoint: The "mid" method is the simplest approach and uses the midpoint of the fossil
occurrence age range to bin the occurrence.

12 bin_time

• Majority: The "majority" method bins an occurrence into the bin which it most overlaps with.
As part of this implementation, the majority percentage overlap of the occurrence is also
calculated and returned as an additional column in occdf. If desired, these percentages can be
used to further filter an occurrence dataset.

• All: The "all" method bins an occurrence into every bin its age range covers. For occurrences
with age ranges of more than one bin, the occurrence row is duplicated. Each occurrence
is assigned an ID in the column occdf$id so that duplicates can be tracked. Additionally,
occdf$n_bins records the number of bins each occurrence appears within.

• Random: The "random" method randomly samples X amount of bins (with replacement) from
the bins that the fossil occurrence age range covers with equal probability regardless of bin
length. The reps argument determines the number of times the sample process is repeated.
All replications are stored as individual elements within the returned list with an appended
bin_assignment and bin_midpoint column to the original input occdf. If desired, users
can easily bind this list using do.call(rbind, x).

• Point: The "point" method randomly samples X (reps) amount of point age estimates from the
age range of the fossil occurrence. Sampling follows a user-input probability density function
such as dnorm (see example 5). Users should also provide any additional arguments for the
probability density function (see ...). However, x (vector of quantiles) values should not
be provided as these values are input from the age range of each occurrence. These values
range between 0 and 1, and therefore function arguments should be scaled to be within these
bounds. The reps argument determines the number of times the sample process is repeated.
All replications are stored as individual elements within the returned list with an appended
bin_assignment and point_estimates column to the original input occdf. If desired, users
can easily bind this list using do.call(rbind, x).

Value

For methods "mid", "majority" and "all", a dataframe of the original input occdf with the fol-
lowing appended columns is returned: occurrence id (id), number of bins that the occurrence
age range covers (n_bins), bin assignment (bin_assignment), and bin midpoint (bin_midpoint).
In the case of the "majority" method, an additional column of the majority percentage overlap
(overlap_percentage) is also appended. For the "random" and "point" method, a list is re-
turned (of length reps) with each element a copy of the occdf and appended columns (random:
bin_assignment and bin_midpoint; point: bin_assignment and point_estimates).

Developer(s)

Christopher D. Dean & Lewis A. Jones

Reviewer(s)

William Gearty

Examples

#Grab internal tetrapod data
occdf <- tetrapods[1:100,]
bins <- time_bins()

group_apply 13

#Assign via midpoint age of fossil occurrence data
ex1 <- bin_time(occdf = occdf, bins = bins, method = "mid")

#Assign to all bins that age range covers
ex2 <- bin_time(occdf = occdf, bins = bins, method = "all")

#Assign via majority overlap based on fossil occurrence age range
ex3 <- bin_time(occdf = occdf, bins = bins, method = "majority")

#Assign randomly to overlapping bins based on fossil occurrence age range
ex4 <- bin_time(occdf = occdf, bins = bins, method = "random", reps = 5)

#Assign point estimates following a normal distribution
ex5 <- bin_time(occdf = occdf, bins = bins, method = "point", reps = 5,

fun = dnorm, mean = 0.5, sd = 0.25)

group_apply Apply a function over grouping(s) of data

Description

A function to apply palaeoverse functionality across subsets (groups) of data, delineated using
one or more variables. Functions which receive a data.frame as input (e.g. nrow, ncol, lengths,
unique) may also be used.

Usage

group_apply(occdf, group, fun, ...)

Arguments

occdf dataframe. A dataframe of fossil occurrences or taxa, as relevant to the desired
function. This dataframe must contain the grouping variables and the necessary
variables for the function you wish to call (see function-specific documentation
for required columns).

group character. A vector of column names, specifying the desired subgroups (e.g.
"collection_no", "stage_bin"). Supplying more than one grouping variable will
produce an output containing subgroups for each unique combination of values.

fun function. The function you wish to apply to occdf. See details for compatible
functions.

... Additional arguments available in the called function. These arguments may
be required for function arguments without default values, or if you wish to
overwrite the default argument value (see examples).

14 group_apply

Details

group_apply applies functions to subgroups of data within a supplied dataset, enabling the sepa-
rate analysis of occurrences or taxa from different time intervals, spatial regions, or trait values. The
function serves as a wrapper around palaeoverse functions. Other functions which can be applied
to a data.frame (e.g. nrow, ncol, lengths, unique) may also be used.

All palaeoverse functions which require a dataframe input can be used in conjunction with the
group_apply function. However, this is unnecessary for many functions (e.g. bin_time) as groups
do not need to be partitioned before binning. This list provides users with palaeoverse functions
that might be interesting to apply across group(s):

• tax_unique: return the number of unique taxa per grouping variable.

• tax_range_time: return the temporal range of taxa per grouping variable.

• tax_range_space: return the geographic range of taxa per grouping variable.

• tax_check: return potential spelling variations of the same taxon per grouping variable. Note:
verbose needs to be set to FALSE.

Value

A data.frame of the outputs from the selected function, with appended column(s) indicating the
user-defined groups. If a single vector is returned via the called function, it will be transformed to a
data.frame with the column name equal to the input function.

Developer(s)

Lewis A. Jones & William Gearty

Reviewer(s)

Kilian Eichenseer & Bethany Allen

Examples

Examples
Get tetrapods data
occdf <- tetrapods[1:100,]
Remove NA data
occdf <- subset(occdf, !is.na(genus))
Count number of occurrences from each country
ex1 <- group_apply(occdf = occdf, group = "cc", fun = nrow)
Unique genera per collection with group_apply and input arguments
ex2 <- group_apply(occdf = occdf,

group = c("collection_no"),
fun = tax_unique,
genus = "genus",
family = "family",
order = "order",
class = "class",
resolution = "genus")

Use multiple variables (number of occurrences per collection and formation)

GTS2012 15

ex3 <- group_apply(occdf = occdf,
group = c("collection_no", "formation"),
fun = nrow)

Compute counts of occurrences per latitudinal bin
Set up lat bins
bins <- lat_bins()
bin occurrences
occdf <- bin_lat(occdf = occdf, bins = bins)
Calculate number of occurrences per bin
ex4 <- group_apply(occdf = occdf, group = "lat_bin", fun = nrow)

GTS2012 Geological Timescale 2012

Description

A dataframe of the Geological Timescale 2012. Age data from the International Commission on
Stratigraphy. Supplementary information is also included in the dataset for plotting functionality
(e.g. GTS2012 colour scheme).

Usage

GTS2012

Format

A data frame with 186 rows and 9 variables:

interval_number Index number for the temporal order of all intervals present in the dataset.
interval_name Names of intervals in the dataset.
rank The temporal rank of intervals in the dataset.
max_ma The maximum age of the interval in millions of years before present.
mid_ma The midpoint age of the interval in millions of years before present.
min_ma The minimum age of the interval in millions of years before present.
duration_myr The duration of the interval in millions of years.
font Colour of font to use for plotting in conjunction with the colour column.
colour Colours of stages based on the ICS timescale.

References

Gradstein, F.M., Ogg, J.G., Schmitz, M.D. and Ogg, G.M. eds. (2012). Geologic Timescale 2012.
Elsevier.

Source

Compiled by Lewis A. Jones (2022-07-02) from the ICS.

https://stratigraphy.org/ICSchart/ChronostratChart2012.pdf
https://stratigraphy.org/ICSchart/ChronostratChart2012.pdf
https://stratigraphy.org/timescale/
https://stratigraphy.org/ICSchart/ChronostratChart2012.pdf

16 GTS2020

GTS2020 Geological Timescale 2020

Description

A dataframe of the Geological Timescale 2020. Age data from the International Commission on
Stratigraphy. Supplementary information is included in the dataset for plotting functionality (e.g.
GTS2020 colour scheme).

Usage

GTS2020

Format

A data frame with 189 rows and 9 variables:

interval_number Index number for the temporal order of all intervals present in the dataset.

interval_name Names of intervals in the dataset.

rank The temporal rank of intervals in the dataset.

max_ma The maximum age of the interval in millions of years before present.

mid_ma The midpoint age of the interval in millions of years before present.

min_ma The minimum age of the interval in millions of years before present.

duration_myr The duration of the interval in millions of years.

font Colour of font to use for plotting in conjunction with the colour column.

colour Colours of stages based on the ICS timescale.

References

Gradstein, F.M., Ogg, J.G., Schmitz, M.D. and Ogg, G.M. eds. (2020). Geologic Timescale 2020.
Elsevier.

Source

Compiled by Lewis A. Jones (2022-07-02) from the ICS.

https://stratigraphy.org/ICSchart/ChronostratChart2020-03.pdf
https://stratigraphy.org/ICSchart/ChronostratChart2020-03.pdf
https://stratigraphy.org/timescale/
https://stratigraphy.org/ICSchart/ChronostratChart2020-03.pdf

interval_key 17

interval_key Example dataset: Interval key for the look_up function

Description

A table of geological intervals and the earliest and latest corresponding international geologi-
cal stages from the International Commission on Stratigraphy (ICS). The table was compiled us-
ing regional stratigraphies, the GeoWhen Database, temporal information from the Paleobiology
Database and the Geological Timescale 2022. Some assignments were made with incomplete infor-
mation on the stratigraphic provenance of intervals. The assignments in this table should be verified
before research use. They are provided here as an example of functionality only.

Usage

interval_key

Format

A data frame with 1323 rows and 3 variables:

interval_name Stratigraphic interval

early_stage Earliest (oldest) geological stage which overlaps with the interval

late_stage Latest (youngest) geological stage which overlaps with the interval

Source

Compiled by Kilian Eichenseer and Lewis Jones for assigning geological stages to ccurrences from
the Paleobiology Database and the PaleoReefs Database.

lat_bins Generate latitudinal bins

Description

A function to generate latitudinal bins of a given size for a user-defined latitudinal range. If the
desired size of the bins is not compatible with the defined latitudinal range, bin size can be updated
to the nearest integer which is divisible into this range.

Usage

lat_bins(size = 10, max = 90, min = -90, fit = FALSE, plot = FALSE)

https://timescalefoundation.org/resources/geowhen/
https://paleobiodb.org/classic/displaySearchStrataForm
https://paleobiodb.org/classic/displaySearchStrataForm
https://stratigraphy.org/ICSchart/ChronostratChart2022-10.pdf
https://paleobiodb.org
https://www.paleo-reefs.pal.uni-erlangen.de/

18 look_up

Arguments

size numeric. A single numeric value defining the width of the latitudinal bins. This
value must be more than 0, and less than or equal to 90 (defaults to 10).

max numeric. A single numeric value defining the upper limit of the latitudinal range
(defaults to 90).

min numeric. A single numeric value defining the lower limit of the latitudinal range
(defaults to -90).

fit logical. Should bin size be checked to ensure that the entire latitudinal range
is covered? If fit = TRUE, bin size is set to the nearest integer which is divisible
by the user-input range. If fit = FALSE, and bin size is not divisible into the
range, the upper part of the latitudinal range will be missing.

plot logical. Should a plot of the latitudinal bins be generated?

Value

A dataframe of latitudinal bins of user-defined size.

Developer(s)

Lewis A. Jones

Reviewer(s)

Bethany Allen

Examples

Generate 20 degrees latitudinal bins
bins <- lat_bins(size = 20)

Generate latitudinal bins with closest fit to 13 degrees
bins <- lat_bins(size = 13, fit = TRUE)

Generate latitudinal bins for defined latitudinal range
bins <- lat_bins(size = 10, max = 50, min = -50)

look_up Look up geological intervals and assign geological stages

Description

A function that uses interval names to assign either international geological stages and numeric
ages from the International Commission on Stratigraphy (ICS), or user-defined intervals, to fossil
occurrences.

https://stratigraphy.org/ICSchart/ChronostratChart2022-02.pdf

look_up 19

Usage

look_up(
occdf,
early_interval = "early_interval",
late_interval = "late_interval",
int_key = FALSE,
assign_with_GTS = "GTS2020",
return_unassigned = FALSE

)

Arguments

occdf dataframe. A dataframe of fossil occurrences or other geological data, with
columns of class character specifying the earliest and the latest possible inter-
val associated with each occurrence.

early_interval character. Name of the column in occdf that contains the earliest interval
from which the occurrences are from. Defaults to "early_interval".

late_interval character. Name of the column in occdf that contains the latest interval from
which the occurrences are from. Defaults to "late_interval".

int_key dataframe. A dataframe linking interval names to international geological stage
names from the ICS, or other, user-defined intervals. This dataframe should con-
tain the following named columns containing character values:

• interval_name contains the names to be matched from occdf

• early_stage contains the names of the earliest stages corresponding to the
intervals

• late_stage contains the latest stage corresponding to the intervals

Optionally, named numeric columns provide maximum and minimum ages for
the intervals:

• max_ma

• min_ma

If set to FALSE (default), stages and numerical ages can be assigned based on
one of the GTS tables (see below).

assign_with_GTS

character or FALSE. Allows intervals to be searched in the GTS2020 (default)
or the GTS2012 table. Set to FALSE to disable.

return_unassigned

logical. Return interval names which could not be assigned, instead of the
dataframe with assignments. Defaults to FALSE.

20 look_up

Details

If int_key is set to FALSE (default), this function can be used to assign numerical ages solely based
on stages from a GTS table, and to assign stages based on GTS interval names.

Instead of geological stages, the user can supply any names in the early_stage and late_stage
column of int_key. assign_with_GTS should then be set to FALSE.

An exemplary int_key has been included within this package (interval_key). This key works
well for assigning geological stages to many of the intervals from the Paleobiology Database
and the PaleoReefs Database. palaeoverse cannot guarantee that all of the stage assignments
with the exemplary key are accurate. The table corresponding to this key can be loaded with
palaeoverse::interval_key.

Value

A dataframe of the original input data with the following appended columns is returned: early_stage
and late_stage, corresponding to the earliest and latest international geological stage which could
be assigned to the occurrences based on the given interval names. interval_max_ma and interval_min_ma
return maximum and minimum interval ages if provided in the interval key, or if they can be fetched
from GTS2012 or GTS2020. A column interval_mid_ma is appended to provide the midpoint
ages of the intervals.

Developer(s)

Kilian Eichenseer & William Gearty

Reviewer(s)

Lewis A. Jones & Christopher D. Dean

Examples

Just use GTS2020 (default):
create exemplary dataframe
taxdf <- data.frame(name = c("A", "B", "C"),
early_interval = c("Maastrichtian", "Campanian", "Sinemurian"),
late_interval = c("Maastrichtian", "Campanian", "Bartonian"))
assign stages and numerical ages
taxdf <- look_up(taxdf)

Use exemplary int_key
Get internal reef data
occdf <- reefs
assign stages and numerical ages

occdf <- look_up(occdf,
early_interval = "interval",
late_interval = "interval",
int_key = interval_key)

Use exemplary int_key and return unassigned
Get internal tetrapod data
occdf <- tetrapods

https://paleobiodb.org
https://www.paleo-reefs.pal.uni-erlangen.de/

palaeorotate 21

assign stages and numerical ages
occdf <- look_up(occdf, int_key = palaeoverse::interval_key)
return unassigned intervals
unassigned <- look_up(occdf, int_key = palaeoverse::interval_key,

return_unassigned = TRUE)

Use own key and GTS2012:
create example data
occdf <- data.frame(

stage = c("any Permian", "first Permian stage",
"any Permian", "Roadian"))

create example key
interval_key <- data.frame(

interval_name = c("any Permian", "first Permian stage"),
early_stage = c("Asselian", "Asselian"),
late_stage = c("Changhsingian", "Asselian"))

assign stages and numerical ages:
occdf <- look_up(occdf,

early_interval = "stage", late_interval = "stage",
int_key = interval_key, assign_with_GTS = "GTS2012")

palaeorotate Palaeorotate fossil occurrences

Description

A function to generate palaeocoordinates for fossil occurrence data (i.e. reconstruct the geographic
distribution of organisms’ remains at time of deposition). Each occurrence is assigned palaeocoor-
dinates based on its current geographic position and age estimate.

Usage

palaeorotate(
occdf,
lng = "lng",
lat = "lat",
age = "age",
model = "MERDITH2021",
method = "grid",
uncertainty = FALSE,
round = 3

)

Arguments

occdf dataframe. Fossil occurrences to be palaeogeographically reconstructed. occdf
should contain columns with longitudinal and latitudinal values, as well as age
estimates. The age of rotation should be supplied in millions of years before
present.

22 palaeorotate

lng character. The name of the column you wish to be treated as longitude (de-
faults to "lng").

lat character. The name of the column you wish to be treated as latitude (defaults
to "lat").

age character. The name of the column you wish to be treated as the age for
rotation (defaults to "age").

model character. The name of the plate rotation model to be used to reconstruct
palaeocoordinates. See details for available models.

method character. Method used to calculate palaeocoordinates for fossil occurrences.
Either "grid" (default) to use reconstruction files, or "point" to use the GPlates
API service. See details section for specific details.

uncertainty logical. Should the uncertainty in palaeogeographic reconstructions be re-
turned? If set to TRUE, the palaeocoordinates from all reconstruction files
(models) are returned, along with their respective palaeolatitudinal range and
the maximum Great Circle Distance between palaeocoordinates (in km). This
argument is only relevant if method is set to "grid".

round numeric. Numeric value indicating the number of decimal places lng, lat and
age should be rounded to. This functionality is only relevant for the "point"
method. Rounding can speed up palaeorotation by reducing the number of
unique coordinate pairs. Defaults to a value of 3. If no rounding is desired,
set this value to NULL.

Details

This function can generate palaeocoordinates using two different approaches (method):

• Reconstruction files: The "grid" method uses reconstruction files to spatiotemporally link
present-day geographic coordinates and age estimates with an equal-area hexagonal grid (~100
km spacings) rotated to the midpoint of Phanerozoic (0–540 Ma) stratigraphic stages (Geolog-
ical Time Scale, 2020). The grid was generated using the h3jsr R package and ’h3_resolution’
3 (see h3_info_table). If specific ages of rotation are required, or fine-scale spatial analyses
are being conducted, use of the "point" method might be preferable for the user (particularly
if occurrences are close to plate boundaries). As implemented, points within the same grid
cell will be assigned equivalent palaeocoordinates due to spatial aggregation. The reconstruc-
tion files provide pre-generated palaeocoordinates for a grid of ~100 km spacings, allowing
the past distribution of fossil occurrences to be estimated efficiently. The reconstruction files
along with additional documentation are deposited on Zenodo. Note: each reconstruction file
is 5–10 MB in size.

• GPlates API: The "point" method uses the GPlates Web Service to reconstruct palaeorotations
for point data. The use of this method is slower than the "grid" method if many unique time
intervals exist in your dataset. However, it provides palaeocoordinates with higher precision.

Available models and timespan for each method:

• "MERDITH2021" (Merdith et al., 2021)

– 0–540 Ma (grid)
– 0–1000 Ma (point)

https://zenodo.org/record/7390066
https://gwsdoc.gplates.org

palaeorotate 23

• "MULLER2019" (Müller et al., 2019)

– 0–540 Ma (grid)
– 0–1100 Ma (point)

• "MULLER2016" (Müller et al., 2016)

– 0–230 Ma (grid/point)

• "MATTHEWS2016_mantle_ref" (Matthews et al., 2016)

– 0–410 Ma (grid/point)

• "MATTHEWS2016_pmag_ref" (Matthews et al., 2016)

– 0–410 Ma (grid/point)

• "SETON2012" (Seton et al., 2012)

– 0–200 Ma (grid/point)

• "GOLONKA" (Wright et al., 2013)

– 0–540 Ma (grid/point)

• "PALEOMAP" (Scotese & Wright, 2018)

– 0–540 Ma (grid)
– 0–750 Ma (point)

Value

A dataframe containing the original input occurrence dataframe, the rotation model ("rot_model"),
age of rotation ("rot_age"), the reference coordinates rotated ("rot_lng" and "rot_lat"), and the re-
constructed coordinates (i.e. "p_lng" and "p_lat"). The "point" method uses the input coordinates
and age as the reference; reference coordinates are therefore not returned. If uncertainty is set to
TRUE, palaeocoordinates for all available models will be returned, along with the palaeolatitudinal
range (range_p_lat) and the maximum Great Circle Distance (max_dist) in km (calculated via
distHaversine).

References

• Matthews, K.J., Maloney, K.T., Zahirovic, S., Williams, S.E., Seton, M., and Müller, R.D.
(2016). Global plate boundary evolution and kinematics since the late Paleozoic. Global and
Planetary Change, 146, 226-250. doi:10.1016/j.gloplacha.2016.10.002.

• Merdith, A., Williams, S.E., Collins, A.S., Tetley, M.G., Mulder, J.A., Blades, M.L., Young,
A., Armistead, S.E., Cannon, J., Zahirovic, S., Müller. R.D. (2021). Extending full-plate
tectonic models into deep time: Linking the Neoproterozoic and the Phanerozoic. Earth-
Science Reviews, 214(103477). doi:10.1016/j.earscirev.2020.103477.

• Müller, R. D., Zahirovic, S., Williams, S. E., Cannon, J., Seton, M., Bower, D. J., Tetley, M.
G., Heine, C., Le Breton, E., Liu, S., Russell, S. H. J., Yang, T., Leonard, J., and Gurnis, M.
(2019). A global plate model including lithospheric deformation along major rifts and orogens
since the Triassic. Tectonics, 38(6) 1884-1907. doi:10.1029/2018TC005462.

• Müller R.D., Seton, M., Zahirovic, S., Williams, S.E., Matthews, K.J., Wright, N.M., Shep-
hard, G.E., Maloney, K.T., Barnett-Moore, N., Hosseinpour, M., Bower, D.J., Cannon, J.,
2016. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup.
Annual Review of Earth and Planetary Sciences 44(1), 107-138. doi:10.1146/annurevearth-
060115012211.

https://doi.org/10.1016/j.gloplacha.2016.10.002
https://doi.org/10.1016/j.earscirev.2020.103477
https://doi.org/10.1029/2018TC005462
https://doi.org/10.1146/annurev-earth-060115-012211
https://doi.org/10.1146/annurev-earth-060115-012211

24 palaeorotate

• Scotese, C., & Wright, N. M. (2018). PALEOMAP Paleodigital Elevation Models (Pale-
oDEMs) for the Phanerozoic. PALEOMAP Project.

• Seton, M., Müller, R.D., Zahirovic, S., Gaina, C., Torsvik, T.H., Shephard, G., Talsma,
A., Gurnis, M., Turner, M., Maus, S., Chandler, M. (2012). Global continental and ocean
basin reconstructions since 200 Ma. Earth-Science Reviews, 113(3-4), 212-270. doi:10.1016/
j.earscirev.2012.03.002.

• Wright, N., Zahirovic, S., Müller, R. D., & Seton, M. (2013). Towards community-driven
paleogeographic reconstructions: integrating open-access paleogeographic and paleobiology
data with plate tectonics. Biogeosciences, 10(3), 1529-1541. doi:10.5194/bg1015292013.

See GPlates documentation for additional information and details.

Developer(s)

Lewis A. Jones

Reviewer(s)

Kilian Eichenseer & Lucas Buffan

Examples

#Generic example with a few occurrences
occdf <- data.frame(lng = c(2, -103, -66),

lat = c(46, 35, -7),
age = c(88, 125, 200))

#Calculate palaeocoordinates using reconstruction files
ex1 <- palaeorotate(occdf = occdf, method = "grid")

#Calculate palaeocoordinates using the GPlates API
ex2 <- palaeorotate(occdf = occdf, method = "point")

#Now with some real fossil occurrence data!

#Grab some data from the Paleobiology Database
data(tetrapods)

#Assign midpoint age of fossil occurrence data for reconstruction
tetrapods$age <- (tetrapods$max_ma + tetrapods$min_ma)/2

#Rotate the data
ex3 <- palaeorotate(occdf = tetrapods)

#Calculate uncertainity in palaeocoordinates from models
ex4 <- palaeorotate(occdf = tetrapods, uncertainty = TRUE)

https://www.earthbyte.org/paleodem-resource-scotese-and-wright-2018/
https://doi.org/10.1016/j.earscirev.2012.03.002
https://doi.org/10.1016/j.earscirev.2012.03.002
https://doi.org/10.5194/bg-10-1529-2013
https://gwsdoc.gplates.org/reconstruction

phylo_check 25

phylo_check Check phylogeny tip names

Description

A function to check the list of tip names in a phylogeny against a vector of taxon names, and if
desired, to trim the phylogeny to only include taxon names within the vector.

Usage

phylo_check(tree = NULL, list = NULL, out = "full_table", sort = "presence")

Arguments

tree phylo. A phylo object containing the phylogeny.
list character. A vector of taxon names. Binomials can be separated with either a

space or an underscore. The names should not contain any other punctuation.
out character. Determine whether to return either a dataframe describing which

taxa are included or not included in the tree ("full_table", the default), the same
table but with taxa included in both the tree and the list removed ("diff_table"),
the counts of taxa included and not included in the tree ("counts"), or the phy-
logeny trimmed to only include taxa in the provided list ("tree").

sort character. If out = "full_table" or out = "diff_table", sort the names by pres-
ence in the tree ("presence", the default), or alphabetically ("az").

Details

Phylogenies can be read into R from .txt or .tree files containing the Newick formatted tree using
ape::read.tree(), and can be saved as files using ape::write.tree(). When out = "tree",
tips are trimmed using ape::drop.tip(); if your tree is not ultrametric (i.e. the tip dates are not
all the same), we recommend using paleotree::fixRootTime() to readjust your branch lengths
following pruning.

Value

If out = "full_table", a dataframe describing whether taxon names are present in the list and/or the
tree. If out = "diff_table", a dataframe describing which taxon names are present in the list or the
tree, but not both. If out = "counts", a summary table containing the number of taxa in the list but
not the tree, in the tree but not the list, and in both. If out = "tree", a phylo object consisting of the
input phylogeny trimmed to only include the tips present in the list.

Developer(s)

Bethany Allen

Reviewer(s)

William Gearty & Pedro Godoy

26 reefs

Examples

track user par
oldpar <- par(no.readonly = TRUE)
#Read in example tree of ceratopsians from paleotree
library(paleotree)
data(RaiaCopesRule)
#Set smaller margins for plotting
par(mar = rep(0.5, 4))
plot(ceratopsianTreeRaia)

#Specify list of names
dinosaurs <- c("Nasutoceratops_titusi", "Diabloceratops_eatoni",
"Zuniceratops_christopheri", "Psittacosaurus_major",
"Psittacosaurus_sinensis", "Avaceratops_lammersi",
"Xenoceratops_foremostensis", "Leptoceratops_gracilis",
"Triceratops_horridus", "Triceratops_prorsus")

#Table of taxon names in list, tree or both
ex1 <- phylo_check(tree = ceratopsianTreeRaia, list = dinosaurs)

#Counts of taxa in list, tree or both
ex2 <- phylo_check(tree = ceratopsianTreeRaia, list = dinosaurs,

out = "counts")

#Trim tree to tips in the list
my_ceratopsians <- phylo_check(tree = ceratopsianTreeRaia, list = dinosaurs,
out = "tree")
plot(my_ceratopsians)
reset user par
par(oldpar)

reefs Example dataset: Phanerozoic reefs from the PaleoReefs Database

Description

A dataset of Phanerozoic reef occurrences from the PaleoReefs Database (PARED). This example
dataset includes a subset of the available data from PARED, but can be used to demonstrate how
the functions in the palaeoverse package might be applied.

Usage

reefs

Format

A data frame with 4363 rows and 14 variables:

r_number Reference number given to the particular fossil reef in PARED

https://www.paleo-reefs.pal.uni-erlangen.de

tax_check 27

name Reference name given to the particular fossil reef in PARED

formation The geological formation to which the fossil reef belongs

system The stratigraphic system to which the fossil reef belongs

series The stratigraphic series to which the fossil reef belongs

interval The stratigraphic interval to which the fossil reef belongs

biota_main The main biota present within the fossil reef

biota_sec The secondary biota present within the fossil reef

lng The modern-day longitude of the fossil reef

lat The modern-day latitude of the fossil reef

country The country or ocean the fossil reef is located in

authors The authors of the publication documenting the fossil reef

title The title of the publication documenting the fossil reef

year The year of the publication documenting the fossil reef

References

Kiessling, W. & Krause, M. C. (2022). PaleoReefs Database (PARED) (1.0) Data set. doi:10.5281/
zenodo.6037852

Source

Compiled by Lewis A. Jones. Downloaded on the 25th July 2022. doi:10.5281/zenodo.6037852

tax_check Taxonomic spell check

Description

A function to check for and count potential spelling variations of the same taxon. Spelling variations
are checked within alphabetical groups (default), or within higher taxonomic groups if provided.

Usage

tax_check(
taxdf,
name = "genus",
group = NULL,
dis = 0.05,
start = 1,
verbose = TRUE

)

https://doi.org/10.5281/zenodo.6037852
https://doi.org/10.5281/zenodo.6037852
https://doi.org/10.5281/zenodo.6037852

28 tax_check

Arguments

taxdf dataframe. A dataframe with named columns containing taxon names (e.g.
"species", "genus"). An optional column containing the groups (e.g. "family",
"order") which taxon names belong to may also be provided (see group for
details). NA values or empty strings in the name and group columns (i.e. "" and
" ") are ignored.

name character. The column name of the taxon names you wish to check (e.g.
"genus").

group character. The column name of the higher taxonomic assignments in taxdf
you wish to group by. If NULL (default), name comparison will be conducted
within alphabetical groups.

dis numeric. The dissimilarity threshold: a value greater than 0 (completely dis-
similar), and less than 1 (completely similar). Potential synonyms above this
threshold are not returned. This value is set to 0.05 by default, but the user
might wish to experiment with this value for their specific data.

start numeric. The number of shared characters at the beginning of potential syn-
onyms that should match. Potential synonyms below this value will not be re-
turned. By default this value is set to 1 (i.e. the first letter of synonyms must
match).

verbose logical. Should the results of the non-letter character check be reported to the
user? If TRUE, the result will only be reported if such characters are detected in
the taxon names.

Details

When higher taxonomy is provided, but some entries are missing, comparisons will still be made
within alphabetical groups of taxa which lack higher taxonomic affiliations. The function also per-
forms a check for non-letter characters which are not expected to be present in correctly-formatted
taxon names. This detection may be made available to the user via the verbose argument. Compar-
isons are performed using the Jaro dissimilarity metric via stringdist::stringdistmatrix().

As all string distance metrics rely on approximate string matching, different metrics can produce
different results. This function uses Jaro distance as it was designed with short, typed strings in
mind, but good practice should include comparisons using multiple metrics, and ultimately specific
taxonomic vetting where possible. A more complete implementation and workflow for cleaning
taxonomic occurrence data is available in the fossilbrush R package on CRAN.

Value

If verbose = TRUE (default), a list with three elements. The first element in the list (synonyms)
is a data.frame with each row reporting a pair of potential synonyms. The first column "group"
contains the higher group in which they occur (alphabetical groupings if group is not provided).
The second column "greater" contains the most common synonym in each pair. The third col-
umn "lesser" contains the least common synonym in each pair. The third and fourth column
(count_greater, count_lesser) contain the respective counts of each synonym in a pair. If no
matches were found for the filtering arguments, this element is NULL instead. The second element
(non_letter_name) is a vector of taxon names which contain non-letter characters, or NULL if none

tax_expand_lat 29

were detected. The third element (non_letter_group) is a vector of taxon groups which contain non-
letter characters, or NULL if none were detected. If verbose = FALSE, a data.frame as described
above is returned, or NULL if no matches were found.

Reference

van der Loo, M. P. J. (2014). The stringdist package for approximate string matching. The R Journal
6, 111-122.

Developer(s)

Joseph T. Flannery-Sutherland & Lewis A. Jones

Reviewer(s)

Lewis A. Jones, Kilian Eichenseer & Christopher D. Dean

Examples

load occurrence data
data("tetrapods")
Check taxon names alphabetically
ex1 <- tax_check(taxdf = tetrapods, name = "genus", dis = 0.1)
Check taxon names by group
ex2 <- tax_check(taxdf = tetrapods, name = "genus",

group = "family", dis = 0.1)

tax_expand_lat Generate pseudo-occurrences from latitudinal range data

Description

A function to generate pseudo-occurrences for taxa based on latitudinal ranges (e.g. the output
of the ’lat’ method in tax_range_space). While the resulting pseudo-occurrences should not be
treated as equivalent to actual occurrence data (e.g. like that from the Paleobiology Database), such
pseudo-occurrences may be useful for performing statistical analyses where the row representing a
taxon must be replicated for each latitudinal bin through which the taxon ranges.

Usage

tax_expand_lat(taxdf, bins, max_lat = "max_lat", min_lat = "min_lat")

30 tax_expand_time

Arguments

taxdf dataframe. A dataframe of taxa (such as the output of the ’lat’ method in
tax_range_space) with columns containing latitudinal range data (maximum
and minimum latitude). Column names are assumed to be "max_lat" and "min_lat",
but may be updated via the max_lat and min_lat arguments. Each row should
represent a unique taxon. Additional columns may be included (e.g. taxon
names, additional taxonomy, etc) and will be included in the returned data.frame.

bins dataframe. A dataframe of the bins that you wish to allocate fossil occurrences
to, such as that returned by lat_bins. This dataframe must contain at least the
following named columns: "bin", "max" and "min".

max_lat character. The name of the column you wish to be treated as the maximum
latitude of the latitudinal range (e.g. "max_lat").

min_lat character. The name of the column you wish to be treated as the minimum
latitude of the latitudinal range (e.g. "min_lat").

Value

A dataframe where each row represents a latitudinal bin which a taxon ranges through. The
columns are identical to those in the user-supplied data with additional columns included to identify
bins. Output will be returned in the order of supplied bins.

Developer(s)

Lewis A. Jones & William Gearty

Reviewer(s)

Christopher D. Dean

Examples

bins <- lat_bins()
taxdf <- data.frame(name = c("A", "B", "C"),

max_lat = c(60, 20, -10),
min_lat = c(20, -40, -60))

ex <- tax_expand_lat(taxdf = taxdf,
bins = bins,
max_lat = "max_lat",
min_lat = "min_lat")

tax_expand_time Generate pseudo-occurrences from temporal range data

tax_expand_time 31

Description

A function to generate interval-level pseudo-occurrences for taxa based on temporal ranges (e.g.
the output of tax_range_time). While the resulting pseudo-occurrences should not be treated as
equivalent to actual occurrence data (e.g. like that from the Paleobiology Database), such pseudo-
occurrences may be useful for performing statistical analyses where the row representing a taxon
must be replicated for each interval through which the taxon persisted.

Usage

tax_expand_time(
taxdf,
max_ma = "max_ma",
min_ma = "min_ma",
scale = "GTS2020",
rank = "stage",
ext_orig = TRUE

)

Arguments

taxdf dataframe. A dataframe of taxa (such as that produced by tax_range_time)
with columns for the maximum and minimum ages (FADs and LADs). Each
row should represent a unique taxon. Additional columns may be included (e.g.
taxon names, additional taxonomy, etc) and will be included in the returned
data.frame. If required, numeric ages can be generated from interval names
via the look_up function.

max_ma character. The name of the column you wish to be treated as the maximum
limit (FADs) of the age range (e.g. "max_ma").

min_ma character. The name of the column you wish to be treated as the minimum
limit (LADs) of the age range (e.g. "min_ma").

scale character. Specify the desired geological timescale to be used, either "GTS2020"
or "GTS2012".

rank character. Specify the desired stratigraphic rank. Choose from: "stage",
"epoch", "period", "era", and "eon".

ext_orig logical. Should two additional columns be added to identify the intervals in
which taxa originated and went extinct?

Value

A dataframe where each row represents an interval during which a taxon in the original user-
supplied data persisted. The columns are identical to those in the user-supplied data with additional
columns included to identify the intervals. If ext_orig is TRUE, two additional columns are added
to identify in which intervals taxa originated and went extinct.

Developer(s)

William Gearty & Lewis A. Jones

32 tax_range_space

Reviewer(s)

Lewis A. Jones

Examples

taxdf <- data.frame(name = c("A", "B", "C"),
max_ma = c(150, 60, 30),
min_ma = c(110, 20, 0))

ex <- tax_expand_time(taxdf)

tax_range_space Calculate the geographic range of fossil taxa

Description

A function to calculate the geographic range of fossil taxa from occurrence data. The function
can calculate geographic range in four ways: convex hull, latitudinal range, maximum Great Circle
Distance, and the number of occupied equal-area hexagonal grid cells.

Usage

tax_range_space(
occdf,
name = "genus",
lng = "lng",
lat = "lat",
method = "lat",
spacing = 100

)

Arguments

occdf dataframe. A dataframe of fossil occurrences. This dataframe should contain
at least three columns: names of taxa, longitude and latitude (see name, lng, and
lat arguments).

name character. The name of the column you wish to be treated as the input names
(e.g. "species" or "genus"). NA data should be removed prior to function call.

lng character. The name of the column you wish to be treated as the input lon-
gitude (e.g. "lng" or "p_lng"). NA data should be removed prior to function
call.

lat character. The name of the column you wish to be treated as the input latitude
(e.g. "lat" or "p_lat"). NA data should be removed prior to function call.

method character. How should geographic range be calculated for each taxon in
occdf? Four options exist in this function: "con", "lat", "gcd", and "occ". See
Details for a description of each.

spacing numeric. The desired spacing (in km) between the center of adjacent grid cells.
Only required if the method argument is set to "occ". The default is 100.

tax_range_space 33

Details

Four commonly applied approaches (Darroch et al. 2020) are available using the tax_range_space
function for calculating ranges:

• Convex hull: the "con" method calculates the geographic range of taxa using a convex hull for
each taxon in occdf, and calculates the area of the convex hull (in km2) using geosphere::areaPolygon().
The convex hull method works by creating a polygon that encompasses all occurrence points
of the taxon.

• Latitudinal: the "lat" method calculates the palaeolatitudinal range of a taxon. It does so for
each taxon in occdf by finding their maximum and minimum latitudinal occurrence (from
input lat). The palaeolatitudinal range of each taxon is also calculated (i.e. the difference
between the minimum and maximum latitude).

• Maximum Great Circle Distance: the "gcd" method calculates the maximum Great Circle Dis-
tance between occurrences for each taxon in occdf. It does so using geosphere::distHaversine().
This function calculates Great Circle Distance using the Haversine method with the radius of
the Earth set to the 6378.137 km. Great Circle Distance represents the shortest distance be-
tween two points on the surface of a sphere. This is different from Euclidean Distance, which
represents the distance between two points on a plane.

• Occupied cells: the "occ" method calculates the number and proportion of occupied equal-
area grid cells. It does so using discrete hexagonal grids via the h3jsr package. This package
relies on Uber’s H3 library, a geospatial indexing system that partitions the world into hexag-
onal cells. In H3, 16 different resolutions are available (see here). In the implementation of
the tax_range_space() function, the resolution is defined by the user-input spacing which
represents the distance between the centroid of adjacent cells. Using this distance, the function
identifies which resolution is most similar to the input spacing, and uses this resolution.

Value

A dataframe with method-specific columns:

• For the "con" method, a dataframe with each unique taxa (taxon) and taxon ID (taxon_id)
by convex hull coordinate (lng & lat) combination, and area (area) in km2 is returned.

• For the "lat" method, a dataframe with unique taxa (taxon), taxon ID (taxon_id), maximum
latitude of occurrence (max_lat), minimum latitude of occurrence (min_lat), and latitudinal
range (range_lat) is returned.

• For the "gcd" method, a dataframe with each unique taxa (taxon) and taxon ID (taxon_id)
by coordinate combination (lng & lat) of the two most distant points, and the Great Circle
Distance (gcd) between these points in km is returned.

• For the "occ" method, a dataframe with unique taxa (taxon), taxon ID (taxon_id), the num-
ber of occupied cells (n_cells), proportion of occupied cells from all occupied by occurrences
(proportional_occ), and the spacing between cells (spacing) in km is returned. Note: the
number of occupied cells and proportion of occupied cells is highly dependent on the user-
defined spacing. For the "con", "lat" and "gcd" method, values of zero indicate that the
respective taxon is a singleton (i.e. represented by only one occurrence).

https://h3geo.org/docs/
https://h3geo.org/docs/core-library/restable/

34 tax_range_time

Reference(s)

Darroch, S. A., Casey, M. M., Antell, G. S., Sweeney, A., & Saupe, E. E. (2020). High preservation
potential of paleogeographic range size distributions in deep time. The American Naturalist, 196(4),
454-471.

Developer(s)

Lewis A. Jones

Reviewer(s)

Bethany Allen & Christopher D. Dean

Examples

Grab internal data
occdf <- tetrapods[1:100,]
Remove NAs
occdf <- subset(occdf, !is.na(genus))
Convex hull
ex1 <- tax_range_space(occdf = occdf, name = "genus", method = "con")
Latitudinal range
ex2 <- tax_range_space(occdf = occdf, name = "genus", method = "lat")
Great Circle Distance
ex3 <- tax_range_space(occdf = occdf, name = "genus", method = "gcd")
Occupied grid cells
ex4 <- tax_range_space(occdf = occdf, name = "genus",

method = "occ", spacing = 500)

tax_range_time Calculate the temporal range of fossil taxa

Description

A function to calculate the temporal range of fossil taxa from occurrence data.

Usage

tax_range_time(
occdf,
name = "genus",
min_ma = "min_ma",
max_ma = "max_ma",
by = "FAD",
plot = FALSE

)

tax_range_time 35

Arguments

occdf dataframe. A dataframe of fossil occurrences containing at least three columns:
names of taxa, maximum age and minimum age (see name, lng, and lat argu-
ments). These ages should constrain the age range of the fossil occurrence and
are assumed to be in millions of years before present.

name character. The name of the column you wish to be treated as the input names,
e.g. "genus" (default).

min_ma character. The name of the column you wish to be treated as the minimum
limit of the age range, e.g. "min_ma" (default).

max_ma character. The name of the column you wish to be treated as the maximum
limit of the age range, e.g. "max_ma" (default).

by character. How should the output be sorted? Either: "FAD" (first-appearance
date; default), "LAD" (last-appearance data), or "name" (alphabetically by taxon
names).

plot logical. Should a plot of the ranges be generated?

Details

The temporal range(s) of taxa are calculated by extracting all unique taxa (name column) from the
input occdf, and checking their first and last appearance. The temporal duration of each taxon is
also calculated. A plot of the temporal range of each taxon is also returned if plot = TRUE. If the
input data columns contain NAs, these should be removed prior to function call.

Note: this function provides output based solely on the user input data. The true duration of a
taxon is likely confounded by uncertainty in dating occurrences, and incomplete sampling and
preservation.

Value

A dataframe containing the following columns: unique taxa (taxon), taxon ID (taxon_id), first
appearance of taxon (max_ma), last appearance of taxon (min_ma), duration of temporal range
(range_myr), and number of occurrences per taxon (n_occ) is returned.

Developer(s)

Lewis A. Jones

Reviewer(s)

Bethany Allen & Christopher D. Dean

Examples

Grab internal data
occdf <- tetrapods
Remove NAs
occdf <- subset(occdf, !is.na(order) & order != "NO_ORDER_SPECIFIED")
Temporal range
ex <- tax_range_time(occdf = occdf, name = "order", plot = TRUE)

36 tax_unique

tax_unique Filter occurrences to unique taxa

Description

A function to filter a list of taxonomic occurrences to unique taxa of a predefined resolution. Oc-
currences identified to a coarser taxonomic resolution than the desired level are retained if they
belong to a clade which is not otherwise represented in the dataset (see details section for further
information). This has previously been described as "cryptic diversity" (e.g. Mannion et al. 2011).

Usage

tax_unique(
occdf = NULL,
binomial = NULL,
species = NULL,
genus = NULL,
...,
name = NULL,
resolution = "species",
append = FALSE

)

Arguments

occdf dataframe. A dataframe containing information on the occurrences or taxa to
filter.

binomial character. The name of the column in occdf containing the genus and species
names of the occurrences, either in the form "genus species" or "genus_species".

species character. The name of the column in occdf containing the species-level iden-
tifications (i.e. the specific epithet).

genus character. The name of the column in occdf containing the genus-level iden-
tifications.

... character. Other named arguments specifying columns of higher levels of
taxonomy (e.g. subfamily, order, superclass). The names of the arguments will
be the column names of the output, and the values of the arguments correspond
to the columns of occdf. The given order of the arguments is the order in which
they are filtered. Therefore, these arguments must be in ascending order from
lowest to highest taxonomic rank (see examples below). At least one higher
level of taxonomy must be specified.

name character. The name of the column in occdf containing the taxonomic names
at mixed taxonomic levels; the data column "accepted_name" in a Paleobiology
Database occurrence dataframe is of this type.

https://paleobiodb.org/#/
https://paleobiodb.org/#/

tax_unique 37

resolution character. The taxonomic resolution at which to identify unique occurrences,
either "species" (the default) or "genus".

append logical. Should the original dataframe be returned with the unique names
appended as a new column?

Details

Palaeobiologists usually count unique taxa by retaining only unique occurrences identified to a given
taxonomic resolution, however this function retains occurrences identified to a coarser taxonomic
resolution which are not already represented within the dataset. For example, consider the following
set of occurrences:

• Albertosaurus sarcophagus

• Ankylosaurus sp.

• Aves indet.

• Ceratopsidae indet.

• Hadrosauridae indet.

• Ornithomimus sp.

• Tyrannosaurus rex

A filter for species-level identifications would reduce the species richness to two. However, none
of these clades are nested within one another, so each of the indeterminately identified occurrences
represents at least one species not already represented in the dataset. This function is designed to
deal with such taxonomic data, and would retain all seven ’species’ in this example.

Taxonomic information is supplied within a dataframe, in which columns provide identifications
at different taxonomic levels. Occurrence data can be filtered to retain either unique species, or
unique genera. If a species-level filter is desired, the minimum input requires either (1) binomial,
(2) species and genus, or (3) name and genus columns to be entered, as well as at least one
column of a higher taxonomic level. In a standard Paleobiology Database occurrence dataframe,
species names are only captured in the ’accepted_name’ column, so a species-level filter should use
’genus = "genus"’ and ’name = "accepted_name"’ arguments. If a genus-level filter is desired, the
minimum input requires either (1) binomial or (2) genus columns to be entered, as well as at least
one column of a higher taxonomic level.

Missing data should be indicated with NAs, although the function can handle common labels such
as "NO_FAMILY_SPECIFIED" within Paleobiology Database datasets.

The function matches taxonomic names at face value, so homonyms may be falsely filtered out.

Value

A dataframe of taxa, with each row corresponding to a unique "species" or "genus" in the dataset
(depending on the chosen resolution). The dataframe will include the taxonomic information pro-
vided into the function, as well as a column providing the ’unique’ names of each taxon. If append
is TRUE, the original dataframe (occdf) will be returned with these ’unique’ names appended as a
new column. Occurrences that are identified to a coarse taxonomic resolution and belong to a clade
which is already represented within the dataset will have their ’unique’ names listed as NA.

https://paleobiodb.org/#/

38 tax_unique

References

Mannion, P. D., Upchurch, P., Carrano, M. T., and Barrett, P. M. (2011). Testing the effect of
the rock record on diversity: a multidisciplinary approach to elucidating the generic richness of
sauropodomorph dinosaurs through time. Biological Reviews, 86, 157-181. doi:10.1111/j.1469-
185X.2010.00139.x.

Developer(s)

Bethany Allen & William Gearty

Reviewer(s)

Lewis A. Jones & William Gearty

Examples

#Retain unique species
occdf <- tetrapods[1:100,]
species <- tax_unique(occdf = occdf, genus = "genus", family = "family",
order = "order", class = "class", name = "accepted_name")

#Retain unique genera
genera <- tax_unique(occdf = occdf, genus = "genus", family = "family",
order = "order", class = "class", resolution = "genus")

#Append unique names to the original occurrences
genera_append <- tax_unique(occdf = occdf, genus = "genus", family = "family",
order = "order", class = "class", resolution = "genus", append = TRUE)

#Create dataframe from lists
occdf2 <- data.frame(species = c("rex", "aegyptiacus", NA), genus =
c("Tyrannosaurus", "Spinosaurus", NA), family = c("Tyrannosauridae",
"Spinosauridae", "Diplodocidae"))
dinosaur_species <- tax_unique(occdf = occdf2, species = "species", genus =
"genus", family = "family")

#Retain unique genera per collection with group_apply
genera <- group_apply(occdf = occdf,

group = c("collection_no"),
fun = tax_unique,
genus = "genus",
family = "family",
order = "order",
class = "class",
resolution = "genus")

https://doi.org/10.1111/j.1469-185X.2010.00139.x
https://doi.org/10.1111/j.1469-185X.2010.00139.x

tetrapods 39

tetrapods Example dataset: Early tetrapod data from the Paleobiology Database

Description

A dataset of tetrapod occurrences ranging from the Carboniferous through to the Early Triassic,
from the Palaeobiology Database. Dataset includes a range of variables relevant to common palaeo-
biological analyses, relating to identification, geography, environmental context, traits and more.
Additional information can be found here. The downloaded data is unaltered, with the exception
of removing some superfluous variables, and can be used to demonstrate how the functions in the
palaeoverse package might be applied.

Usage

tetrapods

Format

A data frame with 5270 rows and 32 variables:

occurrence_no Reference number given to the particular occurrence in the Paleobiology Database

collection_no Reference number given to the Paleobiology Database collection (locality) that the
occurrence belongs to

identified_name Taxon name as it appears in the original publication, which may include expres-
sions of uncertainty (e.g. "cf.", "aff.", "?") or novelty (e.g. "n. gen.", "n. sp.")

identified_rank The taxonomic rank, or resolution, of the identified name

accepted_name Taxon name once the identified name has passed through the Paleobiology Database’s
internal taxonomy, which collapses synonyms, amends binomials which have been altered
(e.g. species moving to another genus) and updates taxa which are no longer valid (e.g. nom-
ina dubia)

accepted_rank The taxonomic rank, or resolution, of the accepted name

early_interval The oldest (or only) time interval within which the occurrence is thought to have
been deposited

late_interval The youngest time interval within which the occurrence is thought to have been de-
posited

max_ma, min_ma The age range given to the occurrence

phylum, class, order, family, genus The taxa (of decreasing taxonomic level) which the occur-
rence is identified as belonging to

abund_value, abund_unit The number (and units) of fossils attributed to the occurrence

lng, lat The modern-day longitude and latitude of the fossil locality

collection_name The name of the Paleobiology Database collection which the occurrence belongs
to, typically a spatio-temporally restricted locality

cc The country (code) where the fossils were discovered

https://paleobiodb.org/
https://paleobiodb.org/data1.2/

40 time_bins

formation, stratgroup, member The geological units from which the fossils were collected

zone The biozone which the occurrence is attributed to

lithology1 The main lithology of the beds in the section where the fossils were collected

environment The inferred environmental conditions in the place of deposition

pres_mode The mode of preservation of the fossils found in the collection (not necessarily of that
specific occurrence), which will include information on whether they are body or trace fossils

taxon_environment The environment within which the taxon is thought to have lived, collated
within the Paleobiology Database

motility, life_habit, diet Various types of trait data for the taxon, collated within the Paleobiology
Database

References

Uhen MD et al. (in prep). Paleobiology Database User Guide.

Source

Compiled by Bethany Allen, current version downloaded on 14th July 2022. See item descriptions
for details.

time_bins Generate time bins

Description

A function to generate time bins for a given study interval. This function is flexible in that either
stage-level or higher stratigraphic-level (e.g. period) time bins can be called. In addition, near
equal-length time bins can be generated by grouping stages together. For example, for 10 Myr as
a target bin size, the function will generate groups of bins that have a mean bin length close to
10 Myr. However, users may also want to consider grouping stages based on other reasoning e.g.
availability of outcrop (see Dean et al. 2020).

Usage

time_bins(
interval = "Phanerozoic",
rank = "stage",
size = NULL,
assign = NULL,
scale = "GTS2020",
plot = FALSE

)

time_bins 41

Arguments

interval character or numeric. Interval name available in GTS2020 or GTS2012. If a
single interval name is provided, this interval is returned. If two interval names
are provided, these intervals and those existing between are returned. If a single
numeric age is provided, the interval that covers this age is returned. If two
numeric ages are provided, the intervals occurring in the range of these ages are
returned. Defaults to "Phanerozoic".

rank character. Which stratigraphic rank is desired? Choose from: "stage", "epoch",
"period", "era", and "eon". If scale is a dataframe, this argument is ignored.

size numeric. If equal-length time bins are desired, specify the length in millions of
years (Myr) of the time bins desired.

assign numeric. A numeric vector of age estimates to use to assign to requested bins. If
assign is specified, a numeric vector is returned of the midpoint age of the spec-
ified bins. Note this is the simplified approach of assignment in palaeoverse
included for data with ’known’ point-age estimates. For a wider range of bin-
ning methods, see palaeoverse::bin_time().

scale character or data.frame. Specify the desired geological timescale to be used
"GTS2020" (default), "GTS2012" or a user-input data.frame. If a data.frame
is provided, it must contain at least the following named columns: "interval_name",
"max_ma", and "min_ma". Column names "name", "max_age", and "min_age"
are also accepted, but these are assumed to be equivalent to the aforementioned.
As such, age data should be provided in Ma.

plot logical. Should a plot of time bins be generated?

Details

This function uses either the Geological Time Scale 2020, Geological Time Scale 2012, or a user-
input data.frame (see scale argument) to generate time bins. Interval data hosted by Macrostrat
are also compatiable and accessible via the deeptime R pacakge (getScaleData). Additional infor-
mation on included Geological Time Scales and source can be accessed via:

• GTS2020

• GTS2012

Available intervals names are accessible via the interval_name column in GTS2012 and GTS2020.
Data of the Geological Timescale 2020 and 2012 were compiled by Lewis A. Jones (2022-07-02).

Value

A dataframe of time bins for the specified intervals or a list with a dataframe of time bins and a
named numeric vector (bin number) of binned age estimates (midpoint of specified bins) if assign
is specified.

References

Dean, C.D., Chiarenza, A.A. and Maidment, S.C., 2020. Formation binning: a new method for
increased temporal resolution in regional studies, applied to the Late Cretaceous dinosaur fossil
record of North America. Palaeontology, 63(6), 881-901. doi:10.1111/pala.12492.

https://doi.org/10.1111/pala.12492

42 time_bins

Developer(s)

Lewis A. Jones

Reviewer(s)

Kilian Eichenseer & William Gearty

Examples

#Using numeric age
ex1 <- time_bins(interval = 10, plot = TRUE)

#Using numeric age range
ex2 <- time_bins(interval = c(50, 100), plot = TRUE)

#Using a single interval name
ex3 <- time_bins(interval = c("Maastrichtian"), plot = TRUE)

#Using a range of intervals and near-equal duration bins
ex4 <- time_bins(interval = c("Fortunian", "Meghalayan"),

size = 10, plot = TRUE)

#Assign bins based on given age estimates
ex5 <- time_bins(interval = c("Fortunian", "Meghalayan"),

assign = c(232, 167, 33))

#Use user-input data.frame to generate near-equal length bins
scale <- data.frame(interval_name = 1:5,

min_ma = c(0, 18, 32, 38, 45),
max_ma = c(18, 32, 38, 45, 53))

ex6 <- time_bins(scale = scale, size = 20, plot = TRUE)

#Use North American land mammal ages from deeptime/Macrostrat
scale <- deeptime::getScaleData(name = "North American land mammal ages")
ex7 <- time_bins(scale = scale, size = 10)

Index

∗ datasets
GTS2012, 15
GTS2020, 16
interval_key, 17
reefs, 26
tetrapods, 39

ape::drop.tip(), 25
ape::read.tree(), 25
ape::write.tree(), 25
axis, 3, 5
axis_geo, 3
axis_geo_phylo (axis_geo), 3
axTicks, 5

bin_lat, 7
bin_space, 8
bin_time, 11, 14

distHaversine, 23
dnorm, 11, 12
dunif, 11

eons, 3
epochs, 3
eras, 3

geosphere::areaPolygon(), 33
geosphere::distHaversine(), 33
getScaleData, 3, 4, 41
group_apply, 13
GTS2012, 15, 41
GTS2020, 16, 41

h3_info_table, 22
h3jsr, 9, 22, 33
here, 5

interval_key, 17, 20

lat_bins, 17, 30

lat_bins(), 7
look_up, 18, 31
look_up(), 11

palaeorotate, 21
palaeoverse::bin_time(), 41
paleotree::fixRootTime(), 25
periods, 3
phylo_check, 25
plot.phylo, 5
plotSimmap, 5
plotTree, 5

reefs, 26
round, 4

stages, 3
stringdist::stringdistmatrix(), 28

tax_check, 14, 27
tax_expand_lat, 29
tax_expand_time, 30
tax_range_space, 14, 29, 30, 32
tax_range_time, 14, 31, 34
tax_unique, 14, 36
tetrapods, 39
time_bins, 40
time_bins(), 11

43

	axis_geo
	bin_lat
	bin_space
	bin_time
	group_apply
	GTS2012
	GTS2020
	interval_key
	lat_bins
	look_up
	palaeorotate
	phylo_check
	reefs
	tax_check
	tax_expand_lat
	tax_expand_time
	tax_range_space
	tax_range_time
	tax_unique
	tetrapods
	time_bins
	Index

