
Package ‘parallelpam’
January 8, 2023

Type Package

Title Parallel Partitioning-Around-Medoids (PAM) for Big Sets of Data

Version 1.0.1

Author Juan Domingo [aut, cre] (<https://orcid.org/0000-0003-4728-6256>),
Guillermo Ayala [ctb] (<https://orcid.org/0000-0002-6231-2865>),
Spanish Ministry of Science and Innovation, MCIN/AEI

<doi:10.13039/501100011033> [fnd]

Maintainer Juan Domingo <Juan.Domingo@uv.es>

Description Application of the Partitioning-Around-
Medoids (PAM) clustering algorithm described in Schubert, E. and Rousseeuw, P.J.:
``Fast and eager k-medoids clustering: O(k) runtime improve-
ment of the PAM, CLARA, and CLARANS algorithms.'' Information Systems,
vol. 101, p. 101804, (2021). <doi:10.1016/j.is.2021.101804>.
It uses a binary format for storing and retrieval of matrices developed for the 'jmatrix' pack-
age but the functionality of 'jmatrix'
is included here, so you do not need to install it. Also, it is used by package 'scell-
pam', so if you have installed it, you do not need
to install this package.
PAM can be applied to sets of data whose dissimilarity ma-
trix can be very big. It has been tested with up to 100.000 points.
It does this with the help of the code developed for other package, 'jmatrix', which allows the ma-
trix not to be loaded in 'R' memory (which
would force it to be of double type) but it gets from disk, which allows us-
ing float (or even smaller data types). Moreover, the
dissimilarity matrix is calculated in parallel if the computer has sev-
eral cores so it can open many threads. The initial part
of the PAM algorithm can be done with the BUILD or LAB algorithms; the BUILD algo-
rithm has been implemented in parallel. The optimization
phase implements the FastPAM1 algorithm, also in parallel. Finally, calculation of silhou-
ette is available and also implemented in parallel.

License GPL (>= 2)

Imports Rcpp (>= 1.0.8), memuse (>= 4.2.1)

LinkingTo Rcpp

SystemRequirements C++14

1

https://orcid.org/0000-0003-4728-6256
https://orcid.org/0000-0002-6231-2865
https://doi.org/10.1016/j.is.2021.101804

2 ApplyPAM

RoxygenNote 7.2.1

Encoding UTF-8

Suggests knitr, cluster

VignetteBuilder knitr

NeedsCompilation yes

Repository CRAN

Date/Publication 2023-01-08 19:50:02 UTC

R topics documented:

ApplyPAM . 2
CalcAndWriteDissimilarityMatrix . 5
CalculateSilhouette . 6
ClassifAsDataFrame . 7
FilterBySilhouetteQuantile . 9
FilterBySilhouetteThreshold . 11
GetJCol . 13
GetJColByName . 14
GetJColNames . 14
GetJManyCols . 15
GetJManyColsByNames . 16
GetJManyRows . 16
GetJManyRowsByNames . 17
GetJNames . 18
GetJRow . 19
GetJRowByName . 19
GetJRowNames . 20
GetSubdiag . 21
GetTD . 21
JMatInfo . 22
JWriteBin . 23
NumSilToClusterSil . 24
ParallelpamSetDebug . 25

Index 27

ApplyPAM ApplyPAM

ApplyPAM 3

Description

A function to implement the Partitioning-around-medoids algorithm described in
Schubert, E. and Rousseeuw, P.J.: "Fast and eager k-medoids clustering: O(k) runtime improvement
of the PAM, CLARA, and CLARANS algorithms."
Information Systems, vol. 101, p. 101804, 2021.
doi: https://doi.org/10.1016/j.is.2021.101804
Notice that the actual values of the vectors (instances) are not needed. To recover them, look at the
data matrix used to generate the distance matrix.
The number of instances, N, is not passed since dissimilarity matrix is NxN and therefore its size
indicates the N value.

Usage

ApplyPAM(
dissim_file,
k,
init_method = "BUILD",
initial_med = NULL,
max_iter = 1000L,
nthreads = 0L

)

Arguments

dissim_file A string with the name of the binary file that contains the symmetric matrix
of dissimilarities. Such matrix should have been generated by CalcAndWrite-
DissimilarityMatrix and it is a matrix of type ’disttype’ (in this type defined as
float).

k A possitive integer (the desired number of medoids).

init_method One of the strings ’PREV’, ’BUILD’ or ’LAB’. See meaning of initialization
algorithms BUILD and LAB in the original paper.
’PREV’ should be used exclusively to start the second part of the algorithm
(optimization) from a initial set of medoids generated by a former call.
Default: BUILD.

initial_med A vector with initial medoids to start optimization. It is to be used only by the
’PREV’ method and it will have been obtained as the first element (L$med) of
the two-element list returned by a previous call to this function used in just-
initialize mode (max_iter=0).
Default: empty vector.

max_iter The maximum number of allowed iterations. 0 means stop immediately after
finding initial medoids.
Default: 1000

nthreads For the BUILD initialization algorithm (the only part currently implemented in
parallel), the number of used threads.
-1 means don’t use threads (serial implementation). 0 means let the program
choose according to the number of cores and of points.

4 ApplyPAM

Any other number forces this number of threads. Choosing more than the num-
ber of available cores is allowed, but discouraged.
Default: 0

Details

With respect to the returned value, L$med has as many components as requested medoids and
L$clasif has as many components as instances.
Medoids are expressed in L$med by its number in the array of points (row in the dissimilarity
matrix) starting at 1 (R convention).
L$clasif contains the number of the medoid (i.e.: the cluster) to which each instance has been
assigned, according to their order in
L$med (also from 1).
This means that if L$clasif[p] is m, the point p belongs to the class grouped around
medoid L$med[m].
Moreover, if the dissimilarity matrix contains as metadata the point names, the returned are R-
named vector with such names.

Value

L["med","clasif"] A list of two numeric vectors. See section Details for more information

Examples

Synthetic problem: 10 random seeds with coordinates in [0..20]
to which random values in [-0.1..0.1] are added
M<-matrix(0,100,500)
rownames(M)<-paste0("rn",c(1:100))
for (i in (1:10))
{
p<-20*runif(500)
Rf <- matrix(0.2*(runif(5000)-0.5),nrow=10)
for (k in (1:10))
{
M[10*(i-1)+k,]=p+Rf[k,]
}

}
JWriteBin(M,"pamtest.bin",dtype="float",dmtype="full")
CalcAndWriteDissimilarityMatrix("pamtest.bin","pamDL2.bin",distype="L2",restype="float",nthreads=0)
L <- ApplyPAM("pamDL2.bin",10,init_method="BUILD")
Final value of sum of distances to closest medoid
GetTD(L,"pamDL2.bin")
Medoids:
L$med
Medoid in which each individual has been classified
n<-names(L$med)
n[L$clasif]
file.remove("pamtest.bin")
file.remove("pamDL2.bin")

CalcAndWriteDissimilarityMatrix 5

CalcAndWriteDissimilarityMatrix

CalcAndWriteDissimilarityMatrix

Description

Writes a binary symmetric matrix with the dissimilarities between ROWS of the data stored in a
binary matrix in the scellpam package format.
Notice that, differently from the common practice in single cell, the rows represent cells. This is for
efficiency reasons and it is transparent to the user, as long as he/she has generated the binary matrix
(with CsvToBinMat, dgCMatToBinMat or SceToBinMat) using the option transpose=TRUE.
The input matrix of vectors can be a full or a sparse matrix. Output matrix type can be float or
double type (but look at the comments in ’Details’).

Usage

CalcAndWriteDissimilarityMatrix(
ifname,
ofname,
distype = "L2",
restype = "float",
comment = "",
nthreads = 0L

)

Arguments

ifname A string with the name of the file containing the counts as a binary matrix, as
written by CsvToBinMat, dgCMatToBinMat or SceToBinMat

ofname A string with the name of the binary output file to contain the symmetric dis-
similarity matrix.

distype The dissimilarity to be calculated. It must be one of these strings: ’L1’, ’L2’ or
’Pearson’.
Default: ’L2’.

restype The data type of the result. It can be one of the strings ’float’ or ’double’.
Default: float (and don’t change it unless you REALLY need to...).

comment Comment to be added to the dissimilary matrix. Default: "" (no comment)

nthreads Number of threads to be used for the parallel calculations with this meaning:
-1: don’t use threads.
0: let the function choose according to the number of individuals (cells) and to
the number of available cores.
Any possitive number > 1: use that number of threads. You can use even more
than cores, but this is discouraged and raises a warning.
Default: 0.

6 CalculateSilhouette

Details

The parameter restype forces the output to be a matrix of either floats or doubles. Precision of float
if normally good enough; but if you need double precision (may be because you expect your results
to be in a large range, two to three orders of magnitude), change it.
Nevertheless, notice that this at the expense of double memory usage, which is QUADRATIC with
the number of individuals (rows) in your input matrix.

Value

No return value, called for side effects (creates a file)

Examples

Rf <- matrix(runif(50000),nrow=100)
JWriteBin(Rf,"Rfullfloat.bin",dtype="float",dmtype="full",

comment="Full matrix of floats, 100 rows, 500 columns")
JMatInfo("Rfullfloat.bin")
CalcAndWriteDissimilarityMatrix("Rfullfloat.bin","RfullfloatDis.bin",distype="L2",

restype="float",comment="L2 distance matrix from full",nthreads=0)
JMatInfo("RfullfloatDis.bin")
JWriteBin(Rf,"Rsparsefloat.bin",dtype="float",dmtype="sparse",

comment="Sparse matrix of floats, 100 rows, 500 columns")
JMatInfo("Rsparsefloat.bin")
CalcAndWriteDissimilarityMatrix("Rsparsefloat.bin","RsparsefloatDis.bin",distype="L2",

restype="float",comment="L2 distance matrix from sparse",nthreads=0)
JMatInfo("RsparsefloatDis.bin")
Dfu<-GetJManyRows("RfullfloatDis.bin",c(1:nrow(Rf)))
Dsp<-GetJManyRows("RsparsefloatDis.bin",c(1:nrow(Rf)))
max(Dfu-Dsp)
file.remove("Rfullfloat.bin")
file.remove("Rsparsefloat.bin")
file.remove("RfullfloatDis.bin")
file.remove("RsparsefloatDis.bin")

CalculateSilhouette CalculateSilhouette

Description

Calculates the silhouette of each point of those classified by a clustering algorithm.

Usage

CalculateSilhouette(cl, fdist, nthreads = 0L)

ClassifAsDataFrame 7

Arguments

cl The array of classification with the number of the class to which each point be-
longs to. This number must be in 1..number_of_classes.
This function takes something like the L$clasif array which is the second ele-
ment of the list returned by ApplyPAM

fdist The binary file containing the symmetric matrix with the dissimilarities between
points (usually, generated by a call to CalcAndWriteDissimilarityMatrix)

nthreads The number of used threads.
-1 means don’t use threads (serial implementation). 0 means let the program
choose according to the number of cores and of points.
Any other number forces this number of threads. Choosing more than the num-
ber of available cores is allowed, but discouraged.
Default: 0

Value

sil Numeric vector with the values of the silhouette for each point, in the same order in which points
are in cl.
If cl is a named vector sill will be a named vector, too, with the same names.

Examples

Synthetic problem: 10 random seeds with coordinates in [0..20]
to which random values in [-0.1..0.1] are added
M<-matrix(0,100,500)
rownames(M)<-paste0("rn",c(1:100))
for (i in (1:10))
{
p<-20*runif(500)
Rf <- matrix(0.2*(runif(5000)-0.5),nrow=10)
for (k in (1:10))
{
M[10*(i-1)+k,]=p+Rf[k,]
}

}
JWriteBin(M,"pamtest.bin",dtype="float",dmtype="full")
CalcAndWriteDissimilarityMatrix("pamtest.bin","pamDL2.bin",distype="L2",restype="float",nthreads=0)
L <- ApplyPAM("pamDL2.bin",10,init_method="BUILD")
sil <- CalculateSilhouette(L$clasif,"pamDL2.bin")
Histogram of the silhouette. In this synthetic problem, almost 1 for all points
hist(sil)
file.remove("pamtest.bin")
file.remove("pamDL2.bin")

ClassifAsDataFrame ClassifAsDataFrame

8 ClassifAsDataFrame

Description

Returns the results of the classification returned by ApplyPAM as a R dataframe

Usage

ClassifAsDataFrame(L, fdist)

Arguments

L The list returned by ApplyPAM with fields L$med and
L$clasif with the numbers of the medoids and the classification of each point

fdist The binary file containing the symmetric matrix with the dissimilarities between
points (usually, generated by a call to CalcAndWriteDissimilarityMatrix or to
CalcAndWriteDissimilarityMatrixDouble)

Details

The dataframe has three columns: PointName (name of each point), NNPointName (name of the
point which is the center of the cluster to which PointName belongs to) and NNDistance (distance
between the points PointName and NNPointName). Medoids are identified by the fact that Point-
Name and NNPointName are equal, or equivalently, NNDistance is 0.

Value

Df Dataframe with columns PointName, NNPointName and NNDistance. See Details for descrip-
tion.

Examples

Synthetic problem: 10 random seeds with coordinates in [0..20]
to which random values in [-0.1..0.1] are added
M<-matrix(0,100,500)
rownames(M)<-paste0("rn",c(1:100))
for (i in (1:10))
{
p<-20*runif(500)
Rf <- matrix(0.2*(runif(5000)-0.5),nrow=10)
for (k in (1:10))
{
M[10*(i-1)+k,]=p+Rf[k,]
}

}
JWriteBin(M,"pamtest.bin",dtype="float",dmtype="full")
CalcAndWriteDissimilarityMatrix("pamtest.bin","pamDL2.bin",distype="L2",restype="float",nthreads=0)
L <- ApplyPAM("pamDL2.bin",10,init_method="BUILD")
df <- ClassifAsDataFrame(L,"pamDL2.bin")
df
Identification of medoids:
which(df[,3]==0)
Verification they are the same as in L (in different order)
L$med

FilterBySilhouetteQuantile 9

file.remove("pamtest.bin")
file.remove("pamDL2.bin")

FilterBySilhouetteQuantile

FilterBySilhouetteQuantile

Description

Takes a silhouette, as returned by CalculateSilhouette, the list of medoids and class assignments, as
returned by ApplyPam, a quantile and the matrices of counts and dissimilarities and constructs the
corresponding matrices clearing off the points whose silhoutte is below the lower quantile, except
if they are medoids.

Usage

FilterBySilhouetteQuantile(
s,
L,
fallcounts,
ffilcounts,
falldissim,
ffildissim,
q = 0.2,
addcom = TRUE

)

Arguments

s A numeric vector with the sihouette coefficient of each point in a classification,
as returned by CalculateSilhouette.

L A list of two numeric vectors, L$med and L$clasif, obtained normally as the
object returned by ApplyPAM.

fallcounts A string with the name of the binary file containing the matrix of individuals. It
can be either a full or a sparse matrix.

ffilcounts A string with the name of the binary file that will contain the selected individu-
als. It will have the same character (full/sparse) and type of the complete file.

falldissim A string with the name of the binary file containing the dissimilarity matrix of
the complete set of individuals. It must be a symmetric matrix of floats.

ffildissim A string with the name of the binary file that will contain the dissimilarity matrix
for the remaining individuals. It will be a symmetric matrix of floats.

q Quantile to filter. All points whose silhouette is below this quantile will be
filtered out. Default: 0.2

10 FilterBySilhouetteQuantile

addcom Boolean to indicate if a comment must be appended to the current comment of
counts and dissimilarity matrices to indicate that they are the result of a filtering
process. This comment is automatically generated and contains the value of
quantile q. Succesive applications add comments at the end of those already
present. Default: TRUE

Details

The renumbering of indices in the returned cluster may seem confusing at first but it was the way
of fitting this with the rest of the package. Anyway, notice that if the numeric vectors in the input
parameter L were named vectors, the point names are appropriately kept in the result so point iden-
tity is preserved. Moreover, if the counts and dissimilarity input matrices had row and/or column
names, they are preserved in the filtered matrices, too.

Value

Lr["med","clasif"] A list of two numeric vectors.
Lr$med is a modification of the correponding first element of the passed L parameter.
Lr$clasif has as many components as remaining instances.
Since points will have been removed, medoid numbering is modified. Therefore, Lr$med has the
NEW index of each medoid in the filtered set.
Lr$clasif contains the number of the medoid (i.e.: the cluster) to which each instance has been as-
signed, and therefore does not change.
All indexes start at 1 (R convention). Please, see Details section

Examples

Synthetic problem: 10 random seeds with coordinates in [0..20]
to which random values in [-0.1..0.1] are added
M<-matrix(0,100,500)
rownames(M)<-paste0("rn",c(1:100))
for (i in (1:10))
{
p<-20*runif(500)
Rf <- matrix(0.2*(runif(5000)-0.5),nrow=10)
for (k in (1:10))
{
M[10*(i-1)+k,]=p+Rf[k,]
}

}
JWriteBin(M,"pamtest.bin",dtype="float",dmtype="full")
CalcAndWriteDissimilarityMatrix("pamtest.bin","pamDL2.bin",distype="L2",restype="float",nthreads=0)
L <- ApplyPAM("pamDL2.bin",10,init_method="BUILD")
Which are the medoids
L$med
sil <- CalculateSilhouette(L$clasif,"pamDL2.bin")
Lf<-FilterBySilhouetteQuantile(sil,L,"pamtest.bin","pamtestfilt.bin","pamDL2.bin","pamDL2filt.bin",

q=0.4,addcom=TRUE)
The new medoids are the same points but renumbered, since the L$clasif array has less points
Lf$med

FilterBySilhouetteThreshold 11

file.remove("pamtest.bin")
file.remove("pamDL2.bin")
file.remove("pamtestfilt.bin")
file.remove("pamDL2filt.bin")

FilterBySilhouetteThreshold

FilterBySilhouetteThreshold

Description

Takes a silhouette, as returned by CalculateSilhouette, the list of medoids and class assignments, as
returned by ApplyPam, a threshold and the matrices of counts and dissimilarities and constructs the
corresponding matrices clearing off the points whose silhoutte is below the threshold, except if they
are medoids.

Usage

FilterBySilhouetteThreshold(
s,
L,
fallcounts,
ffilcounts,
falldissim,
ffildissim,
thres = 0,
addcom = TRUE

)

Arguments

s A numeric vector with the sihouette coefficient of each point in a classification,
as returned by CalculateSilhouette.

L A list of two numeric vectors, L$med and L$clasif, obtained normally as the
object returned by ApplyPAM.

fallcounts A string with the name of the binary file containing the matrix of counts per
individuals. It can be either a full or a sparse matrix.

ffilcounts A string with the name of the binary file that will contain the selected individu-
als. It will have the same character (full/sparse) and type of the complete file.

falldissim A string with the name of the binary file containing the dissimilarity matrix of
the complete set of individuals. It must be a symmetric matrix of floats.

ffildissim A string with the name of the binary file that will contain the dissimilarity matrix
for the remaining individuals. It will be a symmetric matrix of floats.

thres Threshold to filter. All points whose silhouette is below this threshold will be
filtered out. Default: 0.0 (remember that silhouette is in [-1..1])

12 FilterBySilhouetteThreshold

addcom Boolean to indicate if a comment must be appended to the current comment of
counts and dissimilarity matrices to indicate that they are the result of a filtering
process. This comment is automatically generated and contains the value of
threshold t. Succesive applications add comments at the end of those already
present. Default: TRUE

Details

The renumbering of indices in the returned cluster may seem confusing at first but it was the way
of fitting this with the rest of the package. Anyway, notice that if the numeric vectors in the input
parameter L were named vectors, the point names are appropriately kept in the result so point
identity is preserved. Moreover, if the individuals and dissimilarity input matrices had row and/or
column names, they are preserved in the filtered matrices, too.

Value

Lr["med","clasif"] A list of two numeric vectors.
Lr$med is a modification of the correponding first element of the passed L parameter.
Lr$clasif has as many components as remaining instances.
Since points will have been removed, medoid numbering is modified. Therefore, Lr$med has the
NEW index of each medoid in the filtered set.
Lr$clasif contains the number of the medoid (i.e.: the cluster) to which each instance has been as-
signed, and therefore does not change.
All indexes start at 1 (R convention). Please, see Details section

Examples

Synthetic problem: 10 random seeds with coordinates in [0..20]
to which random values in [-0.1..0.1] are added
M<-matrix(0,100,500)
rownames(M)<-paste0("rn",c(1:100))
for (i in (1:10))
{
p<-20*runif(500)
Rf <- matrix(0.2*(runif(5000)-0.5),nrow=10)
for (k in (1:10))
{
M[10*(i-1)+k,]=p+Rf[k,]
}

}
JWriteBin(M,"pamtest.bin",dtype="float",dmtype="full")
CalcAndWriteDissimilarityMatrix("pamtest.bin","pamDL2.bin",distype="L2",restype="float",nthreads=0)
L <- ApplyPAM("pamDL2.bin",10,init_method="BUILD")
Which are the medoids
L$med
sil <- CalculateSilhouette(L$clasif,"pamDL2.bin")
Lf<-FilterBySilhouetteQuantile(sil,L,"pamtest.bin","pamtestfilt.bin","pamDL2.bin","pamDL2filt.bin",

q=0.4,addcom=TRUE)
The new medoids are the same points but renumbered, since the L$clasif array has less points
Lf$med

GetJCol 13

file.remove("pamtest.bin")
file.remove("pamDL2.bin")
file.remove("pamtestfilt.bin")
file.remove("pamDL2filt.bin")

GetJCol GetJCol

Description

Returns (as a R numeric vector) the requested column number from the matrix contained in a jmatrix
binary file

Usage

GetJCol(fname, ncol)

Arguments

fname String with the file name that contains the binary data.

ncol The number of the column to be returned, in R-numbering (from 1)

Value

A numeric vector with the values of elements in the requested column

Examples

Rf <- matrix(runif(48),nrow=6)
rownames(Rf) <- c("A","B","C","D","E","F")
colnames(Rf) <- c("a","b","c","d","e","f","g","h")
JWriteBin(Rf,"Rfullfloat.bin",dtype="float",dmtype="full",comment="Full matrix of floats")
Rf[,3]
vf<-GetJCol("Rfullfloat.bin",3)
vf
file.remove("Rfullfloat.bin")

14 GetJColNames

GetJColByName GetJColByName

Description

Returns (as a R numeric vector) the requested named column from the matrix contained in a jmatrix
binary file

Usage

GetJColByName(fname, colname)

Arguments

fname String with the file name that contains the binary data.

colname The name of the column to be returned. If the matrix has no column names, or
the name is not found, an empty vector is returned

Value

A numeric vector with the values of elements in the requested column

Examples

Rf <- matrix(runif(48),nrow=6)
rownames(Rf) <- c("A","B","C","D","E","F")
colnames(Rf) <- c("a","b","c","d","e","f","g","h")
JWriteBin(Rf,"Rfullfloat.bin",dtype="float",dmtype="full",comment="Full matrix of floats")
Rf[,"c"]
vf<-GetJColByName("Rfullfloat.bin","c")
vf
file.remove("Rfullfloat.bin")

GetJColNames GetJColNames

Description

Returns a R StringVector with the column names of a matrix stored in the binary format of package
jmatrix, if it has them stored.

Usage

GetJColNames(fname)

GetJManyCols 15

Arguments

fname String with the file name that contains the binary data.

Value

A R StringVector with the column names, or the empty vector if the binaryfile has no row column
names as metadata.

Examples

Rf <- matrix(runif(48),nrow=6)
rownames(Rf) <- c("A","B","C","D","E","F")
colnames(Rf) <- c("a","b","c","d","e","f","g","h")
JWriteBin(Rf,"Rfullfloat.bin",dtype="float",dmtype="full",comment="Full matrix of floats")
cn<-GetJColNames("Rfullfloat.bin")
cn
file.remove("Rfullfloat.bin")

GetJManyCols GetJManyCols

Description

Returns (as a R numeric matrix) the columns with the requested column numbers from the matrix
contained in a jmatrix binary file

Usage

GetJManyCols(fname, extcols)

Arguments

fname String with the file name that contains the binary data.
extcols A numeric vector with the indexes of the columns to be extracted, in R-numbering

(from 1)

Value

A numeric matrix with the values of elements in the requested columns

Examples

Rf <- matrix(runif(48),nrow=6)
rownames(Rf) <- c("A","B","C","D","E","F")
colnames(Rf) <- c("a","b","c","d","e","f","g","h")
JWriteBin(Rf,"Rfullfloat.bin",dtype="float",dmtype="full",comment="Full matrix of floats")
Rf[,c(1,4)]
vc<-GetJManyCols("Rfullfloat.bin",c(1,4))
vc
file.remove("Rfullfloat.bin")

16 GetJManyRows

GetJManyColsByNames GetJManyColsByNames

Description

Returns (as a R numeric matrix) the columns with the requested column names from the matrix
contained in a jmatrix binary file

Usage

GetJManyColsByNames(fname, extcolnames)

Arguments

fname String with the file name that contains the binary data.

extcolnames A numeric vector with the names of the columns to be extracted. If the binary
file has no column names, or _any_ of the column names is not present, an empty
matrix is returned.

Value

A numeric matrix with the values of elements in the requested columns

Examples

Rf <- matrix(runif(48),nrow=6)
rownames(Rf) <- c("A","B","C","D","E","F")
colnames(Rf) <- c("a","b","c","d","e","f","g","h")
JWriteBin(Rf,"Rfullfloat.bin",dtype="float",dmtype="full",comment="Full matrix of floats")
Rf[,c(1,4)]
vf<-GetJManyColsByNames("Rfullfloat.bin",c("a","d"))
vf
file.remove("Rfullfloat.bin")

GetJManyRows GetJManyRows

Description

Returns (as a R numeric matrix) the rows with the requested row numbers from the matrix contained
in a jmatrix binary file

Usage

GetJManyRows(fname, extrows)

GetJManyRowsByNames 17

Arguments

fname String with the file name that contains the binary data.

extrows A numeric vector with the indexes of the rows to be extracted, in R-numbering
(from 1)

Value

A numeric matrix with the values of elements in the requested rows

Examples

Rf <- matrix(runif(48),nrow=6)
rownames(Rf) <- c("A","B","C","D","E","F")
colnames(Rf) <- c("a","b","c","d","e","f","g","h")
JWriteBin(Rf,"Rfullfloat.bin",dtype="float",dmtype="full",comment="Full matrix of floats")
Rf[c(1,4),]
vc<-GetJManyRows("Rfullfloat.bin",c(1,4))
vc
file.remove("Rfullfloat.bin")

GetJManyRowsByNames GetJManyRowsByNames

Description

Returns (as a R numeric matrix) the rows with the requested row names from the matrix contained
in a jmatrix binary file

Usage

GetJManyRowsByNames(fname, extrownames)

Arguments

fname String with the file name that contains the binary data.

extrownames A numeric vector with the names of the rows to be extracted. If the binary file
has no row names, or _any_ of the row names is not present, an empty matrix is
returned.

Value

A numeric matrix with the values of elements in the requested rows

18 GetJNames

Examples

Rf <- matrix(runif(48),nrow=6)
rownames(Rf) <- c("A","B","C","D","E","F")
colnames(Rf) <- c("a","b","c","d","e","f","g","h")
JWriteBin(Rf,"Rfullfloat.bin",dtype="float",dmtype="full",comment="Full matrix of floats")
Rf[c("A","C"),]
vf<-GetJManyRowsByNames("Rfullfloat.bin",c("A","C"))
vf
file.remove("Rfullfloat.bin")

GetJNames GetJNames

Description

Returns a R list of two elements, rownames and colnames, each of them being a R StringVector
with the corresponding names

Usage

GetJNames(fname)

Arguments

fname String with the file name that contains the binary data.

Value

N["rownames","colnames"]: A list with two elements named rownames and colnames which are
R StringVectors. If the binary file has no row or column names as metadata BOTH will be re-
turned as empty vectors, even if one of them exists. If you want to extract only one, use either
GetBinRowNames or GetBinColNames, as appropriate.

Examples

Rf <- matrix(runif(48),nrow=6)
rownames(Rf) <- c("A","B","C","D","E","F")
colnames(Rf) <- c("a","b","c","d","e","f","g","h")
JWriteBin(Rf,"Rfullfloat.bin",dtype="float",dmtype="full",comment="Full matrix of floats")
N<-GetJNames("Rfullfloat.bin")
N["rownames"]
N["colnames"]
file.remove("Rfullfloat.bin")

GetJRow 19

GetJRow GetJRow

Description

Returns (as a R numeric vector) the requested row number from the matrix contained in a jmatrix
binary file

Usage

GetJRow(fname, nrow)

Arguments

fname String with the file name that contains the binary data.

nrow The number of the row to be returned, in R-numbering (from 1)

Value

A numeric vector with the values of elements in the requested row

Examples

Rf <- matrix(runif(48),nrow=6)
rownames(Rf) <- c("A","B","C","D","E","F")
colnames(Rf) <- c("a","b","c","d","e","f","g","h")
JWriteBin(Rf,"Rfullfloat.bin",dtype="float",dmtype="full",comment="Full matrix of floats")
Rf[3,]
vf<-GetJRow("Rfullfloat.bin",3)
vf
file.remove("Rfullfloat.bin")

GetJRowByName GetJRowByName

Description

Returns (as a R numeric vector) the requested named row from the matrix contained in a jmatrix
binary file

Usage

GetJRowByName(fname, rowname)

20 GetJRowNames

Arguments

fname String with the file name that contains the binary data.
rowname The name of the row to be returned. If the matrix has no row names, or the name

is not found, an empty vector is returned

Value

A numeric vector with the values of elements in the requested row

Examples

Rf <- matrix(runif(48),nrow=6)
rownames(Rf) <- c("A","B","C","D","E","F")
colnames(Rf) <- c("a","b","c","d","e","f","g","h")
JWriteBin(Rf,"Rfullfloat.bin",dtype="float",dmtype="full",comment="Full matrix of floats")
Rf["C",]
vf<-GetJRowByName("Rfullfloat.bin","C")
vf
file.remove("Rfullfloat.bin")

GetJRowNames GetJRowNames

Description

Returns a R StringVector with the row names of a matrix stored in the binary format of package
jmatrix, if it has them stored.

Usage

GetJRowNames(fname)

Arguments

fname String with the file name that contains the binary data.

Value

A R StringVector with the row names, or the empty vector if the binary file has no row names as
metadata.

Examples

Rf <- matrix(runif(48),nrow=6)
rownames(Rf) <- c("A","B","C","D","E","F")
colnames(Rf) <- c("a","b","c","d","e","f","g","h")
JWriteBin(Rf,"Rfullfloat.bin",dtype="float",dmtype="full",comment="Full matrix of floats")
rn<-GetJRowNames("Rfullfloat.bin")
rn
file.remove("Rfullfloat.bin")

GetSubdiag 21

GetSubdiag GetSubdiag

Description

Takes a symmetric matrix and returns a vector with all its elements under the main diagonal (without
those at the diagonal itself) Done as an instrumental function to check the PAM in package cluster.
To be removed in final version of the package.

Usage

GetSubdiag(fname)

Arguments

fname The name of the file with the dissimilarity matrix in jmatrix binary format.

Value

The vector with the values under the main diagonal, sorted by columns (i.e.: m(2,1) .. m(n,1),
m(3,2)..m(n,2),..., m(n-1,n))

Examples

Rns <- matrix(runif(49),nrow=7)
Rsym <- 0.5*(Rns+t(Rns))
rownames(Rsym) <- c("A","B","C","D","E","F","G")
colnames(Rsym) <- c("a","b","c","d","e","f","g")
JWriteBin(Rsym,"Rsymfloat.bin",dtype="float",dmtype="symmetric")
d<-GetSubdiag("Rsymfloat.bin")
Rsym
d
file.remove("Rsymfloat.bin")

GetTD GetTD

Description

Function that takes a PAM classification (as returned by ApplyPAM) and the dissimilarity matrix
and returns the value of the TD function (sum of dissimilarities between each point and its closest
medoid, divided by the number of points). This function is mainly for debugging/internal use.

Usage

GetTD(L, dissim_file)

22 JMatInfo

Arguments

L A list of two numeric vectors, L["med","clasif"], as returned by ApplyPAM
(please, consult the help of ApplyPAM for details)

dissim_file A string with the name of the binary file that contains the symmetric matrix of
dissimilarities. Such matrix should have been generated by CalcAndWriteDis-
similarityMatrix and it is a matrix of type ’disttype’ (currently defined as float).

Value

TD The value of the TD function.

Examples

Synthetic problem: 10 random seeds with coordinates in [0..20]
to which random values in [-0.1..0.1] are added
M<-matrix(0,100,500)
rownames(M)<-paste0("rn",c(1:100))
for (i in (1:10))
{
p<-20*runif(500)
Rf <- matrix(0.2*(runif(5000)-0.5),nrow=10)
for (k in (1:10))
{
M[10*(i-1)+k,]=p+Rf[k,]
}

}
JWriteBin(M,"pamtest.bin",dtype="float",dmtype="full")
CalcAndWriteDissimilarityMatrix("pamtest.bin","pamDL2.bin",distype="L2",restype="float",nthreads=0)
L <- ApplyPAM("pamDL2.bin",10,init_method="BUILD")
Final value of sum of distances to closest medoid
GetTD(L,"pamDL2.bin")

JMatInfo JMatInfo

Description

Shows in the screen or writes to a file information about a matrix stored in the binary format of
package jmatrix

Usage

JMatInfo(fname, fres = "")

Arguments

fname String with the file name that contains the binary data.

fres String with the name of the file to write the information. Default: "" (information
is written to the console)

JWriteBin 23

Value

No return value, called for its side effects (writes on screen or creates a file)

Examples

Rf <- matrix(runif(48),nrow=6)
rownames(Rf) <- c("A","B","C","D","E","F")
colnames(Rf) <- c("a","b","c","d","e","f","g","h")
JWriteBin(Rf,"Rfullfloat.bin",dtype="float",dmtype="full",comment="Full matrix of floats")
JMatInfo("Rfullfloat.bin")
file.remove("Rfullfloat.bin")

JWriteBin JWriteBin

Description

Writes a R matrix to a disk file as a binary matrix in the jmatrix format

Usage

JWriteBin(M, fname, dtype = "float", dmtype = "full", comment = "")

Arguments

M The R matrix to be written

fname The name of the file to write

dtype The data type of the matrix to be written: one of the strings ’short’, ’int’, ’long’,
’float’ or ’double’. Default: ’float’

dmtype The matrix type: one of the strings ’full’, ’sparse’ or ’symmetric’. Default: ’full’

comment A optional string with the comment to be added as metadata. Default: "" (empty
string, no added comment)

Details

Use this function cautiously. Differently to the functions to get one or more rows or columns from
the binary file, which book only the memory strictly needed for the vector/matrix and do not load all
the binary file in memory, this function books the full matrix in the requested data type and writes
it later so with very big matrices you might run out of memory.
Type ’int’ is really long int (8-bytes in most modern machines) so using ’int’ or ’long’ is equivalent.
Type is coerced from double (the internal type of R matrices) to the requested type, which may
provoke a loose of precision.
If M is a named-R matrix, row and column names are written as metadata, too.
Also, if you write as symmetric a matrix which is not such, only the lower-diagonal part will be
written. The rest of the data will be lost. In this case, if the matrix has row and column names, only
row names are written.

24 NumSilToClusterSil

Value

No return value, called for side effects (creates a file)

Examples

Rf <- matrix(runif(48),nrow=6)
rownames(Rf) <- c("A","B","C","D","E","F")
colnames(Rf) <- c("a","b","c","d","e","f","g","h")
JWriteBin(Rf,"Rfullfloat.bin",dtype="float",dmtype="full",comment="Full matrix of floats")
file.remove("Rfullfloat.bin")

NumSilToClusterSil NumSilToClusterSil

Description

Takes a silhouette in the form of a NumericVector, as returned by CalculateSilhouette, and returns
it as a numeric matrix appropriate to be plotted by the package ’cluster’

Usage

NumSilToClusterSil(cl, s)

Arguments

cl The array of classification with the number of the class to which each point be-
longs to. This number must be in 1..number_of_classes.
This function takes something like the L$clasif array which is the second ele-
ment of the list returned by ApplyPAM

s The numeric value of the silhouette for each point, with points in the same order
as they appear in cl.
This is the vector returned by after a call to CalculateSilhouette with the same
value of parameter cl.

Value

sp A silhouette in the format of the cluster package which is a NumericMatrix of as many rows as
points and three columns: cluster, neighbor and sil_width.
Its structure and dimension names are as in package ’cluster’, which allows to use it with the sil-
houette plotting functions of such package
This means you can do library(cluster) followed by plot(NumSilToClusterSil(cl,s)) to get a beatiful
plot.

ParallelpamSetDebug 25

Examples

Synthetic problem: 10 random seeds with coordinates in [0..20]
to which random values in [-0.1..0.1] are added
M<-matrix(0,100,500)
rownames(M)<-paste0("rn",c(1:100))
for (i in (1:10))
{
p<-20*runif(500)
Rf <- matrix(0.2*(runif(5000)-0.5),nrow=10)
for (k in (1:10))
{
M[10*(i-1)+k,]=p+Rf[k,]
}

}
JWriteBin(M,"pamtest.bin",dtype="float",dmtype="full")
CalcAndWriteDissimilarityMatrix("pamtest.bin","pamDL2.bin",distype="L2",restype="float",nthreads=0)
L <- ApplyPAM("pamDL2.bin",10,init_method="BUILD")
sil <- CalculateSilhouette(L$clasif,"pamDL2.bin")
sp <- NumSilToClusterSil(L$clasif,sil)
Here you can install and load package cluster and make plot(sp)
file.remove("pamtest.bin")
file.remove("pamDL2.bin")

ParallelpamSetDebug ParallelpamSetDebug

Description

Sets debugging in parallelpam package to ON (with TRUE) or OFF (with FALSE) for both parts of
it.
On package load the default status is OFF.
Setting debugging of any part to ON shows a message. Setting to OFF does not show anything
(since debugging is OFF...)

Usage

ParallelpamSetDebug(deb = TRUE, debjmat = FALSE)

Arguments

deb boolean, TRUE to generate debug messages for the PAM algorithm and FALSE
to turn them off. Default: true.

debjmat boolean, TRUE to generate debug messages for the jmatrix part inside this pack-
age and FALSE to turn them off. Default: false

Value

No return value, called for side effects (internal boolean flag changed)

26 ParallelpamSetDebug

Examples

ParallelpamSetDebug(TRUE,debjmat=TRUE)
ParallelpamSetDebug(TRUE,debjmat=FALSE)

Index

ApplyPAM, 2

CalcAndWriteDissimilarityMatrix, 5
CalculateSilhouette, 6
ClassifAsDataFrame, 7

FilterBySilhouetteQuantile, 9
FilterBySilhouetteThreshold, 11

GetJCol, 13
GetJColByName, 14
GetJColNames, 14
GetJManyCols, 15
GetJManyColsByNames, 16
GetJManyRows, 16
GetJManyRowsByNames, 17
GetJNames, 18
GetJRow, 19
GetJRowByName, 19
GetJRowNames, 20
GetSubdiag, 21
GetTD, 21

JMatInfo, 22
JWriteBin, 23

NumSilToClusterSil, 24

ParallelpamSetDebug, 25

27

	ApplyPAM
	CalcAndWriteDissimilarityMatrix
	CalculateSilhouette
	ClassifAsDataFrame
	FilterBySilhouetteQuantile
	FilterBySilhouetteThreshold
	GetJCol
	GetJColByName
	GetJColNames
	GetJManyCols
	GetJManyColsByNames
	GetJManyRows
	GetJManyRowsByNames
	GetJNames
	GetJRow
	GetJRowByName
	GetJRowNames
	GetSubdiag
	GetTD
	JMatInfo
	JWriteBin
	NumSilToClusterSil
	ParallelpamSetDebug
	Index

