
Package ‘pcv’
December 5, 2022

Version 1.0.0

Date 2022-12-05

Title Procrustes Cross-Validation

Maintainer Sergey Kucheryavskiy <svkucheryavski@gmail.com>

Description Implements Procrustes cross-validation method for Principal Component Analysis, Prin-
cipal Component Regression and Partial Least Squares regression models. S. Kuch-
eryavskiy (2020) <doi:10.1016/j.chemolab.2020.103937>.

Encoding UTF-8

License MIT + file LICENSE

Imports graphics, grDevices, stats

RoxygenNote 7.2.1

Suggests testthat

NeedsCompilation no

Depends R (>= 3.5.0)

URL https://github.com/svkucheryavski/pcv

BugReports https://github.com/svkucheryavski/pcv/issues

Author Sergey Kucheryavskiy [aut, cre]
(<https://orcid.org/0000-0002-3145-7244>)

Repository CRAN

Date/Publication 2022-12-05 14:20:01 UTC

R topics documented:
corn . 2
getCrossvalParams . 2
getR . 3
getxpvorth . 3
normalize . 4
pcv . 4
pcvcrossval . 5

1

https://doi.org/10.1016/j.chemolab.2020.103937
https://github.com/svkucheryavski/pcv
https://github.com/svkucheryavski/pcv/issues
https://orcid.org/0000-0002-3145-7244

2 getCrossvalParams

pcvpca . 6
pcvpcr . 7
pcvpls . 9
pcvreg . 11
plotD . 11
rotationMatrixToX1 . 12
simpls . 13

Index 14

corn Corn data

Description

NIR spectra and moisture of 80 Corn samples.

Usage

data(corn)

Format

A list with two matrices, spectra and moisture.

Details

This is a part of Corn dataset, which was downloaded from Eigenvector Research, Inc. website
(https://eigenvector.com/resources/data-sets/), where it is availble publicly. This dataset contains
several NIR spectra of corn samples recorded using different instruments. For our examples we
took "mp5" spectra and corrected them using Standard Normal Variate transformation.

Source

1. Eigenvector Research, Inc. (https://eigenvector.com/resources/data-sets/)

getCrossvalParams Returns parameters for cross-validation based on ’cv’ value

Description

Returns parameters for cross-validation based on ’cv’ value

Usage

getCrossvalParams(cv, nobj)

getR 3

Arguments

cv settings for cross-validation provided by user
nobj number of objects in calibration set

getR Creates rotation matrix to map a set vectors base1 to a set of vectors
base2.

Description

In both sets vectors should be orthonormal.

Usage

getR(base1, base2)

Arguments

base1 Matrix (JxA) with A orthonormal vectors as columns to be rotated (A <= J)
base2 Matrix (JxA) with A orthonormal vectors as columns, base1 should be aligned

with

Value

Rotation matrix (JxJ)

getxpvorth Generates the orthogonal part for Xpv

Description

Generates the orthogonal part for Xpv

Usage

getxpvorth(q.k, X.k, PRM)

Arguments

q.k vector with orthogonal distances for cross-validation set for segment k
X.k matrix with local validation set for segment k
PRM projecton matrix for orthogonalization of residuals

Value

A matrix with orthogonal part for Xpv

4 pcv

normalize Normalization rows or columns of a matrix

Description

Normalization rows or columns of a matrix

Usage

normalize(
X,
dim = 1,
weights = if (dim == 1) 1/sqrt(rowSums(X^2)) else 1/sqrt(colSums(X^2))

)

Arguments

X matrix with numeric values

dim which dimension to normalize (1 for rows, 2 for columns)

weights vector with normalization weights, by default 2-norm is used

pcv Compute matrix with pseudo-validation set

Description

Compute matrix with pseudo-validation set

Usage

pcv(
X,
ncomp = min(round(nrow(X)/nseg) - 1, col(X), 20),
nseg = 4,
scale = FALSE

)

Arguments

X matrix with calibration set (IxJ)

ncomp number of components for PCA decomposition

nseg number of segments in cross-validation

scale logical, standardize columns of X prior to decompositon or not

pcvcrossval 5

Details

This is the old (original) version of PCV algorithm for PCA models. Use pcvpca instead. Ane
check project web-site for details: https://github.com/svkucheryavski/pcv

The method computes pseudo-validation matrix Xpv, based on PCA decomposition of calibration
set X and systematic (venetian blinds) cross-validation. It is assumed that data rows are ordered
correctly, so systematic cross-validation can be applied

Value

Pseudo-validation matrix (IxJ)

pcvcrossval Generate sequence of indices for cross-validation

Description

Generates and returns sequence of object indices for each segment in random segmented cross-
validation

Usage

pcvcrossval(cv = 1, nobj = NULL, resp = NULL)

Arguments

cv cross-validation settings, can be a number, a list or a vector with integers.

nobj number of objects in a dataset

resp vector or matrix with response values to use in case of venetian blinds

Details

Parameter ‘cv‘ defines how to split the rows of the training set. The split is similar to cross-
validation splits, as PCV is based on cross-validation. This parameter can have the following values:

1. A number (e.g. ‘cv = 4‘). In this case this number specifies number of segments for random
splits, except ‘cv = 1‘ which is a special case for leave-one-out (full cross-validation).

2. A list with 2 values: ‘list("name", nseg)‘. In this case ‘"name"‘ defines the way to make the split,
you can select one of the following: ‘"loo"‘ for leave-one-out, ‘"rand"‘ for random splits or ‘"ven"‘
for Venetian blinds (systematic) splits. The second parameter, ‘nseg‘, is a number of segments for
splitting the rows into. For example, ‘cv = list("ven", 4)‘, shown in the code examples above, tells
PCV to use Venetian blinds splits with 4 segments.

3. A vector with integer numbers, e.g. ‘cv = c(1, 2, 3, 1, 2, 3, 1, 2, 3)‘. In this case number of values
in this vector must be the same as number of rows in the training set. The values specify which
segment a particular row will belong to. In case of the example shown here, it is assumed that you
have 9 rows in the calibration set, which will be split into 3 segments. The first segment will consist
of measurements from rows 1, 4 and 7.

6 pcvpca

Value

vector with object indices for each segment

pcvpca Procrustes cross-validation for PCA models

Description

Procrustes cross-validation for PCA models

Usage

pcvpca(
X,
ncomp = min(nrow(X) - 1, col(X), 30),
cv = list("ven", 4),
center = TRUE,
scale = FALSE

)

Arguments

X matrix with predictors from the training set.
ncomp number of components to use (more than the expected optimal number).
cv which split method to use for cross-validation (see description for details).
center logical, to center or not the data sets
scale logical, to scale or not the data sets

Details

The method computes pseudo-validation matrix Xpv, based on PCA decomposition of calibration
set ‘X‘ and cross-validation. See description of the method in [1].

Parameter ‘cv‘ defines how to split the rows of the training set. The split is similar to cross-
validation splits, as PCV is based on cross-validation. This parameter can have the following values:

1. A number (e.g. ‘cv = 4‘). In this case this number specifies number of segments for random
splits, except ‘cv = 1‘ which is a special case for leave-one-out (full cross-validation).

2. A list with 2 values: ‘list("name", nseg)‘. In this case ‘"name"‘ defines the way to make the split,
you can select one of the following: ‘"loo"‘ for leave-one-out, ‘"rand"‘ for random splits or ‘"ven"‘
for Venetian blinds (systematic) splits. The second parameter, ‘nseg‘, is a number of segments for
splitting the rows into. For example, ‘cv = list("ven", 4)‘, shown in the code examples above, tells
PCV to use Venetian blinds splits with 4 segments.

3. A vector with integer numbers, e.g. ‘cv = c(1, 2, 3, 1, 2, 3, 1, 2, 3)‘. In this case number of values
in this vector must be the same as number of rows in the training set. The values specify which
segment a particular row will belong to. In case of the example shown here, it is assumed that you
have 9 rows in the calibration set, which will be split into 3 segments. The first segment will consist
of measurements from rows 1, 4 and 7.

pcvpcr 7

Value

Matrix with PV-set (same size as X)

References

1. S. Kucheryavskiy, O. Rodionova, A. Pomerantsev. Procrustes cross-validation of multivariate
regression models. Submitted, 2022.

Examples

load NIR spectra of Corn samples
data(corn)
X <- corn$spectra

generate Xpv set based on PCA decomposition with A = 20 and venetian blinds split with 4 segments
Xpv <- pcvpca(X, ncomp = 20, center = TRUE, scale = FALSE, cv = list("ven", 4))

show the original spectra and the PV-set (as is and mean centered)
oldpar <- par(mfrow = c(2, 2))
matplot(t(X), type = "l", lty = 1, main = "Original data")
matplot(t(Xpv), type = "l", lty = 1, main = "PV-set")
matplot(t(scale(X, scale = FALSE)), type = "l", lty = 1, main = "Original data (mean centered)")
matplot(t(scale(Xpv, scale = FALSE)), type = "l", lty = 1, main = "PV-set (mean centered)")
par(oldpar)

pcvpcr Procrustes cross-validation for PCR models

Description

Procrustes cross-validation for PCR models

Usage

pcvpcr(
X,
Y,
ncomp = min(nrow(X) - 1, ncol(X), 30),
cv = list("ven", 4),
center = TRUE,
scale = FALSE

)

8 pcvpcr

Arguments

X matrix with predictors from the training set.

Y vector with response values from the training set.

ncomp number of components to use (more than the expected optimal number).

cv which split method to use for cross-validation (see description of method ‘pcv-
pls()‘ for details).

center logical, to center or not the data sets

scale logical, to scale or not the data sets

Details

The method computes pseudo-validation matrix Xpv, based on PCR decomposition of calibration
set X, y and cross-validation.

Parameter ‘cv‘ defines how to split the rows of the training set. The split is similar to cross-
validation splits, as PCV is based on cross-validation. This parameter can have the following values:

1. A number (e.g. ‘cv = 4‘). In this case this number specifies number of segments for random
splits, except ‘cv = 1‘ which is a special case for leave-one-out (full cross-validation).

2. A list with 2 values: ‘list("name", nseg)‘. In this case ‘"name"‘ defines the way to make the split,
you can select one of the following: ‘"loo"‘ for leave-one-out, ‘"rand"‘ for random splits or ‘"ven"‘
for Venetian blinds (systematic) splits. The second parameter, ‘nseg‘, is a number of segments for
splitting the rows into. For example, ‘cv = list("ven", 4)‘, shown in the code examples above, tells
PCV to use Venetian blinds splits with 4 segments.

3. A vector with integer numbers, e.g. ‘cv = c(1, 2, 3, 1, 2, 3, 1, 2, 3)‘. In this case number of values
in this vector must be the same as number of rows in the training set. The values specify which
segment a particular row will belong to. In case of the example shown here, it is assumed that you
have 9 rows in the calibration set, which will be split into 3 segments. The first segment will consist
of measurements from rows 1, 4 and 7.

Value

Pseudo-validation matrix (same size as X) with an additional attribute, ‘D‘ which contains the
scaling coefficients (ck/c)

References

1. S. Kucheryavskiy, O. Rodionova, A. Pomerantsev. Procrustes cross-validation of multivariate
regression models. Submitted, 2022.

Examples

load NIR spectra of Corn samples
data(corn)
X <- corn$spectra
Y <- corn$moisture

pcvpls 9

generate Xpv set based on PCA decomposition with A = 20 and venetian blinds split with 4 segments
Xpv <- pcvpcr(X, Y, ncomp = 20, center = TRUE, scale = FALSE, cv = list("ven", 4))

show the original spectra and the PV-set (as is and mean centered)
oldpar <- par(mfrow = c(2, 2))
matplot(t(X), type = "l", lty = 1, main = "Original data")
matplot(t(Xpv), type = "l", lty = 1, main = "PV-set")
matplot(t(scale(X, scale = FALSE)), type = "l", lty = 1, main = "Original data (mean centered)")
matplot(t(scale(Xpv, scale = FALSE)), type = "l", lty = 1, main = "PV-set (mean centered)")
par(oldpar)

pcvpls Procrustes cross-validation for PLS models

Description

Procrustes cross-validation for PLS models

Usage

pcvpls(
X,
Y,
ncomp = min(nrow(X) - 1, ncol(X), 30),
center = TRUE,
scale = FALSE,
cv = list("ven", 4)

)

Arguments

X matrix with predictors from the training set.

Y vector or matrix with response values from the training set.

ncomp number of components to use (more than the expected optimal number).

center logical, to center or not the data sets

scale logical, to scale or not the data sets

cv which split method to use for cross-validation (see description for details).

Details

The method computes pseudo-validation matrix Xpv, based on PLS decomposition of calibration
set X, y and cross-validation.

Parameter ‘cv‘ defines how to split the rows of the training set. The split is similar to cross-
validation splits, as PCV is based on cross-validation. This parameter can have the following values:

10 pcvpls

1. A number (e.g. ‘cv = 4‘). In this case this number specifies number of segments for random
splits, except ‘cv = 1‘ which is a special case for leave-one-out (full cross-validation).

2. A list with 2 values: ‘list("name", nseg)‘. In this case ‘"name"‘ defines the way to make the split,
you can select one of the following: ‘"loo"‘ for leave-one-out, ‘"rand"‘ for random splits or ‘"ven"‘
for Venetian blinds (systematic) splits. The second parameter, ‘nseg‘, is a number of segments for
splitting the rows into. For example, ‘cv = list("ven", 4)‘, shown in the code examples above, tells
PCV to use Venetian blinds splits with 4 segments.

3. A vector with integer numbers, e.g. ‘cv = c(1, 2, 3, 1, 2, 3, 1, 2, 3)‘. In this case number of values
in this vector must be the same as number of rows in the training set. The values specify which
segment a particular row will belong to. In case of the example shown here, it is assumed that you
have 9 rows in the calibration set, which will be split into 3 segments. The first segment will consist
of measurements from rows 1, 4 and 7.

Value

Pseudo-validation matrix (same size as X) with an additional attribute, ‘D‘ which contains the
scaling coefficients (ck/c)

References

1. S. Kucheryavskiy, O. Rodionova, A. Pomerantsev. Procrustes cross-validation of multivariate
regression models. Submitted, 2022.

Examples

load NIR spectra of Corn samples
data(corn)
X <- corn$spectra
Y <- corn$moisture

generate Xpv set based on PCA decomposition with A = 20 and venetian blinds split with 4 segments
Xpv <- pcvpls(X, Y, ncomp = 20, center = TRUE, scale = FALSE, cv = list("ven", 4))

show the original spectra and the PV-set (as is and mean centered)
oldpar <- par(mfrow = c(2, 2))
matplot(t(X), type = "l", lty = 1, main = "Original data")
matplot(t(Xpv), type = "l", lty = 1, main = "PV-set")
matplot(t(scale(X, scale = FALSE)), type = "l", lty = 1, main = "Original data (mean centered)")
matplot(t(scale(Xpv, scale = FALSE)), type = "l", lty = 1, main = "PV-set (mean centered)")
par(oldpar)

show the heatmap with the scaling coefficients
plotD(Xpv)

pcvreg 11

pcvreg Procrustes cross-validation for multivariate regression models

Description

This is a generic method, use ‘pcvpls()‘ or ‘pcvpcr()‘ instead.

Usage

pcvreg(
X,
Y,
ncomp = min(nrow(X) - 1, ncol(X), 30),
cv = list("ven", 4),
center = TRUE,
scale = FALSE,
funlist = list()

)

Arguments

X matrix with predictors from the training set.

Y vector with response values from the training set.

ncomp number of components to use (more than the expected optimal number).

cv which split method to use for cross-validation (see description of method ‘pcv-
pls()‘ for details).

center logical, to center or not the data sets

scale logical, to scale or not the data sets

funlist list with functions for particular implementatio

plotD Plots heatmap for scaling coefficients obtained when generating PV-
set for PCR or PLS

Description

Plots heatmap for scaling coefficients obtained when generating PV-set for PCR or PLS

12 rotationMatrixToX1

Usage

plotD(
Xpv,
colmap = colorRampPalette(c("blue", "white", "red"))(256),
lim = c(-2, 4),
xlab = "Components",
ylab = "Segments",
...

)

Arguments

Xpv PV-set generated by ‘pcvpcr()‘ or ‘pcvpls()‘.

colmap colormap - any with 256 colors.

lim limits for color map (smallest/largest expected value), centered around 1.

xlab label for x-axis

ylab label for y-axis

... any other parameters for method ‘image‘

Value

No return value, just creates a plot.

rotationMatrixToX1 Creates a rotation matrix to map a vector x to [1 0 0 ... 0]

Description

Creates a rotation matrix to map a vector x to [1 0 0 ... 0]

Usage

rotationMatrixToX1(x)

Arguments

x Vector (sequence with J coordinates)

Value

Rotation matrix (JxJ)

simpls 13

simpls SIMPLS algorithm

Description

SIMPLS algorithm for calibration of PLS model

Usage

simpls(X, Y, ncomp)

Arguments

X a matrix with x values (predictors)

Y a matrix with y values (responses)

ncomp number of components to calculate

Value

a list with computed weights, x- and y-loadings for PLS regression model.

References

[1]. S. de Jong. SIMPLS: An Alternative approach to partial least squares regression. Chemomet-
rics and Intelligent Laboratory Systems, 18, 1993 (251-263).

Index

∗ datasets
corn, 2

corn, 2

getCrossvalParams, 2
getR, 3
getxpvorth, 3

normalize, 4

pcv, 4
pcvcrossval, 5
pcvpca, 5, 6
pcvpcr, 7
pcvpls, 9
pcvreg, 11
plotD, 11

rotationMatrixToX1, 12

simpls, 13

14

	corn
	getCrossvalParams
	getR
	getxpvorth
	normalize
	pcv
	pcvcrossval
	pcvpca
	pcvpcr
	pcvpls
	pcvreg
	plotD
	rotationMatrixToX1
	simpls
	Index

