This vignette describes partial function evaluation used in pirouette
.
library(pirouette)
We’ll use pryr
(from the Tidyverse to get that functionality.
library(pryr)
These are the functions we’ll create, in order of increasing complexity:
We start from a simple true tree:
ape::read.tree(text = "((A:1, B:1):1, C:2);")
true_phylogeny <-::plot.phylo(true_phylogeny, main = "True phylogeny") ape
To create a twin tree, I will describe:
To create a twin tree from the true tree using the default settings is easily done by calling create_twin_tree
:
pirouette::create_twin_tree(true_phylogeny)
twin_tree <-::plot.phylo(twin_tree, main = "Twin phylogeny") ape
The create_twin_tree
function creates the twin tree in the way specified in its other function argument: the twinning_params
:
pirouette::create_twinning_params() twinning_params <-
Calling create_twin_tree
results in the same twin tree (yes, go ahead and check!):
pirouette::create_twin_tree(
twin_tree <-phylogeny = true_phylogeny,
twinning_params = twinning_params
)::plot.phylo(twin_tree, main = "Twin phylogeny") ape
How to specify how the twin tree is created? Set the value for the twinning_params$sim_twin_tree_fun
!
I’ll demonstrate using the get_sim_bd_twin_tree_fun
which produces a function that simulates a twin tree using a Birth-Death speciation model:
pirouette::create_twinning_params(
twinning_params <-sim_twin_tree_fun = pirouette::get_sim_bd_twin_tree_fun()
)
Proceed as usual here to simulate the twin tree:
pirouette::create_twin_tree(
twin_tree <-phylogeny = true_phylogeny,
twinning_params = twinning_params
)::plot.phylo(twin_tree, main = "Twin phylogeny") ape
twinning_params$sim_twin_tree_fun
must be a function that takes one argument, which must be the true phylogeny.
Here is an example that creates a twin tree by simulation a random coalescent tree with the same number of tips:
# Define my function
function(true_phylogeny) {
my_fun <- ape::rcoal(n = ape::Ntip(true_phylogeny))
new_phylo <-$tip.label <- true_phylogeny$tip.label # nolint ape style, not mine
new_phylo
new_phylo
}# Put my function in the twinning_params
pirouette::create_twinning_params(
twinning_params <-sim_twin_tree_fun = my_fun
)# Create a twin tree using my function
pirouette::create_twin_tree(
twin_tree <-phylogeny = true_phylogeny,
twinning_params = twinning_params
)# Show the twin tree created by my function
::plot.phylo(twin_tree, main = "Twin phylogeny") ape
So, twinning_params$sim_twin_tree_fun
must be a function that takes one argument, which is the true phylogeny. What if we want a function that indeed has one argument for the true phylogeny, but also some additional ones?
An example is sim_bd_twin_tree
, which uses a method and a number of replicates:
head(sim_bd_twin_tree)
##
## 1 function (true_phylogeny, method = "random_tree", n_replicates = 10000,
## 2 os = rappdirs::app_dir()$os)
## 3 {
## 4 beastier::check_os(os)
## 5 methods <- c("random_tree", "max_clade_cred", "max_likelihood")
## 6 if (!method %in% methods) {
We cannot simply plug it in:
tryCatch(
::create_twinning_params(
pirouettesim_twin_tree_fun = sim_bd_twin_tree
),error = function(e) {
cat(e$message)
} )
## Warning in if (stringr::str_count(string = arguments, pattern = ",") > 0) {: the
## condition has length > 1 and only the first element will be used
## 'sim_twin_tree_fun' must be a function with one argument
Instead, we’ll need partial function evaluation, which will create a function with one a ellipsis (...
) argument that will fill in the values you specified:
# Create my partially evaluated function
pryr::partial(
sim_twin_tree_fun <-
sim_bd_twin_tree,method = "random_tree",
n_replicates = 1
)# Create twinning_params with my function
pirouette::create_twinning_params(
twinning_params <-sim_twin_tree_fun = sim_twin_tree_fun
)# Create a twin tree using my function
pirouette::create_twin_tree(
twin_tree <-phylogeny = true_phylogeny,
twinning_params = twinning_params
)# Show the twin tree
::plot.phylo(twin_tree, main = "Twin phylogeny") ape
There is a helper function called get_sim_bd_twin_tree_fun
that does the same partial function evaluation for you:
# Create twinning_params with my function
pirouette::create_twinning_params(
twinning_params <-sim_twin_tree_fun = pirouette::get_sim_bd_twin_tree_fun(
method = "random_tree",
n_replicates = 1
)
)# Create a twin tree using my function
pirouette::create_twin_tree(
twin_tree <-phylogeny = true_phylogeny,
twinning_params = twinning_params
)# Show the twin tree
::plot.phylo(twin_tree, main = "Twin phylogeny") ape
Now using a Yule model:
# Create twinning_params with my function
pirouette::create_twinning_params(
twinning_params <-sim_twin_tree_fun = pirouette::create_sim_yule_twin_tree_fun(
method = "random_tree",
n_replicates = 1
)
)# Create a twin tree using my function
create_twin_tree(
twin_tree <-phylogeny = true_phylogeny,
twinning_params = twinning_params
)# Show the twin tree
::plot.phylo(twin_tree, main = "Twin phylogeny") ape
Now using a copy function:
# Create twinning_params
pirouette::create_twinning_params(
twinning_params <-sim_twin_tree_fun = pirouette::create_copy_twtr_from_true_fun()
)# Create a twin tree using my function
create_twin_tree(
twin_tree <-phylogeny = true_phylogeny,
twinning_params = twinning_params
)# Show the twin tree
::plot.phylo(twin_tree, main = "Twin phylogeny") ape
Using partial function evaluation you can now plug in any function to create a twin tree!
We start from a simple true tree:
ape::read.tree(text = "((A:1, B:1):1, C:2);")
true_phylogeny <-::plot.phylo(true_phylogeny, main = "True phylogeny") ape
Also, we’ll specify a root sequence:
pirouette::create_blocked_dna(length = 16) root_sequence <-
We want to create a true alignment from it. There is a function that does so:
pirouette::create_alignment_params(
alignment_params <-root_sequence = root_sequence
) pirouette::sim_true_alignment(
true_alignment <-true_phylogeny = true_phylogeny,
alignment_params = alignment_params
)::image.DNAbin(true_alignment, main = "True alignment", legend = FALSE) ape
How to specify how the true alignment is created? Use the alignment_params$sim_tral_fun
:
pirouette::create_alignment_params(
alignment_params <-sim_tral_fun = sim_tral_with_std_nsm,
root_sequence = root_sequence
) pirouette::sim_true_alignment(
true_alignment <-true_phylogeny = true_phylogeny,
alignment_params = alignment_params
)::image.DNAbin(true_alignment, main = "True alignment", legend = FALSE) ape
Due to this architecture, alignment_params$sim_tral_fun
must be a function that takes one argument, which is the true phylogeny.
Here is an example that creates a true alignment by simulating a random alignment with the same number of taxa:
# My function
function(
my_fun <-
true_phylogeny,
root_sequence
) { list()
sequences <-for (i in seq_len(ape::Ntip(true_phylogeny))) {
rep(
sequences[[i]] <-sample(c("a", "c", "g", "t"), size = 1),
nchar(root_sequence)
)
}::as.DNAbin(sequences)
ape
}# Putting my function in the alignment_params
pirouette::create_alignment_params(
alignment_params <-sim_tral_fun = my_fun,
root_sequence = root_sequence
)# Simulate the true alignment using my function
pirouette::sim_true_alignment(
true_alignment <-true_phylogeny = true_phylogeny,
alignment_params = alignment_params
)# Show the true alignment
::image.DNAbin(true_alignment, main = "True alignment", legend = FALSE) ape
So, alignment_params$sim_tral_fun
must be a function that takes one argument, which is the true phylogeny. What if we want a function that indeed has one argument for the true phylogeny, but also some additional ones?
An example is sim_tral_with_std_nsm
, which uses a root sequence of acgt
, a mutation rate of 0.1 and a JC69 site model:
head(sim_tral_with_std_nsm)
##
## 1 function (true_phylogeny, root_sequence, mutation_rate = 1, site_model = beautier::create_jc69_site_model())
## 2 {
## 3 alignment <- pirouette::sim_alignment_with_std_nsm(phylogeny = true_phylogeny,
## 4 root_sequence = root_sequence, mutation_rate = mutation_rate,
## 5 site_model = site_model)
## 6 pirouette::check_alignment(alignment)
To change the default arguments, we’ll need partial function evaluation, which will create a function with one a ellipsis (...
) argument that will fill in the values you specified:
pryr::partial(
sim_tral_fun <-
sim_tral_with_std_nsm,mutation_rate = 0.5,
site_model = beautier::create_hky_site_model()
)head(sim_tral_fun)
##
## 1 function (...)
## 2 sim_tral_with_std_nsm(mutation_rate = 0.5, site_model = beautier::create_hky_site_model(),
## 3 ...)
pirouette::create_alignment_params(
alignment_params <-sim_tral_fun = sim_tral_fun,
root_sequence = root_sequence
) pirouette::sim_true_alignment(
true_alignment <-true_phylogeny = true_phylogeny,
alignment_params = alignment_params
)::image.DNAbin(true_alignment, main = "True alignment", legend = FALSE) ape
Instead of doing the partial function evaluation yourself, pirouette
supplies this function as get_sim_tral_with_std_nsm_fun
:
pirouette::create_alignment_params(
alignment_params <-sim_tral_fun =
::get_sim_tral_with_std_nsm_fun(
pirouettemutation_rate = 0.5,
site_model = beautier::create_hky_site_model()
),root_sequence = root_sequence
) pirouette::sim_true_alignment(
true_alignment <-true_phylogeny = true_phylogeny,
alignment_params = alignment_params
)::image.DNAbin(true_alignment, main = "True alignment", legend = FALSE) ape
Or to use the linked node substitution model, use get_sim_tral_with_lns_nsm_fun
:
if (1 == 2) { # nodeSub is not yet on CRAN
pirouette::create_alignment_params(
alignment_params <-sim_tral_fun =
get_sim_tral_with_lns_nsm_fun(
branch_mutation_rate = 0.1,
node_mutation_rate = 0.2
),root_sequence = root_sequence
) pirouette::sim_true_alignment(
true_alignment <-true_phylogeny = true_phylogeny,
alignment_params = alignment_params
)::image.DNAbin(true_alignment, main = "True alignment", legend = FALSE)
ape }
Or to use the unlinked node substitution model, use get_sim_tral_with_uns_nsm_fun
:
if (1 == 2) { # nodeSub is not yet on CRAN
pirouette::create_alignment_params(
alignment_params <-sim_tral_fun =
::get_sim_tral_with_uns_nsm_fun(
pirouettebranch_mutation_rate = 1.0,
node_mutation_rate = 2.0,
node_time = 0.1
),root_sequence = root_sequence
) pirouette::sim_true_alignment(
true_alignment <-true_phylogeny = true_phylogeny,
alignment_params = alignment_params
)::image.DNAbin(true_alignment, main = "True alignment", legend = FALSE)
ape }
Using partial function evaluation you can now plug in any function to create a true alignment.
To create a twin alignment, we need * a twin tree * a true alignent * a root sequence
Note that some of these three elements may be ignored, but is some cases you will need all three.
As the twin tree, we’ll use this:
ape::read.tree(text = "((A:2, B:2):1, C:3);")
twin_phylogeny <-::plot.phylo(twin_phylogeny, main = "Twin phylogeny") ape
The root sequence is short and simple:
pirouette::create_blocked_dna(length = 20) root_sequence <-
As a true alignment, we’ll use something equally simple:
pirouette::get_test_alignment(
true_alignment <-n_taxa = ape::Ntip(true_phylogeny),
sequence_length = nchar(root_sequence)
)::image.DNAbin(true_alignment, main = "True alignment", legend = FALSE) ape
I will show multiple ways to create a twin alignment here:
The function we’ll use has three parameters and ignores two:
function(
my_fun <-twin_phylogeny = "irrelevant",
true_alignment,root_sequence = "irrelevant"
) {
true_alignment }
Put this function in the twinning_params
:
pirouette::create_twinning_params(
twinning_params <-sim_twal_fun = my_fun
)
pirouette::sim_twin_alignment(
twin_alignment <-twin_phylogeny = twin_phylogeny,
true_alignment = true_alignment,
alignment_params = pirouette::create_test_alignment_params(
root_sequence = root_sequence
),twinning_params = twinning_params
)::image.DNAbin(twin_alignment, main = "Twin alignment") ape
Now we want to plug in:
head(sim_twal_with_std_nsm)
##
## 1 function (twin_phylogeny, root_sequence, true_alignment = "irrelevant",
## 2 mutation_rate = 1, site_model = beautier::create_jc69_site_model())
## 3 {
## 4 alignment <- pirouette::sim_alignment_with_std_nsm(phylogeny = twin_phylogeny,
## 5 root_sequence = root_sequence, mutation_rate = mutation_rate,
## 6 site_model = site_model)
Here comes partial function evaluation to the rescue:
pryr::partial(
sim_twin_align_fun <-
sim_twal_with_std_nsm,mutation_rate = 0.1
)head(sim_twin_align_fun)
##
## 1 function (...)
## 2 sim_twal_with_std_nsm(mutation_rate = 0.1, ...)
::check_sim_twal_fun(sim_twin_align_fun) pirouette
Plugging it in:
pirouette::sim_twin_alignment(
twin_alignment <-twin_phylogeny = twin_phylogeny,
true_alignment = true_alignment,
alignment_params = pirouette::create_test_alignment_params(),
twinning_params = pirouette::create_twinning_params(
sim_twal_fun = sim_twin_align_fun
)
)::image.DNAbin(twin_alignment, main = "Twin alignment", legend = FALSE) ape
Or use get_sim_twal_with_std_nsm_fun
to do the partial function evaluation for you:
pirouette::sim_twin_alignment(
twin_alignment <-twin_phylogeny = twin_phylogeny,
true_alignment = true_alignment,
alignment_params = pirouette::create_test_alignment_params(),
twinning_params = pirouette::create_twinning_params(
sim_twal_fun =
::get_sim_twal_with_std_nsm_fun(
pirouettemutation_rate = 0.1
)
)
)::image.DNAbin(twin_alignment, main = "Twin alignment", legend = FALSE) ape
Now we want to plug in:
head(sim_twal_with_same_n_mutation)
##
## 1 function (twin_phylogeny, true_alignment, root_sequence, mutation_rate = 1,
## 2 site_model = beautier::create_jc69_site_model(), max_n_tries = 1000,
## 3 verbose = FALSE)
## 4 {
## 5 beautier::check_phylogeny(twin_phylogeny)
## 6 pirouette::check_alignment(true_alignment)
Here comes partial function evaluation to the rescue:
pryr::partial(
sim_twin_align_fun <-
sim_twal_with_same_n_mutation,mutation_rate = 0.5
)head(sim_twin_align_fun)
##
## 1 function (...)
## 2 sim_twal_with_same_n_mutation(mutation_rate = 0.5, ...)
::check_sim_twal_fun(sim_twin_align_fun) pirouette
Plugging it in:
pirouette::sim_twin_alignment(
twin_alignment <-twin_phylogeny = twin_phylogeny,
true_alignment = true_alignment,
alignment_params = pirouette::create_test_alignment_params(
root_sequence = root_sequence
),twinning_params = pirouette::create_twinning_params(
sim_twal_fun = sim_twin_align_fun
) )
## Warning in pirouette::sim_alignment_with_n_mutations(phylogeny =
## twin_phylogeny, : 'sim_alignment_with_n_mutations' tried 1000 times, without
## simulating an alignment with 0 mutations
::image.DNAbin(twin_alignment, main = "Twin alignment", legend = FALSE) ape
Or use get_sim_twal_with_std_nsm_fun
to do the partial function evaluation for you:
pirouette::sim_twin_alignment(
twin_alignment <-twin_phylogeny = twin_phylogeny,
true_alignment = true_alignment,
alignment_params = pirouette::create_test_alignment_params(),
twinning_params = pirouette::create_twinning_params(
sim_twal_fun =
::get_sim_twal_with_std_nsm_fun(
pirouettemutation_rate = 0.1
)
)
)::image.DNAbin(twin_alignment, main = "Twin alignment", legend = FALSE) ape