9

Package ‘pkgdepends

December 17, 2022

Title Package Dependency Resolution and Downloads
Version 0.4.0

Description Find recursive dependencies of 'R' packages from various
sources. Solve the dependencies to obtain a consistent set of packages
to install. Download packages, and install them. It supports packages
on 'CRAN/, 'Bioconductor' and other 'CRAN-like' repositories,
'GitHub', package "URLs', and local package trees and files. It caches
metadata and package files via the 'pkgcache' package, and performs
all ' HTTP' requests, downloads, builds and installations in parallel.
'pkgdepends' is the workhorse of the "pak’ package.

License MIT + file LICENSE
URL https://github.com/r-1ib/pkgdepends#readme

BugReports https://github.com/r-1ib/pkgdepends/issues
Depends R (>=3.4)

Imports callr (>=3.3.1), cli (>=3.4.0), curl, desc (>= 1.2.0),
filelock (>= 1.0.2), glue, jsonlite, IpSolve, pkgbuild (>=
1.0.2), pkgcache (>= 2.0.0), prettyunits (>= 1.1.1), processx
(>=3.4.2), ps, R6, rprojroot, stats, utils, withr (>=2.1.1),
zip >=2.1.0)

Suggests asciicast (>= 2.2.0.9000), covr, debugme, fansi, fs,
htmlwidgets, mockery, pak, pingr (>= 2.0.0), rmarkdown,
rstudioapi, spelling, testthat, tibble, webfakes (>=
1.1.5.9000)

Config/Needs/coverage covr, rmarkdown, svglite
Config/Needs/dev rmarkdown, svglite

Config/Needs/website r-lib/asciicast, pkgdown (>= 2.0.2),
tidyverse/tidytemplate

Config/testthat/edition 3
Encoding UTF-8
RoxygenNote 7.2.1.9000

NeedsCompilation no

https://github.com/r-lib/pkgdepends#readme
https://github.com/r-lib/pkgdepends/issues

pkgdepends-package

Author Gibor Csardi [aut, cre],
RStudio [cph, fnd]

Maintainer Gabor Csardi <csardi.gabor@gmail.com>
Repository CRAN
Date/Publication 2022-12-17 09:30:02 UTC

R topics documented:

Index

pkgdepends-package L 2
as_pkg dependencies 5
current_r_platform o L 6
install_package _plan 8
install_plans e e e 8
is_valid_package name L oL 10
b _Status e e 10
new_pkg deps L e 12
new_pkg_download_proposal 17
new_pkg_installation_plan oL L 21
new_pkg_installation_proposal oL oo 24
parse_pkg refs L e 33
pkg_config e e e e 34
pkg_dep_types_hard 36
pkg_downloads 37
pkg name_check L 38
pkg refs . . . 39
pkg resolution L 45
PKE TX . o o e e 47
pkgosolution e e e e e 48

50

pkgdepends-package pkgdepends: Package Dependency Resolution and Downloads

Description

pkgdepends is a toolkit for package dependencies, downloads and installations, to be used in other
packages. If you are looking for a package manager, see pak.

Features

* Look up package dependencies recursively.
* Visualize package dependencies.
* Download packages and their dependencies.

* Install downloaded packages.

https://github.com/r-lib/pak

pkgdepends-package 3

* Includes a dependency solver to find a consistent set of dependencies.
* Supports CRAN and Bioconductor packages automatically.

* Supports packages on GitHub.

* Supports local package file and trees.

* Supports the Remotes entry in the DESCRIPTION file.

* Caches metadata and downloaded packages via pkgcache

* Performs all downloads and HTTP queries concurrently.

* Builds and installs packages in parallel.

Install

Once on CRAN, install the package with:
install.packages("pkgdepends”)

Usage
library(pkgdepends)

Package references:

A package reference (ref) specifies a location from which an R package can be obtained from.
Examples:

devtools

cran: :devtools

bioc: :Biobase

r-lib/pkgdepends
https://github.com/r-1ib/pkgdepends
local: :~/works/shiny

See “Package references” for details.

Package dependencies:
Dependencies of the development version of the cli package:

pd <- new_pkg_deps("r-lib/pkgcache")
pd$solve()
pd$draw()

See the pkg_deps class for details.

Package downloads:
Downloading all dependencies of a package:

pdl <- new_pkg_download_proposal("r-lib/cli")
pdl$resolve()
pdl$download()

See the pkg_download_proposal class for details.

https://github.com/r-lib/pkgcache

4 pkgdepends-package

Package installation:

Installing or updating a set of package:

lib <- tempfile()

dir.create(lib)

pdi <- new_pkg_installation_proposal(
"r-lib/cli”,
config = list(library = 1lib)

)

pdi$solve()

pdi$download()
pdi$install()

Dependency resolution:

pkg_deps, pkg_download_proposal and pkg_installation_proposal all resolve their depen-
dencies recursively, to obtain information about all packages needed for the specified package
references. See “Dependency resolution” for details.

The dependency solver:

The dependency solver takes the resolution information, and works out the exact versions of each
package that must be installed, such that version and other requirements are satisfied. See “The
dependency solver” for details.

Installation plans:

pkg_installation_proposal can create installation plans, and then also install them. It is also
possible to import installation plans that were created by other tools. See “Installation plans” for
details.

Configuration:

The details of pkg_deps, pkg_download_proposal and pkg_installation_proposal can be
tuned with a list of configuration options. See “Configuration” for details.

Related
* pak — R package manager
* pkgcache — Metadata and package cache

* devtools — Tools for R package developers

Code of Conduct:

Please note that the pkgdepends project is released with a Contributor Code of Conduct. By
contributing to this project, you agree to abide by its terms.

License

MIT (c) RStudio

https://github.com/r-lib/pak
https://github.com/r-lib/pkgcache
https://github.com/r-lib/devtools
https://r-lib.github.io/pkgdepends/dev/CODE_OF_CONDUCT.html

as_pkg_dependencies 5

Author(s)

Maintainer: Gabor Csardi <csardi.gabor@gmail.com>

Other contributors:

» RStudio [copyright holder, funder]

See Also
Useful links:

e https://github.com/r-1ib/pkgdepends#readme
* Report bugs at https://github.com/r-1ib/pkgdepends/issues

as_pkg_dependencies Shorthands for dependency specifications

Description

Shorthands for dependency specifications

Usage

as_pkg_dependencies(deps)

Arguments

deps See below.

Details

R packages may have various types of dependencies, see Writing R Extensions.

pkgdepends groups dependencies into three groups:

* hard dependencies: "Depends"”, "Imports", and "LinkingTo",
* soft dependencies: "Suggests" and "Enhances",
* extra dependencies, see below.
pkgdepends supports concise ways of specifying which types of dependencies of a package should

be installed. It is similar to how utils::install.packages() interprets its dependencies argu-
ment.

You typically use one of these values:

* NA or "hard" to install a package and its required dependencies,

* TRUE to install all required dependencies, plus optional and development dependencies.

If you need more flexibility, the full description of possible values for the deps argument are:

https://github.com/r-lib/pkgdepends#readme
https://github.com/r-lib/pkgdepends/issues
https://cran.r-project.org/doc/manuals/R-exts.html

6 current_r_platform

* TRUE: This means all hard dependencies plus Suggests for direct installations, and hard de-
pendencies only for dependent packages.

* FALSE: no dependencies are installed at all.

* NA (any atomic type, so NA_character_, etc. as well): only hard dependencies are installed.
See pkg_dep_types_hard().

* If alist with two entries named direct and indirect, it is taken as the requested dependency
types, for direct installations and dependent packages.

* If a character vector, then it is taken as the dependency types for direct installations, and the
hard dependencies are used for the dependent packages.

If "hard"” is included in the value or a list element, then it is replaced by the hard dependency types.
If "soft"” or "all” is included, then it is replaced by all hard and soft dependency.

Extra dependencies:

pkgdepends supports extra dependency types for direct installations not from CRAN-like reposi-
tories. These are specified with a Config/Needs/ prefix in the DESCRIPTION and they can contain
package references, separated by commas. For example you can specify packages that are only
needed for the pkgdown website of the package:

Config/Needs/website: r-1lib/pkgdown

To use these dependency types, you need to specify them in the deps argument to pkgdepends
functions.

Note that Config/Needs/* fields are currently not used from CRAN packages, and packages in
CRAN:-like repositories in general.

Usually you specify that a Config/Needs/* dependency type should be installed together with
"hard” or "all”, to install all hard or soft dependencies as well.
Value

A named list with two character vectors: direct, indirect, the dependency types to use for direct
installations and dependent packages.

See Also

Other package dependency utilities: pkg_dep_types_hard()

current_r_platform R platforms

Description

default_platfoms() returns the default platforms for the current R session. These typically con-
sist of the detected platform of the current R session, and "source”, for source packages.

current_r_platform 7

Usage

current_

r_platform()

default_platforms()

Details

current_

r_platform() detects the platform of the current R version.

By default pkgdepends works with source packages and binary packages for the current platform.
You can change this, see *Configuration’.

The following platform names can be configured and returned by current_r_platform() and
default_platforms():

* "source” for source packages,

* A platform string like R. version$platform, but on Linux the name and version of the distri-
bution are also included. Examples:

x86_64-apple-darwini7.0: macOS High Sierra.
aarch64-apple-darwin2@: macOS Big Sur on arm64.
x86_64-w64-mingw32: 64 bit Windows.
i1386-w64-mingw32: 32 bit Windows.
1386+x86_64-w64-mingw32: 64 bit + 32 bit Windows.

i386-pc-solaris2.10: 32 bit Solaris. (Some broken 64 Solaris builds might have the
same platform string, unfortunately.)

x86_64-pc-linux-gnu-debian-10: Debian Linux 10 on x86_64.
x86_64-pc-linux-musl-alpine-3.14.1: Alpine Linux.
x86_64-pc-1inux-gnu-unknown: Unknown Linux Distribution on x86_64.
$390x-ibm-1inux-gnu-ubuntu-20.04: Ubuntu Linux 20.04 on S390x.
amd64-portbld-freebsd12.1: FreeBSD 12.1 on x86_64.

In addition, the following platform names can be used to configure pkgdepends:

* "macos” for macOS binaries that are appropriate for the R versions pkgdepends is working
with (defaulting to the version of the current session), as defined by CRAN binaries. E.g. on
R 3.5.0 macOS binaries are built for macOS El Capitan.

* "windows"” for Windows binaries for the default CRAN architecture. This is currently Win-
dows Vista for all supported R versions, but it might change in the future. The actual bi-
nary packages in the repository might support both 32 bit and 64 builds, or only one of
them. In practice 32-bit only packages are very rare. CRAN builds before and including
R 4.1 have both architectures, from R 4.2 they are 64 bit only. "windows” is an alias to
1386+x86_64-w64-mingw32 currently.

Value

current_

default_

r_platform() returns a string, the name of the current platform.

platforms() returns a character vector of platform names.

8 install_plans

Examples

current_r_platform()
default_platforms()

install_package_plan Perform a package installation plan

Description

See ’Installation plans’ for the details and the format.

Usage

install_package_plan(
plan,
lib = .libPaths()[[1]1],
num_workers = 1,

cache = NULL
)
Arguments
plan Package plan object, a data frame, see ’Installation plans’ for the format.
lib Library directory to install to.
num_workers Number of worker processes to use.
cache Package cache to use, or NULL.
Value

Information about the installation process.

install_plans Installation plans

Description

An installation plan contains all data that is needed to install a set of package files. It is usually
created from an installation proposal with solving the dependencies and downloading the package
files.

install_plans 9

Details

It is also possible to create an installation plan a different way. An installation plan object must be
a data frame, with at least the following columns:

* package: The name of the package.

 type: The type of the package reference.

* binary: Whether the package is a binary package.

e file: Full path to the package file or directory.

* dependencies: A list column that lists the names of the dependent packages for each package.

* needscompilation: Whether the package needs compilation. This should be FALSE for bi-

nary packages.

For installation plans created via pkg_installation_proposal, the plan contains all columns from
pkg_download_result objects, and some additional ones:

* library: the library the package is supposed to be installed to.
* direct: whether the package was directly requested or it is installed as a dependency.

* vignettes: whether the vignettes need to be (re)built.

* packaged: whether R CMD build was already called for the package.

See Also

pkg_installation_proposal to create install plans, install_package_plan() to install plans from
any source.

Examples

Not run:

pdi <- new_pkg_installation_proposal(
"pak”,
config = list(library = tempfile())

)

pdi$resolve()

pdi$solve()

pdi$download()

pdi$get_install_plan()

End(Not run)

10 lib_status

is_valid_package_name Check whether a package name is valid

Description

Check whether a package name is valid

Usage

is_valid_package_name(nm)

Arguments

nm Potential package name, string of length 1.

Value

Logical flag. If FALSE, then the reason attribute contains a character string, the explanation why
the package name is invalid. See examples below.

Examples

is_valid_package_name("pak")
is_valid_package_name("pkg")
is_valid_package_name("pak\u@oelge")
is_valid_package_name("good-package")
is_valid_package_name("x")
is_valid_package_name("1stpackage")
is_valid_package_name("dots.")

lib_status Status of packages in a library

Description

Query data of all packages in a package library.

Usage

lib_status(library = .libPaths()[1], packages = NULL)

Arguments

library Path to library.
packages If not NULL, then only these packages are shown.

lib_status 11

Value

Data frame that contains data about the packages installed in the library.
It has always has columns:
* biocviews: the corresponding field from DESCRIPTION, it must be present for all Bioconduc-
tor packages, other packages typically don’t have it.
e built: the Built field from DESCRIPTION.

* depends, suggests, Imports, linkingto, enhances: the corresponding fields from the
DESCRIPTION files.

* deps: A list or data frames, the dependencies of the package. It has columns: ref, type
(dependency type in lowercase), package (dependent package, or R), op and version, for last
two are for version requirement. op can be >=, >, == or <=, although the only the first one is
common in practice.

* library: path to the package library containing the package.

* license: from DESCRIPTION.

* md5sum: from DESCTIPTION, typically NA, except on Windows.

* needscompilation: from DESCRIPTION, this column is logical.

* package: package name.

* platform: from the Built field in DESCRIPTION, the current platform if missing from DESCRIPTION.
e priority: from DESCRIPTION, usually base, recommended, or missing.

* ref: the corresponding installed: : * package reference.

* repository: from DESCRIPTION. For packages from a CRAN repository this is CRAN, some
other repositories, e.g. R-universe adds the repository URL here.

* repotype: cran, bioc or missing.

e rversion: from the Built field. If no such field, then the current R version.
e sysregs: the SystemRequirements field from DESCRIPTION.

* title: package title.

e type: always installed.

* version: package version (as string).
Most of these columns are unchanged from DESCRIPTION, but pkgdepends also adds a couple.

Notes::
¢ In addition, it also has all remote* and config/needs/* entries from the DESCRIPTION files.
(Case insensitive.)

* All columns are of type character, except for needscompilation, which is logical and
deps, which is a list columns.

* If an entry is missing for a package, it is set to NA.
* Note that column names are lowercase, even if the corresponding entries are not in DESCRIPTION.
¢ The order of the columns is not deterministic, so don’t assume any order.

* Additional columns might be present, these are internal for pkgdepends and should not be
used in user code.

12 new_pkg_deps

new_pkg_deps R6 class for package dependency lookup

Description

Look up dependencies of R packages from various sources.

Usage
new_pkg_deps(refs, ...)
Arguments
refs Package names or references. See 'Package references’ for the syntax.
Additional arguments, passed to pkg_deps$new().
Details

new_pkg_deps () creates a new object from the pkg_deps class. The advantage of new_pkg_deps ()
compared to using the pkg_deps constructor directly is that it avoids making pkgdepends a build
time dependency.

The usual steps to query package dependencies are:

1. Create a pkg_deps object with new_pkg_deps ().
2. Resolve all possible dependencies with pkg_deps$resolve().

3. Solve the dependencies, to obtain a subset of all possible dependencies that can be installed
together, with pkg_deps$solve().

4. Call pkg_deps$get_solution() to list the result of the dependency solver.

Value

new_pkg_deps () returns a new pkg_deps object.

Methods

Public methods:
e pkg_deps$new()
e pkg_deps$get_refs()
* pkg_deps$get_config()
* pkg_deps$resolve()
* pkg_deps$async_resolve()
* pkg_deps$get_resolution()
e pkg_deps$get_solve_policy()
* pkg_deps$set_solve_policy()
* pkg_deps$solve()

new_pkg deps 13

* pkg_deps$get_solution()

¢ pkg_deps$stop_for_solution_error()
* pkg_deps$draw()

* pkg_deps$format ()

* pkg_deps$print()

* pkg_deps$clone()

Method new(): Create a new pkg_deps object. Consider using new_pkg_deps() instead of
calling the constructor directly.

The returned object can be used to look up (recursive) dependencies of R packages from various
sources. To perform the actual lookup, you’ll need to call the resolve () method.
Usage:
pkg_deps$new(
refs,
config = list(),
policy = c("lazy”, "upgrade"),
remote_types = NULL
)
Arguments:
refs Package names or references. See 'Package references’ for the syntax.
config Configuration options, a named list. See *Configuration’.
policy Solution policy. See "The dependency solver’.
remote_types Custom remote ref types, this is for advanced use, and experimental currently.

Returns: A new pkg_deps object.

Method get_refs(): The package refs that were used to create the pkg_deps object.

Usage:

pkg_depss$get_refs()

Returns: A character vector of package refs that were used to create the pkg_deps object.
Method get_config(): Configuration options for the pkg_deps object. See ’Configuration’ for
details.

Usage:

pkg_deps$get_config()

Returns: See ’Configuration’ for the configuration entries.

Method resolve(): Resolve the dependencies of the specified package references. This usu-
ally means downloading metadata from CRAN and Bioconductor, unless already cached, and

also from GitHub if GitHub refs were included, either directly or indirectly. See Dependency
resolution’ for details.

Usage:
pkg_deps$resolve()

Returns: The pkg_deps object itself, invisibly.

14

new_pkg_deps

Method async_resolve(): The same as resolve(), but asynchronous. This method is for
advanced use.

Usage:
pkg_deps$async_resolve()

Returns: A deferred value.

Method get_resolution(): Query the result of the dependency resolution. This method can
be called after resolve() has completed.

Usage:
pkg_deps$get_resolution()

Returns: A pkg_resolution_result object, which is also a data frame. See *Dependency resolu-
tion’ for its columns.

Method get_solve_policy(): Returns the current policy of the dependency solver. See 'The
dependency solver’ for details.

Usage:
pkg_deps$get_solve_policy()

Returns: A character vector of length one.

Method set_solve_policy(): Set the current policy of the dependency solver. If the object
already contains a solution and the new policy is different than the old policy, then the solution is
deleted. See The dependency solver’ for details.

Usage:

pkg_deps$set_solve_policy(policy = c("lazy", "upgrade"))

Arguments:

policy Policy to set.

Method solve(): Solve the package dependencies. Out of the resolved dependencies, it works
out a set of packages, that can be installed together to create a functional installation. The set
includes all directly specified packages, and all required (or suggested, depending on the config-
uration) packages as well. It includes every package at most once. See *The dependency solver’
for details.

solve() calls resolve() automatically, if it hasn’t been called yet.

Usage:
pkg_deps$solve()

Returns: The pkg_deps object itself, invisibly.

Method get_solution(): Returns the solution of the package dependencies.

Usage:
pkg_deps$get_solution()

Returns: A pkg_solution_result object, which is a list. See pkg_solution_result for details.

Method stop_for_solution_error(): Error if the dependency solver failed to find a consis-
tent set of packages that can be installed together.

new_pkg deps 15

Usage:
pkg_deps$stop_for_solution_error()

Method draw(): Draw a tree of package dependencies. It returns a tree object, see cli: : tree().
Printing this object prints the dependency tree to the screen.

Usage:

pkg_deps$draw()

Returns: A tree object from the cli package, see cli::tree().

Method format(): Format a pkg_deps object, typically for printing.
Usage:
pkg_deps$format(...)
Arguments:

. Not used currently.

Returns: A character vector, each element should be a line in the printout.

Method print(): Prints a pkg_deps object to the screen. The printout includes:

* The package refs.

* Whether the object has the resolved dependencies.
¢ Whether the resolution had errors.

* Whether the object has the solved dependencies.

¢ Whether the solution had errors.
* Advice on which methods to call next.

See the example below.

Usage:

pkg_deps$print(...)

Arguments:

. not used currently.

Returns: The pkg_deps object itself, invisibly.

Method clone(): The objects of this class are cloneable with this method.
Usage:
pkg_deps$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Examples

Method initialize()
pd <- pkg_deps$new("r-1lib/pkgdepends™)
pd

16

Method get_refs()
pd <- new_pkg_deps(c("pak”, "jsonlite"))
pd$get_refs()

Method get_config()
pd <- new_pkg_deps("pak")
pd$get_config()

Method resolve()

pd <- new_pkg_deps("pak")
pd$resolve()
pd$get_resolution()

Method get_resolution()

pd <- new_pkg_deps("r-1lib/pkgdepends™)
pd$resolve()

pd$get_resolution()

Method get_solve_policy()

pdi <- new_pkg_deps("r-1lib/pkgdepends"”)
pdi$get_solve_policy()
pdi$set_solve_policy("upgrade”)
pdi$get_solve_policy()

Method set_solve_policy()

pdi <- new_pkg_deps("r-lib/pkgdepends"”)
pdi$get_solve_policy()
pdi$set_solve_policy("upgrade”)
pdi$get_solve_policy()

Method solve()

pd <- new_pkg_deps("r-1lib/pkgdepends™)
pd$resolve()

pd$solve()

pd$get_solution()

Method get_solution()

pd <- new_pkg_deps("pkgload”)
pd$resolve()

pd$solve()

pd$get_solution()

Method stop_for_solution_error()
This is an error, because the packages conflict:
pd <- new_pkg_deps(

new_pkg_deps

new_pkg download_proposal 17

c("r-lib/pak"”, "cran::pak"),
config = list(library = tempfile())
)
pd$resolve()
pd$solve()
pd
This fails:
pd$stop_for_solution_error()

Method draw()

pd <- new_pkg_deps("pkgload”)
pd$solve()

pd$draw()

Method print()
pd <- new_pkg_deps("r-lib/pkgdepends™)
pd

pd$resolve()
pd

pd$solve()
pd

new_pkg_download_proposal
R6 class for package downloads

Description

Download packages with their dependencies, from various sources.

Usage
new_pkg_download_proposal (refs, ...)
Arguments
refs Package names or references. See 'Package references’ for the syntax.
Additional arguments, passed to pkg_download_proposal$new().
Details

new_pkg_download_proposal() creates a new object from the pkg_download_proposal class,
that can be used to look up and download R packages and their dependencies. The advantage

18 new_pkg download_proposal

of new_pkg_download_proposal() compared to using the pkg_download_proposal constructor
directly is that it avoids making pkgdepends a build time dependency.

Typical workflow to download a set of packages:

1. Create a pkg_download_proposal object with new_pkg_download_proposal().

2. Resolve all possible dependencies with pkg_download_proposal$resolve().

3. Download all files with pkg_download_proposal$download().

4. Get the data about the packages and downloads with pkg_download_proposal$get_downloads().

Value

new_pkg_download_proposal() returns a new pkg_download_proposal object.

Methods

Public methods:

¢ pkg_download_proposal$new()

¢ pkg_download_proposal$get_refs()

¢ pkg_download_proposal$get_config()

e pkg_download_proposal$resolve()

¢ pkg_download_proposal$async_resolve()
* pkg_download_proposal$get_resolution()
¢ pkg_download_proposal$download()

* pkg_download_proposal$async_download()
* pkg_download_proposal$get_downloads()
¢ pkg_download_proposal$stop_for_download_error()
¢ pkg_download_proposal$format()

¢ pkg_download_proposal$print()

* pkg_download_proposal$clone()

Method new(): Create a new pkg_download_proposal object. Consider using new_pkg_download_proposal()
instead of calling the constructor directly.

The returned object can be used to look up (recursive) dependencies of R packages from various
sources, and then to download the package files.

Usage:

pkg_download_proposal$new(refs, config = list(), remote_types = NULL)

Arguments:

refs Package names or references. See 'Package references’ for the syntax.

config Configuration options, a named list. See ’Configuration’.

remote_types Custom remote ref types, this is for advanced use, and experimental currently.
Examples:

pdl <- pkg_download_proposal$new("r-1ib/pkgdepends")
pdl

new_pkg download_proposal 19

Method get_refs(): The package refs that were used to create the pkg_download_proposal
object.

Usage:
pkg_download_proposal$get_refs()

Returns: A character vector of package refs that were used to create the pkg_download_proposal
object.

Method get_config(): Configuration options for the pkg_download_proposal object. See
’Configuration’ for details.

Usage:

pkg_download_proposal$get_config()

Returns: Named list. See ’Configuration’ for the configuration options.
Method resolve(): Resolve the dependencies of the specified package references. This usu-
ally means downloading metadata from CRAN and Bioconductor, unless already cached, and

also from GitHub if GitHub refs were included, either directly or indirectly. See ’Dependency
resolution’ for details.

Usage:
pkg_download_proposal$resolve()
Returns: The pkg_download_proposal object itself, invisibly.

Method async_resolve(): The same as resolve(), but asynchronous. This method is for
advanced use.

Usage:

pkg_download_proposal$async_resolve()

Returns: A deferred value.
Method get_resolution(): Query the result of the dependency resolution. This method can
be called after resolve() has completed.

Usage:

pkg_download_proposal$get_resolution()

Returns: A pkg_resolution_result object, which is also a data frame. See ’Dependency resolu-

tion’ for its columns.
Method download(): Download all resolved packages. It uses the package cache in the pkg-
cache package by default, to avoid downloads if possible.

Usage:
pkg_download_proposal$download()

Returns: The pkg_download_proposal object, invisibly.
Method async_download(): The same as download(), but asynchronous. This method is for
advanced use.

Usage:
pkg_download_proposal$async_download()

20 new_pkg download_proposal

Returns: A deferred value.

Method get_downloads(): Returns the summary of the package downloads.

Usage:
pkg_download_proposal$get_downloads()

Returns: A pkg_download_result object, which is a list. See pkg_download_result for details.

Method stop_for_download_error(): Throw and error if the some of the downloads have
failed for the most recent pkg_download_proposal$download() call.

Usage:
pkg_download_proposal$stop_for_download_error()

Method format(): Format a pkg_download_proposal object, typically for printing.

Usage:
pkg_download_proposal$format(...)

Arguments:
. not used currently.

Returns: Nothing. A character vector, each element should be a line in the printout.

Method print(): Prints a pkg_download_proposal object to the screen. The printout includes:

* The package refs.

* Whether the object has the resolved dependencies.
* Whether the resolution had errors.

* Whether the downloads were completed.

¢ Whether the downloads had errors.

* Advice on which methods to call next.

See the example below.

Usage:
pkg_download_proposal$print(...)

Arguments:

. not used currently.

Returns: The pkg_download_proposal object itself, invisibly.

Method clone(): The objects of this class are cloneable with this method.

Usage:
pkg_download_proposal$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

new_pkg_installation_plan

Examples

Method get_refs()
pdl <- new_pkg_download_proposal(c("pak”, "jsonlite"))
pdl$get_refs()

Method get_config()
pdl <- new_pkg_download_proposal("pak")
pdl$get_config()

Method resolve()

pdl <- new_pkg_download_proposal ("pak")
pdl$resolve()

pdl$get_resolution()

Method get_resolution()

pdl <- new_pkg_download_proposal ("r-1ib/pkgdepends”)
pdl$resolve()

pdl$get_resolution()

Method download()

pdl <- new_pkg_download_proposal ("r-1ib/pkgdepends”)
pdl$resolve()

pdl$download()

pdl$get_downloads()

Method get_downloads()

pdl <- new_pkg_download_proposal("pkgload")
pdl$resolve()

pdl$download()

pdl$get_downloads()

Method print()
pdl <- new_pkg_download_proposal("r-1lib/pkgdepends”)
pdl

pdls$resolve()
pdl

pdl$download()
pdl

22 new_pkg_installation_plan

new_pkg_installation_plan
R6 class for installation from a lock file

Description

An installation plan is similar to an installation proposal (i.e. pkg_installation_proposal), but it
already contains the solved dependencies, complete with download URLs.

Usage
new_pkg_installation_plan(lockfile = "pkg.lock", config = list(), ...)
Arguments
lockfile Path to the lock file to use.
config Configuration options, a named list. See *Configuration’. If it does not include
library, then .1ibPaths()[1] is added as library.
Additional arguments, passed to pkg_installation_plan$new().
Details

Typically you create a pkg_installation_plan object with new_pkg_installation_plan() and
then call its $download() method to download the packages and then its $install() method to
install them.

Value

new_pkg_installation_plan() returns a pkg_installation_plan object.

Super class

pkgdepends: :pkg_installation_proposal -> pkg_installation_plan

Methods

Public methods:

e pkg_installation_plan$new()

e pkg_installation_plan$resolve()

e pkg_installation_plan$async_resolve()

* pkg_installation_plan$get_solve_policy()
* pkg_installation_plan$set_solve_policy()
e pkg_installation_plan$solve()

e pkg_installation_plan$update()

e pkg_installation_plan$format()

e pkg_installation_plan$clone()

new_pkg_installation_plan 23

Method new(): Create anew pkg_installation_plan object. Consider using new_pkg_installation_plan()
instead of calling the constructor directly.
The returned object can be used to download and install packages, according to the plan.

Usage:
pkg_installation_plan$new(
lockfile = "pkg.lock",
config = list(),
remote_types = NULL
)
Arguments:
lockfile Path to the lock file to use.
config Configuration options. See ’Configuration’. It needs to include the package library to
install to, in Library.
remote_types Custom remote ref types, this is for advanced use, and experimental currently.

Method resolve(): This function is implemented for installation plans, and will error.

Usage:
pkg_installation_plan$resolve()

Method async_resolve(): This function is implemented for installation plans, and will error.

Usage:
pkg_installation_plan$async_resolve()

Method get_solve_policy(): Installation plans are already solved, and this method will return
NA_character_, always.

Usage:

pkg_installation_plan$get_solve_policy()

Method set_solve_policy(): This function is implemented for installation plans, and will
error.

Usage:

pkg_installation_plan$set_solve_policy()

Method solve(): This function is implemented for installation plans, and will error.

Usage:
pkg_installation_plan$solve()

Method update(): Update the plan to the current state of the library. If the library has not
changed since the plan was created, then it does nothing. If new packages have been installed,
then it might not be necessary to download and install all packages in the plan.

Usage:
pkg_installation_plan$update()

Details: This operation is different than creating a new proposal with the updated library,
because it uses the the packages and package versions of the original plan. E.g. if the library
has a newer version of a package, then $update() will downgrade it to the version in the plan.

24 new_pkg_installation_proposal

Method format(): Format a pkg_installation_plan object, typically for printing.

Usage:
pkg_installation_plan$format(...)

Arguments:
. not used currently.

Returns: A character vector, each element should be a line in the printout.

Method clone(): The objects of this class are cloneable with this method.
Usage:
pkg_installation_plan$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

new_pkg_installation_proposal
R6 class for package download and installation.

Description

Download and install R packages, with their dependencies, from various sources.

Usage
new_pkg_installation_proposal(refs, config = list(), ...)
Arguments
refs Package names or references. See ’Package references’ for the syntax.
config Configuration options, a named list. See *Configuration’. If it does not include
library, then .1ibPaths()[1] is added as library.
Additional arguments, passed to pkg_installation_proposal$new().
Details

new_pkg_installation_proposal() creates a new object from the pkg_installation_proposal
class. The advantage of new_pkg_installation_proposal () compared to using the pkg_installation_proposal
constructor directly is that it avoids making pkgdepends a build time dependency.

Typical workflow to install a set of packages:

. Create a pkg_installation_proposal object with new_pkg_installation_proposal().
. Resolve all possible dependencies with pkg_installation_proposal$resolve().
Solve the package dependencies, to get an installation plan, with pkg_installation_proposal$solve().

. Download all files with pkg_installation_proposal$download().

. Install the downloaded files with pkg_installation_proposal$install().

new_pkg_installation_proposal 25

Value

new_pkg_installation_proposal() returns a new pkg_installation_proposal object.

Methods

Public methods:

e pkg_installation_proposal$new()

* pkg_installation_proposal$get_refs()

e pkg_installation_proposal$get_config()

e pkg_installation_proposal$resolve()

e pkg_installation_proposal$async_resolve()

e pkg_installation_proposal$get_resolution()

* pkg_installation_proposal$get_solve_policy()
* pkg_installation_proposal$set_solve_policy()
e pkg_installation_proposal$solve()

* pkg_installation_proposal$get_solution()

e pkg_installation_proposal$show_solution()

* pkg_installation_proposal$stop_for_solution_error()
e pkg_installation_proposal$create_lockfile()
* pkg_installation_proposal$draw()

e pkg_installation_proposal$download()

e pkg_installation_proposal$async_download()

* pkg_installation_proposal$get_downloads()

e pkg_installation_proposal$stop_for_download_error()
e pkg_installation_proposal$install()

e pkg_installation_proposal$install_sysreqs()
* pkg_installation_proposal$get_install_plan()
e pkg_installation_proposal$format()

e pkg_installation_proposal$print()

* pkg_installation_proposal$clone()

Method new(): Create anew pkg_installation_proposal object. Consider using new_pkg_installation_proposal(
instead of calling the constructor directly.

The returned object can be used to look up (recursive) dependencies of R packages from various

sources, and then download and install the package files.

Usage:
pkg_installation_proposal$new(
refs,
config = list(),
policy = c("lazy”, "upgrade"),
remote_types = NULL
)

Arguments:

26 new_pkg_installation_proposal

refs Package names or references. See 'Package references’ for the syntax.

config Configuration options, a named list. See Configuration’. It needs to include the pack-
age library to install to, in library.

policy Solution policy. See *The dependency solver’.
remote_types Custom remote ref types, this is for advanced use, and experimental currently.

Method get_refs(): The package refs that were used to create the pkg_installation_proposal
object.

Usage:
pkg_installation_proposal$get_refs()

Returns: A character vector of package refs that were used to create the pkg_installation_proposal
object.

Method get_config(): Configuration options for the pkg_installation_proposal object.
See *Configuration’ for details.

Usage:
pkg_installation_proposal$get_config()

Returns: Named list. See *Configuration’ for the configuration options.

Method resolve(): Resolve the dependencies of the specified package references. This usu-
ally means downloading metadata from CRAN and Bioconductor, unless already cached, and
also from GitHub if GitHub refs were included, either directly or indirectly. See ’Dependency
resolution’ for details.

Usage:

pkg_installation_proposal$resolve()

Returns: The pkg_installation_proposal object, invisibly.
Method async_resolve(): The same as resolve(), but asynchronous. This method is for
advanced use.

Usage:

pkg_installation_proposal$async_resolve()

Returns: A deferred value.

Method get_resolution(): Query the result of the dependency resolution. This method can
be called after resolve() has completed.

Usage:
pkg_installation_proposal$get_resolution()
Returns: A pkg_resolution_result object, which is also a data frame. See ’Dependency resolu-

tion’ for its columns.

Method get_solve_policy(): Returns the current policy of the dependency solver. See 'The
dependency solver’ for details.

Usage:
pkg_installation_proposal$get_solve_policy()

new_pkg_installation_proposal 27

Returns: A character vector of length one.

Method set_solve_policy(): Set the current policy of the dependency solver. If the object
already contains a solution and the new policy is different than the old policy, then the solution is
deleted. See *The dependency solver’ for details.

Usage:
pkg_installation_proposal$set_solve_policy(policy = c("lazy", "upgrade"))

Arguments:

policy Policy to set.

Method solve(): Solve the package dependencies. Out of the resolved dependencies, it works
out a set of packages, that can be installed together to create a functional installation. The set
includes all directly specified packages, and all required (or suggested, depending on the config-
uration) packages as well. It includes every package at most once. See *The dependency solver’
for details.

Usage:
pkg_installation_proposal$solve()

Returns: The pkg_installation_proposal object itself, invisibly.

Method get_solution(): Returns the solution of the package dependencies.

Usage:
pkg_installation_proposal$get_solution()

Returns: A pkg_solution_result object, which is a list. See pkg_solution_result for details.

Method show_solution(): Show the solution on the screen.
Usage:
pkg_installation_proposal$show_solution(key = FALSE)
Arguments:
key Whether to show the key to the package list annotation.

Returns: A pkg_solution_result object, which is a list. See pkg_solution_result for details.

Method stop_for_solution_error(): Error if the dependency solver failed to find a consis-
tent set of packages that can be installed together.

Usage:

pkg_installation_proposal$stop_for_solution_error()

Method create_lockfile(): Create a lock file that contains the information to perform the
installation later, possibly in another R session.
Usage:
pkg_installation_proposal$create_lockfile(path = "pkg.lock”, version = 1)
Arguments:
path Name of the lock file. The default is pkg. lock in the current working directory.
version Only version 1 is supported currently.

28

new_pkg_installation_proposal

Details: Note, since the URLs of CRAN and most CRAN-like repositories change over time, in
practice you cannot perform the plan of the lock file much later. For example, binary packages
of older package version are removed, and won’t be found.

Similarly, for url:: remote types, the URL might hold an updated version of the package,
compared to when the lock file was created. Should this happen, pkgdepends prints a warning,
but it will try to continue the installation. The installation might fail if the updated package has
different (e.g. new) dependencies.

Currently the intended use case of lock files in on CI systems, to facilitate caching. The (hash
of the) lock file provides a good key for caching systems.

Method draw(): Draw a tree of package dependencies. It returns a tree object, see cli: :tree().
Printing this object prints the dependency tree to the screen.

Usage:

pkg_installation_proposal$draw()

Returns: A tree object from the cli package, see cli::tree().
Method download(): Download all packages that are part of the solution. It uses the package
cache in the pkgcache package by default, to avoid downloads if possible.

Usage:

pkg_installation_proposal$download()

Returns: The pkg_installation_proposal object itself, invisibly.

Method async_download(): The same as download(), but asynchronous. This method is for
advanced use.

Usage:
pkg_installation_proposal$async_download()

Returns: A deferred value.

Method get_downloads(): Returns the summary of the package downloads.
Usage:
pkg_installation_proposal$get_downloads()

Returns: A pkg_download_result object, which is a list. See pkg_download_result for details.

Method stop_for_download_error(): Throw and error if the some of the downloads have
failed for the most recent pkg_installation_proposal$download() call.

Usage:
pkg_installation_proposal$stop_for_download_error()

Method install(): Install the downloaded packages. It calls install_package_plan().
Usage:
pkg_installation_proposal$install()
Returns: The return value of install_package_plan().

Method install_sysreqs(): Install system requirements. It does nothing if system require-

ments are turned off. It errors if we could not look up the system requirements. Create an instal-
lation plan for the downloaded packages.

new_pkg_installation_proposal

Usage:
pkg_installation_proposal$install_sysreqs()

Method get_install_plan():

Usage:
pkg_installation_proposal$get_install_plan()

Returns: An installation plan, see ’Installation plans’ for the format.

Method format(): Format a pkg_installation_proposal object, typically for printing.
Usage:
pkg_installation_proposal$format(...)
Arguments:

. not used currently.

Returns: A character vector, each element should be a line in the printout.

Method print(): Prints a pkg_installation_proposal object to the screen.
The printout includes:

* The package refs.

* The policy of the dependency solver.

* Whether the object has the solved dependencies.

* Whether the solution had errors.

¢ Whether the object has downloads.

* Whether the downloads had errors.

* Advice on which methods to call next.

See the example below.

Usage:
pkg_installation_proposal$print(...)

Arguments:

. not used currently.

Returns: The pkg_installation_proposal object itself, invisibly.

Method clone(): The objects of this class are cloneable with this method.

Usage:
pkg_installation_proposal$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

30

Examples

Not run:
pdi <- new_pkg_installation_proposal(
"pak”,
config = list(library = tempfile())
)
pdi

pdi$resolve()
pdi

pdi$solve()
pdi

pdi$download()
pdi

End(Not run)

pdi <- new_pkg_installation_proposal(
"r-1lib/pkgdepends”,
config = list(library = tempfile()))
pdi

pdi <- new_pkg_installation_proposal("r-1lib/pkgdepends”)
pdi$get_refs()

pdi <- new_pkg_installation_proposal(
IlpakVI R
config = list(library = tempfile())
)
pdi$get_config()

Not run:
pdi <- new_pkg_installation_proposal(
"pak”,
config = list(library = tempfile())
)
pdi$resolve()

pdi$get_resolution()

End(Not run)

Not run:
pdi <- new_pkg_installation_proposal(

new_pkg_installation_proposal

new_pkg_installation_proposal

"r-lib/pkgdepends”,

config = list(library = tempfile())
)
pdi$resolve()
pdi$get_resolution()

End(Not run)

pdi <- new_pkg_installation_proposal(
"r-1ib/pkgdepends”,
config = list(library = tempfile())
)
pdi$get_solve_policy()
pdi$set_solve_policy("upgrade”)
pdi$get_solve_policy()

pdi <- new_pkg_installation_proposal(
"r-1lib/pkgdepends”,
config = list(library = tempfile())
)
pdi$get_solve_policy()
pdi$set_solve_policy("upgrade”)
pdi$get_solve_policy()

Not run:

pdi <- new_pkg_installation_proposal(
"r-1lib/pkgdepends”,
config = list(library = tempfile())

)

pdi$resolve()

pdi$solve()

pdi$get_solution()

End(Not run)

Not run:

pdi <- new_pkg_installation_proposal(
"r-1lib/pkgdepends”,
config = list(library = tempfile())

)

pdi$resolve()

pdi$solve()

pdi$get_solution()

End(Not run)

Not run:
pdi <- new_pkg_installation_proposal(

31

32

"r-lib/pkgdepends”,

config = list(library = tempfile())
)
pdi$resolve()
pdi$solve()
pdi$get_solution()
pdi$show_solution()

End(Not run)

Not run:
This is an error, because the packages conflict:
pdi <- new_pkg_installation_proposal(
c("r-lib/pak”, "cran::pak"),
config = list(library = tempfile())
)
pdi$resolve()
pdi$solve()
pdi
This fails:
pdi$stop_for_solution_error()

End(Not run)

Not run:

pdi <- new_pkg_installation_proposal(
"pak”,
config = list(library = tempfile())

)

pdi$resolve()

pdi$solve()

pdi$draw()

End(Not run)

Not run:

pdi <- new_pkg_installation_proposal(
c("r-lib/pak”, "cran::pak"),
config = list(library = tempfile())

)

pdi$resolve()

pdi$solve()

pdi$download()

pdi$get_downloads()

End(Not run)

Not run:
pdi <- new_pkg_installation_proposal(

new_pkg_installation_proposal

parse_pkg_refs

c("r-lib/pak"”, "cran::pak"),
config = list(library = tempfile())
)
pdi$resolve()
pdi$solve()
pdi$download()
pdi$get_downloads()

End(Not run)

Not run:

pdi <- new_pkg_installation_proposal(
"pak”,
config = list(library = tempfile())

)

pdi$resolve()

pdi$solve()

pdi$download()

pdi$get_install_plan()

End(Not run)

Method print
pdi <- new_pkg_installation_proposal(
"pak”,
config = list(library = tempfile())
)
pdi

pdi$resolve()
pdi

pdi$solve()
pdi

pdi$download()
pdi

parse_pkg_refs Parse package location references

Description

See pkg_refs for more about supported package references.

34 pkg_config

Usage
parse_pkg_refs(refs, remote_types = NULL, ...)

parse_pkg_ref(ref, remote_types = NULL, ...)

Arguments

refs Character vector of references.

remote_types Custom remote types can be added here, this is for advanced use, and experi-
mental currently.

Additional arguments are passed to the individual parser functions.

ref A package reference, like ref's, but a length one vector, for convenience.

Value

parse_pkg_refs() returns a list of parsed references. parse_pkg_ref () returns one parsed refer-
ence. A parsed reference is a list, with at least elements:

* ref: The original reference string.

* type: The reference type.

* package: The package name. It typically contains additional data, specific to the various refer-
ence types. See pkg_refs for details. The parsed reference always has class remote_ref_<type>
and remote_ref.

pkg_config pkgdepends configuration

Description

Configuration entries for several pkgdepends classes.

Usage

current_config()

Details

pkgdepends configuration is set from several source. They are, in the order of preference:

* Function arguments, e.g. the config argument of new_pkg_installation_proposal().

* Global options, set via options(). The name of the global option is the pkg. prefix plus the
name of the pkgdepends configuration entry. E.g. pkg.platforms.

* Environment variables. The name of the environment variable is the PKG_ prefix, plus the
name of the pkgdepends configuration entry, in uppercase. E.g. PKG_PLATFORMS.

e Default values.

pkg_config 35

Not all classes use all entries. E.g. a pkg_download_proposal is not concerned about package
libraries, so it’ll ignore the 1ibrary configuration entry.

Call current_config() to print the current configuration.

Configuration entries

* build_vignettes: Whether to build vignettes for package trees. This is only used if the
package is obtained from a package tree, and not from a source (or binary) package archive. By
default vignettes are not built in this case. If you set this to TRUE, then you need to make sure
that the vignette builder packages are available, as these are not installed by default currently.

* cache_dir: Directory to download the packages to. Defaults to a temporary directory within
the R session temporary directory, see base: : tempdir ().

e cran_mirror: CRAN mirror to use. Defaults to the repos option (see base: :options()), if
that’s not set then https://cran.rstudio.com.

 dependencies: Dependencies to consider or download or install. Defaults to the hard depen-
dencies, see pkg_dep_types_hard(). The following values are supported in the PKG_DEPENDENCIES
environment variable: "TRUE", "FALSE", "NA", or a semicolon separated list of dependency
types. See as_pkg_dependencies() for details.

» library: Package library to install packages to. It is also used for already installed packages
when considering dependencies in dependency lookup or package installation. Defaults to the
first path in . 1ibPaths().

* metadata_cache_dir: Location of metadata replica of pkgcache: :cranlike_metadata_cache.
Defaults to a temporary directory within the R session temporary directory, see base: : tempdir ().

* metadata_update_after: A time interval as a difftime object. pkgdepends will update the
metadata cache if it is older than this. The default is one day. The PKG_METADATA_UPDATE_AFTER
environment variable may be set in seconds (s suffix), minutes (m suffix), hours (h suffix), or
days (d suffix). E.g: 1d means one day.

* package_cache_dir: Package cache location of pkgcache: : package_cache. The default is
the pkgcache default.

* platforms: Character vector of platforms to download or install packages for. See default_platforms()
for possible platform names. Defaults to the platform of the current R session, plus "source”.

* r_versions: Character vector, R versions to download or install packages for. It defaults to
the current R version.

* sysregs: Whether to look up and install system requirements. By default this is TRUE if the
CI environment variable is set and the operating system is a supported Linux distribution:
CentOS, openSUSE, RedHat Linux, Ubuntu Linux or SUSE Linux Enterprise. The default
will change as new platforms gain system requirements support.

* sysreqgs_dry_run: If TRUE, then pkgdepends only prints the system commands to install
system requirements, but does not execute them.

* sysreqgs_rspm_repo_id: Posit Package Manager (formerly RStudio Package Manager) repos-
itory id to use for CRAN system requirements lookup. Defaults to the RSPM_REPO_ID envi-
ronment variable, if set. If not set, then it defaults to 1.

* sysreqgs_rspm_url: Root URL of Posit Package Manager (formerly RStudio Package Man-
ager) for system requirements lookup. By default the RSPM_ROOT environment variable is used,
if set. If not set, it defaults to https://packagemanager.posit.co.

36 pkg_dep_types_hard

* sysregs_sudo: Whether to use sudo to install system requirements, on Unix. By default it is
TRUE on Linux if the effective user id of the current process is not the root user.

* sysreqgs_verbose: Whether to echo the output of system requirements installation. Defaults
to TRUE if the CI environment variable is set.

* use_bioconductor: Whether to automatically use the Bioconductor repositories. Defaults to
TRUE.

* windows_archs: Character scalar specifying which architectures to download/install for on
Windows. Its possible values are:

— "prefer-x64": Generally prefer x64 binaries. If the current R session is x64, then we
download/install x64 packages. (These packages might still be multi-architecture bina-
ries!) If the current R session is 1386, then we download/install packages for both archi-
tectures. This might mean compiling packages from source if the binary packages are for
x64 only, like the CRAN Windows binaries for R 4.2.x currently. "prefer-x64" is the
default for R 4.2.0 and later.

— "both": Always download/install packages for both 1386 and x64 architectures. This
might need compilation from source if the available binaries are for x64 only, like the
CRAN Windows binaries for R 4.2.x currently. "both” is the default for R 4.2.0 and
earlier.

pkg_dep_types_hard Possible package dependency types

Description

Hard dependencies are needed for a package to load, soft dependencies are optional.
Usage

pkg_dep_types_hard()

pkg_dep_types_soft()

pkg_dep_types()

Value

A string vector of dependency types, capitalized.

See Also

Other package dependency utilities: as_pkg_dependencies()

pkg_downloads 37

pkg_downloads Package downloads

Description

The pkg_download_proposal and pkg_installation_proposal classes both have download meth-
ods, to downloads package files into a configured directory (see ’Configuration’).

Details

They return a pkg_download_result object, which is a data frame, that adds extra columns to
pkg_resolution_result (for pkg_download_proposal) or pkg_solution_result (for pkg_installation_proposal):

e built: the Built field from the DESCRIPTION file of binary packages, for which this informa-
tion is available.

» cache_status: whether the package file is in the package cache. It is NA for installed::
package refs.

* dep_types: character vector of dependency types that were considered for this package. (This
is a list column.)

* deps: dependencies of the package, in a data frame. See "Package dependency tables" below.
* direct: whether this package (ref, really) was directly specified, or added as a dependency.

* error: this is a list column that contains error objects for the refs that pkgdepends failed to
resolve.

» filesize: the file size in bytes, or NA if this information is not available.
» license: license of the package, or NA if not available.
» md5sum: MDS5 checksum of the package file, if available, or NA if not.

e metadata: a named character vector. These fields will be (should be) added to the installed
DESCRIPTION file of the package.

e mirror: URL of the CRAN(-like) mirror site where the metadata was obtained from. It is NA
for non-CRAN:-like sources, e.g. local files, installed packages, GitHub, etc.

* needscompilation: whether the package needs compilation.
* package: package name.

* priority: thisis "base” for base packages, "recommended” for recommended packages, and
NA otherwise.

* ref: package reference.

* remote: the parsed remote_ref objects, see parse_pkg_refs(). This is a list column.
* repodir: the directory where this package should be in a CRAN-like repository.

* sha256: SHA256 hash of the package file, if available, otherwise NA.

* sources: URLs where this package can be downloaded from. This is a zero length vector for
installed:: refs.

* status: status of the dependency resolution, "OK" or "FAILED".

38 pkg_name_check

* target: path where this package should be saved in a CRAN-repository.
* type: ref type.
* version: package version.

e fulltarget: absolute path to the downloaded file. At most one of fulltarget and fulltarget_tree
must exist on the disk.

e fulltarget_tree: absolute path to a package tree directory. At most one of fulltarget and
fulltarget_tree must exist on the disk.

* download_status: "Had” or "Got"”, depending on whether the file was obtained from the
cache.

* download_error: error object for failed downloads.

e file_size: Size of the file, or NA. For installed: : refs, it is NA, and it is also NA for refs
that created fulltarget_tree instead of fulltarget.

fulltarget, if it exists, contains a packaged (viaR CMD build) source R package. If fulltarget_tree
exists, it is a package tree directory, that still needs an R CMD build call.

Additional columns might be present. They are either used internally or they are experimental.
They might be removed or changed at any time.

All columns are of type character, except for direct (logical), needscompilation (logical), filesize
(integer), deps (list column, see "Package dependency tables" below), sources (list of character
vectors), remote (list), error (list), metadata (list), dep_types (list).

Package dependency tables:
A package dependency tables in the deps list column have five columns currently:

* ref: the package ref of the dependency.

* type: the dependency type, in all lowercase. I.e. imports, suggests, etc.
* package: package name of the dependency.

* op: operator for version requirements, e.g. >=.

e version: version number, for version requirements.

pkg_name_check Check if an R package name is available.

Description

Additionally, look up the candidate name in a number of dictionaries, to make sure that it does not
have a negative meaning.

Usage

pkg_name_check(name, dictionaries = NULL)

pkg_refs 39

Arguments

name Package name candidate.

dictionaries Character vector, the dictionaries to query. Available dictionaries: * wikipedia
*wiktionary, * acromine (http://www.nactem.ac.uk/software/acromine/),
* sentiment (https://github.com/fnielsen/afinn), * urban (Urban Dic-
tionary). If NULL (by default), the Urban Dictionary is omitted, as it is often
offensive.

Details

Valid package name check:

Check the validity of name as a package name. See *Writing R Extensions’ for the allowed pack-
age names. Also checked against a list of names that are known to cause problems.

CRAN checks:

Check name against the names of all past and current packages on CRAN, including base and
recommended packages.

Bioconductor checks:
Check name against all past and current Bioconductor packages.

Profanity check:

Check name with https://www.purgomalum.com/service/containsprofanity to make sure
it is not a profanity.

Dictionaries:
See the dictionaries argument.

Value

pkg_name_check object with a custom print method.

Examples

pkg_name_check("cli")

pkg_refs Package references

Description

A package reference (ref) specifies a location from which an R package can be obtained from. The
full syntax of a reference is type: : ref, but type can be often omitted, the common ref types have
shortcuts.

http://www.nactem.ac.uk/software/acromine/
https://github.com/fnielsen/afinn
https://www.purgomalum.com/service/containsprofanity

40 pkg_refs

Package references

Many pkgdepends and pak functions take package names as arguments. E.g. pak: :pkg_install()
takes the names of the packages to install, pak: : pkg_deps_tree() takes the names of the packages
to draw dependency trees for.

Most of these function can also take a more generic package reference instead of a package name.
A package reference also tells pkgdepends where to find the package, the package source.

To specify a package source, use its name as a prefix, with a : : separator. E.g. cran: :mypkg means
the mypkg package from CRAN.

A package name is a special package reference, that implicitly specifies the configured CRAN(-like)
repositories as the package source. (We call this the standard package source.) So mypkg is equiva-
lent to standard: :mypkg and pak look for mypkg in any of the configured CRAN-like repositories.
If you did not explicitly specify any CRAN-like repositories (e.g. with options(”repos”)), then
pak uses the CRAN and Bioconductor repositories by default.

This is the list of the currently supported package sources. We will discuss each in detail below.

* cran: a CRAN package.

* bioc: a Bioconductor package.

* standard: a package from a configured CRAN-like repository.

* github: a package from GitHub.

* local: alocal package file or directory.

e url: an URL that points to a package archive.

* installed an installed package.

* deps the dependencies of a local package file or directory.

* any a special reference type that accepts a package from any source. See below.

* param a special reference to change how other references are downloaded or installed. See
"Parameters" below.

Shorthands:

To save typing, you do not always need to fully specify the package source in a package reference.
You have seen before that a package name implicitly has a standard package source. Here are
the complete rules for such shorthands, in the order they are applied:

« If the ref is a valid package name, or a package name with a @ version specification, the
standard package source is used. E.g. pkg is equivalent to standard: : pkg and pkg@1.9 is
equivalent to standard: : pkg@1.@.

o If the ref is a valid github ref type without the github:: prefix, then github is used.
E.g. user/repo is equivalent to github: :user/repo and user/repo@tag is equivalent to
github: :user/repo@tag, etc.

e If the ref is a GitHub URL (see below) without the github: : prefix, then github is used.

* If the ref is a path that starts with . or / or \ or ~ then local is used. (pkgdepends does not
check if the path exists.)

* If a package reference if of the form <package-name>=?<parameters>, then it will be the
special param type. See "Parameters" below.

If the package reference does not have an explicit package source, and the package source cannot
be determined from these rules, then pkgdepends throws an error.

pkg_refs 41

Package names:

When pkgdepends is looking up the dependencies of a package, it needs to be able to determine the
name of the dependency from the package reference. This is sometimes not easy for dependencies
in Remotes (or similar) fields.

» For github:: dependencies pkgdepends assumes that the package name is the same as
the name of the repository. If this does not hold, then you need to specify the package
name explicitly, using a <package>= prefix. E.g. pins=rstudio/pins-r. If you spec-
ify both the package source type and the package name, the package name comes first:
pins=github: :rstudio/pins-r.

» For local:: dependencies, you always need to specify the package name explicitly. E.g.
pins=local::~/works/pins.

e For url:: dependencies, you always need to specify the package name explicitly. E.g.
ggplot2=url::https://cloud.r-project.org/src/contrib/....

Parameters:

Package references may have optional parameters, added after a question mark. Different param-
eters are separated by an ampersand (&) character. (This is very similar to how HTTP URLs take
query parameters.)

Parameters may be flags that turn on some behavior, or they can have a string value, assigned with
an equal sign (=). If no value is assigned, then we assume the true value. For example these two
package refs are equivalent:

cran: :testthat?source&nocache
cran::testthat?source=true&nocache=true

Parameters for downstream packages:

pkgdepends allows specifying parameters for downstream packages, using the <package>=?<params>
special package reference, where package is the name of the package, and <params> are the
parameters, as above. This is useful if you want to add a parameter to a downstream dependency.

For example, to install ggplot2, and always reinstall its cli package dependency you could use

the ggplot2 and cli=?reinstall package references. The latter tells pkgdepends to always
reinstall cli, even if it is already installed.

Currently supported parameters:

* ignoreis a flag parameter. If specified, the package is ignored. This usually makes sense in
the packagename=?ignore form, to ignore a downstream soft dependency. If all versions
of a hard dependency are ignored that will lead to a solution error.

e ignore-before-r is a version number parameter. The package will be ignored on R ver-
sions that are older than the specified one. E.g. Matrix=?ignore-before-r=4.1.2 will
ignore the Matrix package on R versions that are older than 4.1.2. This parameter really
only makes sense in the packgename=?ignore form.

* source is a flag parameter. If specified, then a source R package is requested from a CRAN-
like repository. For package installations source always triggers a re-install. In other words,
source implies the reinstall parameter. This parameter is supported for bioc: :, cran::
and standard: : remote types, and it is ignored for others.

* reinstall requests a re-install for package installations. It is supported by the bioc::,
cran::, github::, local::, standard::, and url:: remote types.

pkg_refs

* nocache will ignore the package cache. It will always download the package file, and it
will not add the downloaded (and built) package(s) to the package cache. It is supported by
the bioc::, cran::, github::, standard:: and url:: remote types.

Package source details:
CRAN packages (cran::):
A package from CRAN. Full syntax:
[cran::]<package>[@[>=]<version> | @current | @last]
* <package> is a valid package name.
* <version>is a version or a version requirement.
Examples:

forecast
forecast@8.8
forecast@>=8.8
cran::forecast
forecast@last
forecast@current

Note: pkgdepends currently parses the version specification part (everything after @), but does
not use it.

Bioconductor packages (bioc: :):

A package from Bioconductor. The syntax is the same as for CRAN packages, except for the
prefix.

[bioc::]<package>[@[>=]<version> | @current | @last]
Standard packages (standard: :):

These are packages either from CRAN or Bioconductor, the full syntax is the same as for CRAN
packages, except for the prefix:

[standard: : J<package>[@[>=]<version> | current | last]
GitHub packages (github: :):
Packages from a GitHub repository. Full syntax:
[<package>=][github: :J<username>/<repository>[/<subdir>][<detail>]
* <package> is the name of the package. If this is missing, then the name of the repository is
used.
* <username> is a GitHub username or organization name.
* <repository> is the name of the repository.
* <subdir> optional subdirectory, if the package is within a subdirectory in the repository.
» <detail> specifies a certain version of the package, see below.
<detail> may specify:
* a git branch, tag or (prefix of) a commit hash: @<commitish>;
* apull request: #<pull-request>; or
* the latest release: @xrelease.

If <detail> is missing, then the latest commit of the default branch is used.
Examples:

pkg_refs 43

r-lib/crayon
github::r-1ib/crayon
r-lib/crayon@84be6207
r-lib/crayon@branch
r-lib/crayon#41
r-lib/crayon@release

For convenience GitHub HTTP URLs can also be used to specify a package from GitHub.
Examples:

https://github.com/r-1ib/withr

A branch:
https://github.com/r-1ib/withr/tree/ghactions

A tag:
https://github.com/r-1ib/withr/tree/v2.1.1

A commit:
https://github.com/r-1ib/withr/commit/8fbcb548e316
A pull request:
https://github.com/r-1ib/withr/pull/76

A release:
https://github.com/r-lib/withr/releases/tag/v2.1.0

A GitHub remote string can also be used instead of an URL, for example: git@github.com:r-1ib/pak.git

Local packages (local: :):
A path that refers to a package file built with R CMD build, or a directory that contains a
package. Full syntax:

local: :<path>

For brevity, you can omit the local:: prefix, if you specify an absolute path, a path from the
user’s home directory, starting with ~, or a relative path starting with ./ or . \\.

A single dot (". ") is considered to be a local package in the current working directory.
Examples:

local::/foo/bar/package_1.0.0.tar.gz
local::/foo/bar/pkg

local::.
/absolute/path/package_1.0.0.tar.gz
~/path/from/home

./relative/path

If you specify a local package in a dependency (i.e. in DESCRIPTION), then you also need to
specify the name of the package, see "Package names" above.

URLs (url::):

You can use url:: to refer to URLs that hold R package archives (i.e. properly built with
R CMD build), or compressed directories of package trees (i.e. not built with R CMD build).
pkgdepends will figure out if it needs to run R CMD build on the package first.

This remote type supports . tar.gz and .zip files.

Note that URLSs are not ideal remote types, because pkgdepends needs to download the package
file to resolve its dependencies. When this happens, it puts the package file in the cache, so no
further downloads are needed when installing the package later.

Examples:

44

pkg_refs

url::https://cloud.r-project.org/src/contrib/Archive/cli/cli_1.0.0.tar.gz
url::https://github.com/tidyverse/stringr/archive/HEAD.zip

If you specify a package from an URL in a dependency (i.e. in DESCRIPTION), then you also
need to specify the name of the package, see "Package names" above.

Installed packages (installed: :):
This is usually used internally, but can also be used directly. Full syntax:

installed: :<path>/<package>
* <path> is the library the package is installed to.
* <package> is the package name.

Example:

installed::~/R/3.6/crayon

Package dependencies (deps: :):

Usually used internally, it specifies the dependencies of a local package. It can be used to down-
load or install the dependencies of a package, without downloading or installing the package
itself. Full syntax:

deps: :<path>
Examples:

deps::/foo/bar/package_1.0.0.tar.gz
deps: :/foo/bar/pkg
deps::.

any: : packages:

Sometimes you need to install additional packages, but you don’t mind where they are installed
from. Here is an example. You want to install cli from GitHub, from r-1ib/cli. You also want
to install glue, and you don’t mind which version of glue is installed, as long as it is compatible
with the requested cli version. If cli specifies the development version of glue, then that is fine.
If cli is fine with the CRAN version of glue, that’s OK, too. If a future version of cli does
not depend on glue, you still want glue installed, from CRAN. The any: : reference type does
exactly this.

In our example you might write

pak::pkg_install(c("glue”, "r-lib/cli"))
first, but this will fail if rlib/cli requests (say) tidyverse/glue, because in pkg_install()

"glue” is interpreted as "standard: :glue”, creating a conflict with tidyverse/glue. On the
other hand

pak: :pkg_install(c("any::glue”, "r-lib/cli"))
works, independently of which glue version is requested by cli.

Parameter refs (param: :):
See "Parameters" above.

The Remotes field:

In the DESCRIPTION file of an R package you can mark any regular dependency defined in the
Depends, Imports, Suggests or Enhances fields as being installed from a non-standard package
source by adding a package reference to a Remotes entry. pkgdepends will download and install
the package from the from the specified location, instead of a CRAN-like repository.

The remote dependencies specified in Remotes is a comma separated list of package sources:

pkg_resolution 45

Remotes: <pkg-source-1>, <pkg-source-2>, [...]

Note that you will still need add the package to one of the regular dependency fields, i.e. Imports,
Suggests, etc. Here is a concrete example that specifies the r-1ib/glue package:

Imports: glue

Remotes: r-lib/glue,
r-lib/httr@ve.4,
klutometis/roxygen#142,
r-lib/testthat@c67018fa4970

The CRAN and Bioconductor repositories do not support the Remotes field, so you need to re-
move this field, before submitting your package to either of them.

pkg_resolution Dependency resolution

Description

Collect information about dependencies of R packages, recursively.

Details

pkg_deps, pkg_download_proposal and pkg_installation_proposal all resolve their depen-
dencies recursively, to obtain information about all packages needed for the specified package ref-
erences.

CRAN and Bioconductor packages:

Resolution currently start by downloading the CRAN and Bioconductor metadata, if it is out of
date. For CRAN, we also download additional metadata, that includes file sizes, SHA hashes,
system requirements, and "built" (for binary packages) and "packaged" time stamps. The extra
meta information is updated daily currently, so for some packages it might be incorrect or missing.

GitHub packages:

For GitHub packages, we query their download URL to be able to download the package later,
and also download their DESCRIPTION file, to learn about their dependencies.

Local packages:
From local package files we extract the DESCRIPTION file, to learn about their dependencies.

The remotes field in DESCRIPTION:

We support the non-standard Remotes field in the package DESCRIPTION file. This field may
contain a list of package references for any of the dependencies that are specified in one of the
Depends, Includes, Suggests or Enhances fields. The syntax is a comma separated list of
package references.

The result:

The result of the resolution is a data frame with information about the packages and their depen-
dencies.

46

pkg_resolution

e built: the Built field from the DESCRIPTION file of binary packages, for which this infor-
mation is available.

e cache_status: whether the package file is in the package cache. It is NA for installed: :
package refs.

» dep_types: character vector of dependency types that were considered for this package.
(This is a list column.)

* deps: dependencies of the package, in a data frame. See "Package dependency tables" below.
» direct: whether this package (ref, really) was directly specified, or added as a dependency.

* error: this is a list column that contains error objects for the refs that pkgdepends failed to
resolve.

» filesize: the file size in bytes, or NA if this information is not available.
» license: license of the package, or NA if not available.
e md5sum: MD5 checksum of the package file, if available, or NA if not.

e metadata: a named character vector. These fields will be (should be) added to the installed
DESCRIPTION file of the package.

e mirror: URL of the CRAN(-like) mirror site where the metadata was obtained from. It is
NA for non-CRAN:-like sources, e.g. local files, installed packages, GitHub, etc.

* needscompilation: whether the package needs compilation.
* package: package name.

e priority: this is "base” for base packages, "recommended” for recommended packages,
and NA otherwise.

* ref: package reference.

* remote: the parsed remote_ref objects, see parse_pkg_refs(). This is a list column.
* repodir: the directory where this package should be in a CRAN-like repository.

* sha256: SHA256 hash of the package file, if available, otherwise NA.

* sources: URLs where this package can be downloaded from. This is a zero length vector
for installed: : refs.

* status: status of the dependency resolution, "OK" or "FAILED".

 target: path where this package should be saved in a CRAN-repository.

* type: ref type.

* version: package version.
Additional columns might be present. They are either used internally or they are experimental.
They might be removed or changed at any time.

All columns are of type character, except for direct (logical), needscompilation (logical),
filesize (integer), deps (list column, see "Package dependency tables" below), sources (list of
character vectors), remote (list), error (list), metadata (list), dep_types (list).

Package dependency tables:
A package dependency tables in the deps list column have five columns currently:
 ref: the package ref of the dependency.
* type: the dependency type, in all lowercase. L.e. imports, suggests, etc.
* package: package name of the dependency.
* op: operator for version requirements, e.g. >=.
* version: version number, for version requirements.

pkg_rx 47

Resolution failures:

The resolution process does not stop on error. Instead, failed resolutions return and error object in
the error column of the result data frame.

pkg_rx A set of handy regular expressions related to R packages

Description

If you use these in R, make sure you specify perl = TRUE, see base: :grep().

Usage

pkg_rx()

Details

Currently included:

* pkg_name: A valid package name.

* type_cran: A cran:: package reference.

* type_bioc: A bioc:: package reference.

* type_standard: A standard: : package reference.
e type_github: A github:: package reference.

* type_local: A local:: package reference.

* type_deps: A deps:: package reference.

* type_installed: An installed:: package reference.
e github_username: A GitHub username.

» github_repo: A GitHub repository name.

e github_url: A GitHub URL.

Value

A named list of strings.

Examples

pkg_rx()

48

pkg_solution

pkg_solution The dependency solver

Description

The dependency solver takes the resolution information, and works out the exact versions of each
package that must be installed, such that version and other requirements are satisfied.

Details

Solution policies:

The dependency solver currently supports two policies: lazy and upgrade. The lazy policy
prefers to minimize installation time, and it does not perform package upgrades, unless version
requirements require them. The upgrade policy prefers to update all package to their latest pos-
sible versions, but it still considers that version requirements.

The integer problem:

Solving the package dependencies requires solving an integer linear problem (ILP). This subsec-
tion briefly describes how the problem is represented as an integer problem, and what the solution
policies exactly mean.

Every row of the package resolution is a candidate for the dependency solver. In the integer
problem, every candidate corresponds to a binary variable. This is 1 if that candidate is selected
as part of the solution, and O otherwise.

The objective of the ILP minimization is defined differently for different solution policies. The
ILP conditions are the same.

1. For the lazy policy, installed:: packaged get O points, binary packages 1 point, sources
packages 5 points.

2. For the "upgrade’ policy, we rank all candidates for a given package according to their version
numbers, and assign more points to older versions. Points are assigned by 100 and candidates
with equal versions get equal points. We still prefer installed packages to binaries to source
packages, so also add O point for already installed candidates, 1 extra points for binaries and
5 points for source packages.

3. For directly specified refs, we aim to install each package exactly once. So for these we
require that the variables corresponding to the same package sum up to 1.

4. For non-direct refs (i.e. dependencies), we require that the variables corresponding to the
same package sum up to at most one. Since every candidate has at least 1 point in the
objective function of the minimization problem, non-needed dependencies will be omitted.

5. For direct refs, we require that their candidates satisfy their references. What this means
exactly depends on the ref types. E.g. for CRAN packages, it means that a CRAN candidate
must be selected. For a standard ref, a GitHub candidate is OK as well.

6. We rule out candidates for which the dependency resolution failed.

7. We go over all the dependency requirements and rule out packages that do not meet them.
For every package A, that requires package B, we select the B(i, i=1..k) candidates of B
that satisfy A’s requirements and add a A - B(1) - ... - B(k) <=0 rule. To satisfy this rule,
either we cannot install A, or if A is installed, then one of the good B candidates must be
installed as well.

pkg_solution 49

8. We rule out non-installed CRAN and Bioconductor candidates for packages that have an
already installed candidate with the same exact version.

9. We also rule out source CRAN and Bioconductor candidates for packages that have a binary
candidate with the same exact version.

Explaining why the solver failed:

To be able to explain why a solution attempt failed, we also add a dummy variable for each directly
required package. This dummy variable has a very large objective value, and it is only selected if
there is no way to install the directly required package.

After a failed solution, we look the dummy variables that were selected, to see which directly
required package failed to solve. Then we check which rule(s) ruled out the installation of these
packages, and their dependencies, recursively.

The result:
The result of the solution is a pkg_solution_result object. It is a named list with entries:

* status: Status of the solution attempt, "OK" or "FAILED".
» data: The selected candidates. This is very similar to a pkg_resolution_result object, but it
has two extra columns:

— lib_status: status of the package in the library, after the installation. Possible val-
ues: new (will be newly installed), current (up to date, not installed), update (will be
updated), no-update (could update, but will not).

— old_version: The old (current) version of the package in the library, or NA if the package
is currently not installed.

* problem: The ILP problem. The exact representation is an implementation detail, but it does
have an informative print method.
* solution: The return value of the internal solver.

Index

x package dependency utilities
as_pkg_dependencies, 5
pkg_dep_types_hard, 36

* platform functions
current_r_platform, 6

’Configuration’, 7, 13,18, 19,22-24, 26, 37

’Dependency resolution’, 13, 14, 19, 26

’Installation plans’, 8, 29

’Package references’, 12, 13,17, 18, 24, 26

’The dependency solver’, 13, 14, 26, 27

.libPaths(), 35

“Configuration”, 4

“Dependency resolution”, 4

“Installation plans”, 4

“Package references”, 3

“The dependency solver”, 4

as_pkg_dependencies, 5, 36
as_pkg_dependencies(), 35

base: :grep(), 47
base::options(), 35
base::tempdir(), 35

cli::tree(), 15,28
current_config (pkg_config), 34
current_r_platform, 6

default_platforms (current_r_platform),
6

default_platforms(), 35

dependency lookup, 35

difftime, 35

downloading, 8

install_package_plan, 8
install_package_plan(), 9, 28
install_plans, 8
installation proposal, 8§
is_valid_package_name, 10

50

lib_status, 10

new_pkg_deps, 12
new_pkg_download_proposal, 17
new_pkg_installation_plan, 21
new_pkg_installation_proposal, 24
new_pkg_installation_proposal(), 34

options(), 34

package installation, 35

package reference, 9

package references, 4, 45

parse_pkg_ref (parse_pkg_refs), 33

parse_pkg_refs, 33

parse_pkg_refs(), 37,46

pkg_config, 34

pkg_dep_types (pkg_dep_types_hard), 36

pkg_dep_types_hard, 6, 36

pkg_dep_types_hard(), 6, 35

pkg_dep_types_soft
(pkg_dep_types_hard), 36

pkg_deps, 3, 4, 12,45

pkg_deps (new_pkg_deps), 12

pkg_download_proposal, 3, 4, 18, 35, 37,45

pkg_download_proposal
(new_pkg_download_proposal), 17

pkg_download_result, 9, 20, 28

pkg_download_result (pkg_downloads), 37

pkg_downloads, 37

pkg_installation_plan
(new_pkg_installation_plan), 22

pkg_installation_proposal, 4, 9, 22, 24,
37,45

pkg_installation_proposal
(new_pkg_installation_proposal),
24

pkg_name_check, 38

pkg_refs, 33, 34, 39

pkg_resolution, 45

INDEX

pkg_resolution_result, /4, 19, 26, 37, 49

pkg_resolution_result (pkg_resolution),
45

pkg_rx, 47

pkg_solution, 48

pkg_solution_result, 14, 27, 37

pkg_solution_result (pkg_solution), 48

pkgcache: :cranlike_metadata_cache, 35

pkgcache: :package_cache, 35

pkgdepends (pkgdepends-package), 2

pkgdepends-config (pkg_config), 34

pkgdepends-package, 2

pkgdepends: :pkg_installation_proposal,
22

solving, 8

utils::install.packages(), 5

51

	pkgdepends-package
	as_pkg_dependencies
	current_r_platform
	install_package_plan
	install_plans
	is_valid_package_name
	lib_status
	new_pkg_deps
	new_pkg_download_proposal
	new_pkg_installation_plan
	new_pkg_installation_proposal
	parse_pkg_refs
	pkg_config
	pkg_dep_types_hard
	pkg_downloads
	pkg_name_check
	pkg_refs
	pkg_resolution
	pkg_rx
	pkg_solution
	Index

