
Package ‘pliman’
October 14, 2022

Title Tools for Plant Image Analysis

Version 1.1.0

Description Provides tools for image manipulation that will help you to
quantify plant leaf area, disease severity, number of disease lesions,
and obtain statistics of image objects such as grains, pods, pollen,
leaves, and more. Tools to segment images and create binary images
using the method of automatic threshold selection proposed by
Otsu (1979) <doi:10.1109/tsmc.1979.4310076> are also provided.

License GPL (>= 3)

URL https://github.com/TiagoOlivoto/pliman

BugReports https://github.com/TiagoOlivoto/pliman/issues

Depends R (>= 4.1)

Suggests BiocManager, EBImage, knitr, rmarkdown

VignetteBuilder knitr

biocViews

Encoding UTF-8

Language en-US

RoxygenNote 7.1.2

Imports lattice

NeedsCompilation no

Author Tiago Olivoto [aut, cre] (<https://orcid.org/0000-0002-0241-9636>)

Maintainer Tiago Olivoto <tiagoolivoto@gmail.com>

Repository CRAN

Date/Publication 2021-12-10 08:30:02 UTC

1

https://doi.org/10.1109/tsmc.1979.4310076
https://github.com/TiagoOlivoto/pliman
https://github.com/TiagoOlivoto/pliman/issues
https://orcid.org/0000-0002-0241-9636

2 analyze_objects

R topics documented:
analyze_objects . 2
image_binary . 8
image_combine . 10
image_index . 11
image_segment . 14
image_to_mat . 16
measure_disease . 17
palettes . 22
pipe . 23
pliman_images . 24
rgb_to_hsv . 25
sad . 25
summary_index . 27
tune_tolerance . 28
utils_dpi . 30
utils_file . 31
utils_image . 34
utils_measures . 35
utils_objects . 38
utils_pick . 40
utils_polygon . 42
utils_transform . 45

Index 51

analyze_objects Analyzes objects in an image

Description

• analyze_objects() provides tools for counting and extracting object features (e.g., area,
perimeter, radius, pixel intensity) in an image. See more at Details section.

• plot.anal_obj() Produces an histogram for the R, G, and B values when argument object_index
is used in the function analyze_objects().

Usage

analyze_objects(
img,
foreground = NULL,
background = NULL,
pattern = NULL,
parallel = FALSE,
workers = NULL,
watershed = TRUE,
resize = FALSE,

analyze_objects 3

trim = FALSE,
fill_hull = FALSE,
filter = FALSE,
invert = FALSE,
object_size = "medium",
index = "NB",
my_index = NULL,
object_index = NULL,
threshold = "Otsu",
tolerance = NULL,
extension = NULL,
lower_size = NULL,
upper_size = NULL,
topn_lower = NULL,
topn_upper = NULL,
lower_eccent = NULL,
upper_eccent = NULL,
lower_circ = NULL,
upper_circ = NULL,
randomize = TRUE,
nrows = 2000,
show_image = TRUE,
show_original = TRUE,
show_chull = FALSE,
show_contour = TRUE,
contour_col = "red",
contour_size = 1,
show_background = TRUE,
show_segmentation = FALSE,
col_foreground = NULL,
col_background = NULL,
marker = FALSE,
marker_col = NULL,
marker_size = NULL,
save_image = FALSE,
prefix = "proc_",
dir_original = NULL,
dir_processed = NULL,
verbose = TRUE

)

S3 method for class 'anal_obj'
plot(
x,
which = "measure",
measure = "area",
type = "density",
facet = FALSE,

4 analyze_objects

...
)

Arguments

img The image to be analyzed.

foreground A color palette of the foreground (optional).

background A color palette of the background (optional).

pattern A pattern of file name used to identify images to be imported. For example,
if pattern = "im" all images in the current working directory that the name
matches the pattern (e.g., img1.-, image1.-, im2.-) will be imported as a list.
Providing any number as pattern (e.g., pattern = "1") will select images that
are named as 1.-, 2.-, and so on. An error will be returned if the pattern matches
any file that is not supported (e.g., img1.pdf).

parallel If TRUE processes the images asynchronously (in parallel) in separate R sessions
running in the background on the same machine. It may speed up the processing
time, especially when pattern is used is informed. When object_index is
informed, multiple sections will be used to extract the RGB values for each
object in the image. This may significantly speed up processing time when an
image has lots of objects (say >1000).

workers A positive numeric scalar or a function specifying the number of parallel pro-
cesses that can be active at the same time. By default, the number of sections is
set up to 50% of available cores.

watershed If TRUE (default) performs watershed-based object detection. This will detect
objects even when they are touching one other. If FALSE, all pixels for each
connected set of foreground pixels are set to a unique object. This is faster but
is not able to segment touching objects.

resize Resize the image before processing? Defaults to FALSE. Use a numeric value of
range 0-100 (proportion of the size of the original image).

trim Number of pixels removed from edges in the analysis. The edges of images
are often shaded, which can affect image analysis. The edges of images can be
removed by specifying the number of pixels. Defaults to FALSE (no trimmed
edges).

fill_hull Fill holes in the binary image? Defaults to FALSE. This is useful to fill holes in
objects that have portions with a color similar to the background. IMPORTANT:
Objects touching each other can be combined into one single object, which may
underestimate the number of objects in an image.

filter Performs median filtering after image processing? defaults to FALSE. See more
at image_filter().

invert Inverts the binary image, if desired. This is useful to process images with black
background. Defaults to FALSE.

object_size The size of the object. Used to automatically set up tolerance and extension
parameters. One of the following. "small" (e.g, wheat grains), "medium"
(e.g, soybean grains), "large"(e.g, peanut grains), and "elarge" (e.g, soybean
pods)‘.

analyze_objects 5

index, my_index

A character value specifying the target mode for conversion to binary image
when foreground and background are not declared. Defaults to "NB" (normal-
ized blue). See image_index() for more details.

object_index Defaults to FALSE. If an index is informed, the average value for each object
is returned. It can be the R, G, and B values or any operation involving them,
e.g., object_index = "R/B". In this case, it will return for each object in the
image, the average value of the R/B ratio. Use pliman_indexes_eq() to see
the equations of available indexes.

threshold By default (threshold = "Otsu"), a threshold value based on Otsu’s method
is used to reduce the grayscale image to a binary image. If a numeric value is
informed, this value will be used as a threshold. Inform any non-numeric value
different than "Otsu" to iteratively chosen the threshold based on a raster plot
showing pixel intensity of the index.

tolerance The minimum height of the object in the units of image intensity between its
highest point (seed) and the point where it contacts another object (checked for
every contact pixel). If the height is smaller than the tolerance, the object will
be combined with one of its neighbors, which is the highest.

extension Radius of the neighborhood in pixels for the detection of neighboring objects.
Higher value smooths out small objects.

lower_size, upper_size

Lower and upper limits for size for the image analysis. Plant images often con-
tain dirt and dust. To prevent dust from affecting the image analysis, objects
with lesser than 10% of the mean of all objects are removed. Upper limit is set
to NULL, i.e., no upper limit used. One can set a known area or use lower_limit
= 0 to select all objects (not advised). Objects that matches the size of a given
range of sizes can be selected by setting up the two arguments. For example,
if lower_size = 120 and upper_size = 140, objects with size greater than or
equal 120 and less than or equal 140 will be considered.

topn_lower, topn_upper

Select the top n objects based on its area. topn_lower selects the n elements
with the smallest area whereas topn_upper selects the n objects with the largest
area.

lower_eccent, upper_eccent, lower_circ, upper_circ

Lower and upper limit for object eccentricity/circularity for the image analysis.
Users may use these arguments to remove objects such as square papers for scale
(low eccentricity) or cut petioles (high eccentricity) from the images. Defaults
to NULL (i.e., no lower and upper limits).

randomize Randomize the lines before training the model?

nrows The number of lines to be used in training step. Defaults to 2000.

show_image Show image after processing?

show_original Show the count objects in the original image?

show_chull Show the convex hull around the objects? Defaults to FALSE.

show_contour Show a contour line around the objects? Defaults to TRUE.

6 analyze_objects

contour_col, contour_size

The color and size for the contour line around objects. Defaults to contour_col
= "red" and contour_size = 1.

show_background

Show the background? Defaults to TRUE. A white background is shown by de-
fault when show_original = FALSE.

show_segmentation

Shows the object segmentation colored with random permutations. Defaults to
FALSE.

col_foreground, col_background

Foreground and background color after image processing. Defaults to NULL, in
which "black", and "white" are used, respectively.

marker, marker_col, marker_size

The type, color and size of the object marker. Defaults to NULL, which plots the
object id. Use marker = "point" to show a point in each object or marker =
FALSE to omit object marker.

save_image Save the image after processing? The image is saved in the current working
directory named as proc_* where * is the image name given in img.

prefix The prefix to be included in the processed images. Defaults to "proc_".
dir_original, dir_processed

The directory containing the original and processed images. Defaults to NULL.
In this case, the function will search for the image img in the current work-
ing directory. After processing, when save_image = TRUE, the processed im-
age will be also saved in such a directory. It can be either a full path, e.g.,
"C:/Desktop/imgs", or a subfolder within the current working directory, e.g.,
"/imgs".

verbose If TRUE (default) a summary is shown in the console.

x An object of class anal_obj.

which Which to plot. Either ’measure’ (object measures) or ’index’ (object index).
Defaults to "measure".

measure The measure to plot. Defaults to "area".

type The type of plot. Either "hist" or "density". Partial matches are recognized.

facet Create a facet plot for each object when which = "index" is used?. Defaults to
FALSE.

... Further argument passed on to lattice::histogram() or lattice::densityplot()

Details

A binary image is first generated to segment the foreground and background. The argument index is
useful to choose a proper index to segment the image (see image_binary() for more details). Then,
the number of objects in the foreground is counted. By setting up arguments such as lower_size,
upper_size it is possible to set a threshold for lower and upper sizes of the objects, respectively.
The argument object_size can be used to set up pre-defined values of tolerance and extension
depending on the image resolution. This will influence the watershed-based object segmentation.
Users can also tune-up tolerance and extension explicitly to a better precision of watershed
segmentation.

analyze_objects 7

If watershed = FALSE is used, all pixels for each connected set of foreground pixels in img are set
to a unique object. This is faster (specially for a large number of objects) but is not able to segment
touching objects.

If color palettes samples are provided, a general linear model (binomial family) fitted to the RGB
values is used to segment fore- and background.

By using pattern it is possible to process several images with common pattern names that are
stored in the current working directory or in the subdirectory informed in dir_original’. To
speed up the computation time, one can set parallel = TRUE.

Value

analyze_objects() returns a list with the following objects:

• results A data frame with the following variables for each object in the image:

– id: object identification.
– x,y: x and y coordinates for the center of mass of the object.
– area: area of the object (in pixels).
– area_ch: the area of the convex hull around object (in pixels).
– perimeter: perimeter (in pixels).
– radius_min, radius_mean, and radius_max: The minimum, mean, and maximum ra-

dius (in pixels), respectively.
– radius_sd: standard deviation of the mean radius (in pixels).
– radius_ratio: radius ratio given by radius_max / radius_min.
– diam_min, diam_mean, and diam_max: The minimum, mean, and maximum diameter (in

pixels), respectively.
– major_axis, minor_axis: elliptical fit for major and minor axes (in pixels).
– eccentricity: elliptical eccentricity defined by sqrt(1-minoraxis^2/majoraxis^2). Cir-

cle eccentricity is 0 and straight line eccentricity is 1.
– theta: object angle (in radians).
– solidity: object solidity given by area / area_ch.
– circularity: the object circularity given by 4 ∗ pi ∗ (area/perimeter2).

• statistics: A data frame with the summary statistics for the area of the objects.

• count: If pattern is used, shows the number of objects in each image.

• object_rgb: If object_index is used, returns the R, G, and B values for each pixel of each
object.

• object_index: If object_index is used, returns the index computed for each object.

plot.anal_obj() returns a trellis object containing the distribution of the pixels, optionally for
each object when facet = TRUE is used.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

8 image_binary

References

Gupta, S., Rosenthal, D. M., Stinchcombe, J. R., & Baucom, R. S. (2020). The remarkable mor-
phological diversity of leaf shape in sweet potato (Ipomoea batatas): the influence of genetics,
environment, and G×E. New Phytologist, 225(5), 2183–2195. doi: 10.1111/NPH.16286

Lee, Y., & Lim, W. (2017). Shoelace Formula: Connecting the Area of a Polygon and the Vector
Cross Product. The Mathematics Teacher, 110(8), 631–636. doi: 10.5951/mathteacher.110.8.0631

Examples

library(pliman)
img <- image_pliman("soybean_touch.jpg")
obj <- analyze_objects(img)
obj$statistics

Enumerate the objects in the original image
Return the top-5 grains with the largest area

top <-
analyze_objects(img,

marker = "id",
topn_upper = 5)

top$results

library(pliman)

img <- image_pliman("soy_green.jpg")
Segment the foreground (grains) using the normalized blue index (NB, default)
Shows the average value of the blue index in each object

rgb <-
analyze_objects(img,

marker = "id",
object_index = "B")

density of area
plot(rgb)

histogram of perimeter
plot(rgb, measure = "perimeter", type = "histogram") # or 'hist'

density of the blue (B) index
plot(rgb, which = "index")

image_binary Creates a binary image

https://doi.org/10.1111/NPH.16286
https://doi.org/10.5951/mathteacher.110.8.0631

image_binary 9

Description

Reduce a color, color near-infrared, or grayscale images to a binary image using a given color
channel (red, green blue) or even color indexes. The Otsu’s thresholding method (Otsu, 1979) is
used to automatically perform clustering-based image thresholding.

Usage

image_binary(
image,
index = NULL,
my_index = NULL,
threshold = "Otsu",
resize = 30,
fill_hull = FALSE,
re = NULL,
nir = NULL,
invert = FALSE,
show_image = TRUE,
nrow = NULL,
ncol = NULL,
parallel = FALSE,
workers = NULL,
verbose = TRUE

)

Arguments

image An image object.

index A character value (or a vector of characters) specifying the target mode for con-
version to binary image. See the available indexes with pliman_indexes() and
image_index() for more details.

my_index User can calculate a different index using the band names, e.g. my_index =
"R+B/G".

threshold By default (threshold = "Otsu"), a threshold value based on Otsu’s method
is used to reduce the grayscale image to a binary image. If a numeric value is
informed, this value will be used as a threshold. Inform any non-numeric value
different than "Otsu" to iteratively chosen the threshold based on a raster plot
showing pixel intensity of the index.

resize Resize the image before processing? Defaults to FALSE. Use a numeric value
as the percentage of desired resizing. For example, if resize = 30, the resized
image will have 30% of the size of original image.

fill_hull Fill holes in the objects? Defaults to FALSE.

re Respective position of the red-edge band at the original image file.

nir Respective position of the near-infrared band at the original image file.

invert Inverts the binary image, if desired.

show_image Show image after processing?

10 image_combine

nrow, ncol The number of rows or columns in the plot grid. Defaults to NULL, i.e., a square
grid is produced.

parallel Processes the images asynchronously (in parallel) in separate R sessions running
in the background on the same machine. It may speed up the processing time
when image is a list. The number of sections is set up to 70% of available cores.

workers A positive numeric scalar or a function specifying the maximum number of
parallel processes that can be active at the same time.

verbose If TRUE (default) a summary is shown in the console.

Value

A list containing binary images. The length will depend on the number of indexes used.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Nobuyuki Otsu, "A threshold selection method from gray-level histograms". IEEE Trans. Sys.,
Man., Cyber. 9 (1): 62-66. 1979. doi: 10.1109/TSMC.1979.4310076

Examples

library(pliman)
img <- image_pliman("soybean_touch.jpg")
image_binary(img, index = c("R, G"))

image_combine Combines images to a grid

Description

Combines several images to a grid

Usage

image_combine(
...,
labels = NULL,
nrow = NULL,
ncol = NULL,
col = "black",
verbose = TRUE

)

https://doi.org/10.1109/TSMC.1979.4310076

image_index 11

Arguments

... a comma-separated name of image objects or a list containing image objects.

labels A character vector with the same length of the number of objects in ... to
indicate the plot labels.

nrow, ncol The number of rows or columns in the plot grid. Defaults to NULL, i.e., a square
grid is produced.

col The color for the plot labels. Defaults to col = "black".

verbose Shows the name of objects declared in ... or a numeric sequence if a list with
no names is provided. Set to FALSE to supress the text.

Value

A grid with the images in ...

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(pliman)
img1 <- image_pliman("sev_leaf.jpg")
img2 <- image_pliman("sev_leaf_nb.jpg")
image_combine(img1, img2)

image_index Image indexes

Description

image_index() Builds image indexes using Red, Green, Blue, Red-Edge, and NIR bands.

plot.image_index() produces a raster (type = "raster", default) or a density (type = "density")
plot of the index values computed with image_index().

Usage

image_index(
image,
index = NULL,
my_index = NULL,
resize = FALSE,
re = NULL,
nir = NULL,
show_image = TRUE,
nrow = NULL,
ncol = NULL,

12 image_index

parallel = FALSE,
workers = NULL,
verbose = TRUE

)

S3 method for class 'image_index'
plot(x, type = "raster", nrow = NULL, ncol = NULL, ...)

Arguments

image An image object.

index A character value (or a vector of characters) specifying the target mode for con-
version to binary image. Use pliman_indexes() or the details section to see
the available indexes. Defaults to NULL ((normalized) Red, Green and Blue).
One can also use "RGB" for RGB only, "NRGB" for normalized RGB, or "all"
for all indexes.

my_index User can calculate a different index using the bands names, e.g. my_index =
"R+B/G".

resize Resize the image before processing? Defaults to 30, which resizes the image to
30% of the original size to speed up image processing. Set resize = FALSE to
keep the original size of the image.

re Respective position of the red-edge band at the original image file.

nir Respective position of the near-infrared band at the original image file.

show_image Show image after processing?

nrow, ncol The number of rows or columns in the plot grid. Defaults to NULL, i.e., a square
grid is produced.

parallel Processes the images asynchronously (in parallel) in separate R sessions running
in the background on the same machine. It may speed up the processing time
when image is a list. The number of sections is set up to 70% of available cores.

workers A positive numeric scalar or a function specifying the maximum number of
parallel processes that can be active at the same time.

verbose If TRUE (default) a summary is shown in the console.

x An object of class image_index.

type The type of plot. Use type = "raster" (default) to produce a raster plot show-
ing the intensity of the pixels for each image index or type = "density" to
produce a density plot with the pixels’ intensity.

... Currently not used

Details

The following indexes are available in pliman.

• R red

• G green

• B blue

image_index 13

• NR normalized red R/(R+G+B).

• NG normalized green G/(R+G+B)

• NB normalized blue B/(R+G+B)

• GB green blue ratio G/B

• RB red blue ratio R/B

• GR green red ratio G/R

• BI brightness Index sqrt((R^2+G^2+B^2)/3)

• BIM brightness Index 2 sqrt((R*2+G*2+B*2)/3)

• SCI Soil Colour Index (R-G)/(R+G)

• GLI Green leaf index Vis Louhaichi et al. (2001) (2*G-R-B)/(2*G+R+B)

• HI Primary colours Hue Index (2*R-G-B)/(G-B)

• NDGRI Normalized green red difference index (Tucker, 1979) (G-R)/(G+R)

• NDGBI Normalized green blue difference index (G-B)/(G+B)

• NDRBI Normalized red blue difference index (R-B)/(R+B)

• I R+G+B

• S ((R+G+B)-3*B)/(R+G+B)

• L R+G+B/3

• VARI A Visible Atmospherically Resistant Index (G-R)/(G+R-B)

• HUE Overall Hue Index atan(2*(B-G-R)/30.5*(G-R))

• HUE2 atan(2*(R-G-R)/30.5*(G-B))

• BGI B/G

• GRAY 0.299*R + 0.587*G + 0.114*B

• GLAI (25*(G-R)/(G+R-B)+1.25)

• CI Coloration Index (R-B)/R

• SAT Overhall Saturation Index (max(R,G,B) - min(R,G,B)) / max(R,G,B)

• SHP Shape Index 2*(R-G-B)/(G-B)

• RI Redness Index R**2/(B*G**3)

Value

A list containing Grayscale images. The length will depend on the number of indexes used.

A trellis object containing the distribution of the pixels for each index.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Nobuyuki Otsu, "A threshold selection method from gray-level histograms". IEEE Trans. Sys.,
Man., Cyber. 9 (1): 62-66. 1979. doi: 10.1109/TSMC.1979.4310076

https://doi.org/10.1109/TSMC.1979.4310076

14 image_segment

Examples

library(pliman)
img <- image_pliman("soybean_touch.jpg")
image_index(img, index = c("R, NR"))
library(pliman)
img <- image_pliman("sev_leaf.jpg")

resize the image to 30% of the original size
ind <- image_index(img, resize = 30, show_image = FALSE)
plot(ind)

image_segment Image segmentation

Description

• image_segment() reduces a color, color near-infrared, or grayscale images to a segmented
image using a given color channel (red, green blue) or even color indexes (See image_index()
for more details). The Otsu’s thresholding method (Otsu, 1979) is used to automatically per-
form clustering-based image thresholding.

• image_segment_iter() Provides an iterative image segmentation, returning the proportions
of segmented pixels.

Usage

image_segment(
image,
index = NULL,
my_index = NULL,
threshold = "Otsu",
fill_hull = FALSE,
re = NULL,
nir = NULL,
invert = FALSE,
show_image = TRUE,
nrow = NULL,
ncol = NULL,
parallel = FALSE,
workers = NULL,
verbose = TRUE

)

image_segment_iter(
image,
nseg = 1,
index = NULL,
invert = NULL,

image_segment 15

threshold = NULL,
show_image = TRUE,
verbose = TRUE,
nrow = NULL,
ncol = NULL,
parallel = FALSE,
workers = NULL,
...

)

Arguments

image An image object or a list of image objects.

index • For image_segment(), a character value (or a vector of characters) spec-
ifying the target mode for conversion to binary image. See the available
indexes with pliman_indexes(). See image_index() for more details.

• For image_segment_iter() a character or a vector of characters with the
same length of nseg. It can be either an available index (described above)
or any operation involving the RGB values (e.g., "B/R+G").

my_index User can calculate a different index using the bands names, e.g. my_index =
"R+B/G".

threshold By default (threshold = "Otsu"), a threshold value based on Otsu’s method
is used to reduce the grayscale image to a binary image. If a numeric value is
informed, this value will be used as a threshold. Inform any non-numeric value
different than "Otsu" to iteratively chosen the threshold based on a raster plot
showing pixel intensity of the index. For image_segmentation_iter(), use a
vector (allows a mixed (numeric and character) type) with the same length of
nseg.

fill_hull Fill holes in the objects? Defaults to FALSE.

re Respective position of the red-edge band at the original image file.

nir Respective position of the near-infrared band at the original image file.

invert Inverts the binary image, if desired. For image_segmentation_iter() use a
vector with the same length of nseg.

show_image Show image after processing?

nrow, ncol The number of rows or columns in the plot grid. Defaults to NULL, i.e., a square
grid is produced.

parallel Processes the images asynchronously (in parallel) in separate R sessions running
in the background on the same machine. It may speed up the processing time
when image is a list. The number of sections is set up to 70% of available cores.

workers A positive numeric scalar or a function specifying the maximum number of
parallel processes that can be active at the same time.

verbose If TRUE (default) a summary is shown in the console.

nseg The number of iterative segmentation steps to be performed.

... Additional arguments passed on to image_segment().

16 image_to_mat

Value

• image_segment() returns list containing n objects where n is the number of indexes used.
Each objects contains:

– image an image with the RGB bands (layers) for the segmented object.
– mask A mask with logical values of 0 and 1 for the segmented image.

• image_segment_iter() returns a list with (1) a data frame with the proportion of pixels in
the segmented images and (2) the segmented images.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Nobuyuki Otsu, "A threshold selection method from gray-level histograms". IEEE Trans. Sys.,
Man., Cyber. 9 (1): 62-66. 1979. doi: 10.1109/TSMC.1979.4310076

Examples

library(pliman)
img <- image_pliman("soybean_touch.jpg", plot = TRUE)
image_segment(img, index = c("R, G, B"))

image_to_mat Convert an image to numerical matrices

Description

Given an object image, converts it into three matrices (RGB) and a data frame where each column
corresponds to the RGB values.

Usage

image_to_mat(image, parallel = FALSE, workers = NULL, verbose = TRUE)

Arguments

image An image object.

parallel Processes the images asynchronously (in parallel) in separate R sessions running
in the background on the same machine. It may speed up the processing time
when image is a list. The number of sections is set up to 70% of available cores.

workers A positive numeric scalar or a function specifying the maximum number of
parallel processes that can be active at the same time.

verbose If TRUE (default) a summary is shown in the console.

https://doi.org/10.1109/TSMC.1979.4310076

measure_disease 17

Value

A list containing three matrices (R, G, and B), and a data frame containing four columns: the name
of the image in image and the R, G, B values.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(pliman)
img <- image_pliman("sev_leaf.jpg")
dim(img)
mat <- image_to_mat(img)
dim(mat[[1]])

measure_disease Performs plant disease measurements

Description

• measure_disease() computes the percentage of symptomatic leaf area and (optionally) counts
and compute shapes (area, perimeter, radius, etc.) of lesions in a sample or entire leaf using
color palettes. See more at Details.

• measure_disease_iter() provides an iterative section for measure_disease(), where the
user picks up samples in the image to create the needed color palettes.

Usage

measure_disease(
img,
img_healthy = NULL,
img_symptoms = NULL,
img_background = NULL,
pattern = NULL,
parallel = FALSE,
workers = NULL,
resize = FALSE,
fill_hull = TRUE,
index_lb = NULL,
index_dh = "GLI",
threshold = NULL,
invert = FALSE,
lower_size = NULL,
upper_size = NULL,
topn_lower = NULL,
topn_upper = NULL,

18 measure_disease

randomize = TRUE,
nsample = 3000,
watershed = FALSE,
lesion_size = "medium",
tolerance = NULL,
extension = NULL,
show_features = FALSE,
show_segmentation = FALSE,
show_image = TRUE,
show_original = TRUE,
show_background = TRUE,
show_contour = TRUE,
contour_col = "white",
contour_size = 1,
col_leaf = NULL,
col_lesions = NULL,
col_background = NULL,
marker = FALSE,
marker_col = NULL,
marker_size = NULL,
save_image = FALSE,
prefix = "proc_",
dir_original = NULL,
dir_processed = NULL,
verbose = TRUE

)

measure_disease_iter(img, has_background = TRUE, r = 5, ...)

Arguments

img The image to be analyzed.

img_healthy A color palette of healthy areas.

img_symptoms A color palette of lesioned areas.

img_background An optional color palette of the image background.

pattern A pattern of file name used to identify images to be processed. For example,
if pattern = "im" all images that the name matches the pattern (e.g., img1.-
, image1.-, im2.-) will be analyzed. Providing any number as pattern (e.g.,
pattern = "1") will select images that are named as 1.-, 2.-, and so on.

parallel Processes the images asynchronously (in parallel) in separate R sessions running
in the background on the same machine. It may speed up the processing time,
especially when pattern is used is informed. The number of sections is set up
to 70% of available cores.

workers A positive numeric scalar or a function specifying the maximum number of
parallel processes that can be active at the same time.

resize Resize the image before processing? Defaults to FALSE. Use a numeric value of
range 0-100 (proportion of the size of the original image).

measure_disease 19

fill_hull Fill holes in the image? Defaults to TRUE. This is useful to fill holes in leaves,
e.g., those caused by insect attack, ensuring the hole area will be accounted for
the leaf, not background.

index_lb The index used to segment the foreground (e.g., leaf) from the background. If
not declared, the entire image area (pixels) will be considered in the computation
of the severity.

index_dh The index used to segment diseased from healthy tissues when img_healthy
and img_symptoms are not declared. Defaults to "GLI". See image_index()
for more details.

threshold By default (threshold = NULL), a threshold value based on Otsu’s method is
used to reduce the grayscale image to a binary image. If a numeric value is
informed, this value will be used as a threshold. Inform any non-numeric value
different than "Otsu" to iteratively choose the threshold based on a raster plot
showing pixel intensity of the index. Must be a vector of length 2 to indicate the
threshold for index_lb and index_dh, respectively.

invert Inverts the binary image if desired. This is useful to process images with black
background. Defaults to FALSE.

lower_size Lower limit for size for the image analysis. Leaf images often contain dirt and
dust. To prevent dust from affecting the image analysis, the lower limit of an-
alyzed size is set to 0.1, i.e., objects with lesser than 10% of the mean of all
objects are removed. One can set a known area or use lower_limit = 0 to se-
lect all objects (not advised).

upper_size Upper limit for size for the image analysis. Defaults to NULL, i.e., no upper limit
used.

topn_lower, topn_upper

Select the top n lesions based on its area. topn_lower selects the n lesions with
the smallest area whereas topn_upper selects the n lesions with the largest area.

randomize Randomize the lines before training the model? Defaults to TRUE.

nsample The number of sample pixels to be used in training step. Defaults to 3000.

watershed If TRUE (Default) implements the Watershed Algorithm to segment lesions con-
nected by a fairly few pixels that could be considered as two distinct lesions.
If FALSE, lesions that are connected by any pixel are considered unique lesions.
For more details see EBImage::watershed().

lesion_size The size of the lesion. Used to automatically tune tolerance and extension
parameters. One of the following. "small" (2-5 mm in diameter, e.g, rust
pustules), "medium" (0.5-1.0 cm in diameter, e.g, wheat leaf spot), "large" (1-2
cm in diameter, and "elarge" (2-3 cm in diameter, e.g, target spot of soybean).

tolerance The minimum height of the object in the units of image intensity between its
highest point (seed) and the point where it contacts another object (checked for
every contact pixel). If the height is smaller than the tolerance, the object will
be combined with one of its neighbors, which is the highest. Defaults to NULL,
i.e., starting values are set up according to the argument lesion_size.

extension Radius of the neighborhood in pixels for the detection of neighboring objects.
Defaults to 20. Higher value smooths out small objects.

20 measure_disease

show_features If TRUE returnS the lesion features such as number, area, perimeter, and radius.
Defaults to FALSE.

show_segmentation

Shows the object segmentation colored with random permutations. Defaults to
TRUE.

show_image Show image after processing? Defaults to TRUE.

show_original Show the symptoms in the original image?
show_background

Show the background? Defaults to TRUE. A white background is shown by de-
fault when show_original = FALSE.

show_contour Show a contour line around the lesions? Defaults to TRUE.
contour_col, contour_size

The color and size for the contour line around objects. Defaults to contour_col
= "white" and contour_size = 1.

col_leaf Leaf color after image processing. Defaults to "green"

col_lesions Symptoms color after image processing. Defaults to "red".

col_background Background color after image processing. Defaults to "NULL".
marker, marker_col, marker_size

The type, color and size of the object marker. Defaults to NULL, which shows
nothing. Use marker = "point" to show a point in each lesion or marker =
"*" where "*" is any variable name of the shape data frame returned by the
function.

save_image Save the image after processing? The image is saved in the current working
directory named as proc_* where * is the image name given in img.

prefix The prefix to be included in the processed images. Defaults to "proc_".
dir_original, dir_processed

The directory containing the original and processed images. Defaults to NULL.
In this case, the function will search for the image img in the current work-
ing directory. After processing, when save_image = TRUE, the processed im-
age will be also saved in such a directory. It can be either a full path, e.g.,
"C:/Desktop/imgs", or a subfolder within the current working directory, e.g.,
"/imgs".

verbose If TRUE (default) a summary is shown in the console.

has_background A logical indicating if the image has a background to be segmented before pro-
cessing.

r The radius of neighborhood pixels. Defaults to 5. A square is drawn indicating
the selected pixels.

... Further parameters passed on to measure_disease().

Details

In measure_disease(), a general linear model (binomial family) fitted to the RGB values is used
to segment the lesions from the healthy leaf. If a pallet of background is provided, the function
takes care of the details to isolate it before computing the number and area of lesions. By using

measure_disease 21

pattern it is possible to process several images with common pattern names that are stored in the
current working directory or in the subdirectory informed in dir_original.

If img_healthy and img_symptoms are not declared, RGB-based phenotyping of foliar disease
severity is performed using the index informed in index_lb to first segment leaf from background
and index_dh to segment diseased from healthy tissues.

measure_disease_iter() only run in an interactive section. In this function, users will be able
to pick up samples of images to iteratively create the needed color palettes. This process calls
pick_palette() internally. If has_background is TRUE (default) the color palette for the back-
ground is first created. The sample of colors is performed in each left-button mouse click and
continues until the user press Esc. Then, a new sampling process is performed to sample the color
of healthy tissues and then diseased tissues. The generated palettes are then passed on to mea-
sure_disease(). All the arguments of such function can be passed using the ... (three dots).

Value

• measure_disease() returns a list with the following objects:
– severity A data frame with the percentage of healthy and symptomatic areas.
– shape,statistics If show_features = TRUE is used, returns the shape (area, perimeter,

etc.) for each lesion and a summary statistic of the results.
• measure_disease_iter() returns a list with the following objects:

– results A list with the objects returned by measure_disease().
– leaf The color palettes for the healthy leaf.
– disease The color palettes for the diseased leaf.
– background The color palettes for the background.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(pliman)
img <- image_pliman("sev_leaf_nb.jpg")
healthy <- image_pliman("sev_healthy.jpg")
lesions <- image_pliman("sev_sympt.jpg")
image_combine(img, healthy, lesions, ncol = 3)

sev <-
measure_disease(img = img,

img_healthy = healthy,
img_symptoms = lesions,
lesion_size = "large",
show_image = TRUE)

an interactive section
measure_disease_iter(img)

22 palettes

palettes Create image palettes

Description

image_palette() creates image palettes by applying the k-means algorithm to the RGB values.

Usage

image_palette(
image,
npal,
filter = TRUE,
blur = FALSE,
parallel = FALSE,
workers = NULL,
verbose = TRUE

)

Arguments

image An image object.

npal The number of color palettes.

filter Performs median filtering. This can be useful to reduce the noise in produced
palettes. Defaults to TRUE. See more at image_filter().

blur Performs blurring filter of palettes? Defaults to FALSE. See more at image_blur().

parallel Processes the images asynchronously (in parallel) in separate R sessions running
in the background on the same machine. It may speed up the processing time
when image is a list. The number of sections is set up to 70% of available cores.

workers A positive numeric scalar or a function specifying the maximum number of
parallel processes that can be active at the same time.

verbose If TRUE (default) a summary is shown in the console.

Value

• image_palette() returns a list with npal color palettes of class Image.

•

Examples

library(pliman)
img <- image_pliman("sev_leaf_nb.jpg")
pal <- image_palette(img, npal = 4)
image_combine(pal)

pipe 23

runs only in an iterative section
if(FALSE){
image_palette_pick(img)
}

pipe Forward-pipe operator

Description

Pipe an object forward into a function or call expression.

Usage

lhs %>% rhs

Arguments

lhs The result you are piping.

rhs Where you are piping the result to.

Author(s)

Nathan Eastwood <nathan.eastwood@icloud.com> and Antoine Fabri <antoine.fabri@gmail.com>.
The code was obtained from poorman package at https://github.com/nathaneastwood/poorman/
blob/master/R/pipe.R

Examples

library(pliman)

Basic use:
iris %>% head()

use to apply several functions to an image
img <- image_pliman("la_leaves.jpg")

img %>%
image_resize(50) %>% # resize to 50% of the original size
object_isolate(id = 1) %>% # isolate object 1
image_filter() %>% # apply a median filter
plot() # plot

https://github.com/nathaneastwood/poorman/blob/master/R/pipe.R
https://github.com/nathaneastwood/poorman/blob/master/R/pipe.R

24 pliman_images

pliman_images Sample images

Description

Sample images installed with the pliman package

Format
*.jpg format

• la_back.jpg A cyan palette representing the background of images la_pattern, la_leaves, and
soybean_touch.

• la_leaf.jpg A sample of the leaves in la_leaves

• la_leaves.jpg Tree leaves with a sample of known area.

• objects_300dpi.jpg An image with 300 dpi resolution.

• potato_leaves.jpg Three potato leaves, which were gathered from Gupta et al. (2020).

• sev_leaf.jpg A soybean leaf with a blue background.

• sev_leaf_nb.jpg A soybean leaf without background.

• sev_back.jpg A blue palette representing the background of sev_leaf.

• sev_healthy.jpg Healthy area of sev_leaf.

• sev_sympt.jpg The symptomatic area sev_leaf.

• soy_green.jpg Soybean grains with a white background.

• soybean_grain.jpg A sample palette of the grains in soy_green.

• soybean_touch.jpg Soybean grains with a cyan background touching one each other.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Source

Personal data, Gupta et al. (2020).

References

Gupta, S., Rosenthal, D. M., Stinchcombe, J. R., & Baucom, R. S. (2020). The remarkable mor-
phological diversity of leaf shape in sweet potato (Ipomoea batatas): the influence of genetics,
environment, and G×E. New Phytologist, 225(5), 2183–2195. doi: 10.1111/NPH.16286

https://doi.org/10.1111/NPH.16286

rgb_to_hsv 25

rgb_to_hsv Color spaces

Description

Convert RGB to LAB color space.

Usage

rgb_to_hsv(image)

Arguments

image An image object.

Value

A list containing the image in the new color space.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(pliman)
img <- image_pliman("sev_leaf.jpg")
img2 <- rgb_to_hsv(img)
image_combine(img, img2)

sad Produces Santandard Area Diagrams

Description

Given an object computed with measure_disease() a Standard Area Diagram (SAD) with n im-
ages are returned with the respective severity values.

Usage

sad(
object,
n,
show_original = FALSE,
show_contour = FALSE,
nrow = NULL,
ncol = NULL,
...

)

26 sad

Arguments

object An object computed with measure_disease().

n The number of leaves in the Standard Area Diagram.

show_original Show original images? Defaults to FALSE, i.e., a mask is returned.

show_contour Show original images? Defaults to FALSE, i.e., a mask is returned.

nrow, ncol The number of rows and columns in the plot. See [image_combine())]
[image_combine())]: R:image_combine())

... Other arguments passed on to measure_disease().

Details

The leaves with the smallest and highest severity will always be in the SAD. If n = 1, the leaf with
the smallest severity will be returned. The others are sampled sequentially to achieve the n images
after severity has been ordered in an ascending order. For example, if there are 30 leaves and n is
set to 3, the leaves sampled will be the 1st, 15th, and 30th with the smallest severity values.

The SAD can be only computed if an image pattern name is used in argument pattern of measure_disease().
If the images are saved, the n images will be retrevied from dir_processed directory. Otherwise,
the severity will be computed again to generate the images.

Value

A data frame with the severity values for the n sampled leaves. A plot with the standard area
diagram can be saved by wrapping sad() with png().

References

Del Ponte EM, Pethybridge SJ, Bock CH, et al (2017) Standard area diagrams for aiding severity
estimation: Scientometrics, pathosystems, and methodological trends in the last 25 years. Phy-
topathology 107:1161–1174. doi: 10.1094/PHYTO02170069FI

Examples

Not run:
library(pliman)
sev <-
measure_disease(pattern = "sev_leaf",

img_healthy = "sev_healthy",
img_symptoms = "sev_sympt",
img_background = "sev_back",
show_image = FALSE,
save_image = TRUE,
show_original = FALSE,
dir_original = image_pliman(),
dir_processed = tempdir())

sad(sev, n = 2)

End(Not run)

https://doi.org/10.1094/PHYTO-02-17-0069-FI

summary_index 27

summary_index Summary an object index

Description

Performs a report of the index between and within objects when object_index argument is used in
analyze_objects(). By using a cut point, the number and proportion of objects with mean value
of index bellow and above cut_point are returned. Additionaly, the number and proportion of
pixels bellow and above the cutpoint is shown for each object (id).

Usage

summary_index(object, index, cut_point, select_higher = FALSE)

Arguments

object An object computed with analyze_objects().

index The index desired, e.g., "B". Note that these value must match the index(es)
used in the argument object_index of analyze_objects().

cut_point The cut point.

select_higher If FALSE (default) selects the objects with index smaller than the cut_point.
Use select_higher = TRUE to select the objects with index higher than cut_point.

Value

A list with the following elements:

• ids The identification of selected objects.

• between_id A data frame with the following columns

– n The number of objects.
– nsel The number of selected objects.
– prop The proportion of objects selected.
– mean_index_sel, and mean_index_nsel The mean value of index for the selected and

non-selected objects, respectively.

• within_id A data frame with the following columns

– id The object identification
– n_less The number of pixels with values lesser than or equal to cut_point.
– n_greater The number of pixels with values greater than cut_point.
– less_ratio The proportion of pixels with values lesser than or equal to cut_point.
– greater_ratio The proportion of pixels with values greater than cut_point.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

28 tune_tolerance

Examples

library(pliman)
soy <- image_pliman("soy_green.jpg")
anal <- analyze_objects(soy, object_index = "G")
plot_measures(anal, measure = "G")

summary_index(anal, index = "G", cut_point = 0.5)

tune_tolerance Tune tolerance parameter

Description

Provides options for tunning tolerance parameter utilized in [analyze_objects()] in two ways:

• Declaring the actual argument, an iterative algorithm will compute the first analysis and
sequentially increase the parameter tolerance if the computed number of objects is greater
than actual or reduce the parameter tolerance if the computed number of objects is less
than actual. If the algorithm did not converge up to maxiter is reached, users can change
the default extension value.

• The second way is to create a grid with tolerance and extension values. When grid
is informed, all combinations (made by base::expand.grid()) are tested and the residual
from actual value is plotted. Users can than find a better combination of parameters to use
in analyze_objects().

Usage

tune_tolerance(
img,
actual,
start_tol = NULL,
extension = NULL,
grid = NULL,
maxiter = 200,
index = "NB",
my_index = NULL,
plot = TRUE,
fill_hull = FALSE,
filter = FALSE,
invert = FALSE,
workers = NULL,
verbose = TRUE

)

tune_tolerance 29

Arguments

img The image to be analyzed.

actual The actual number of objects.

start_tol An starting value for tolerance. Defaults to 1.

extension The extension value. Defaults to 1.

grid A list with a numeric sequence for tolerance and extension values. When
grid is informed, all combinations are tested and the residual from actual value
is plotted.

maxiter The maximum number of iterations. Default to 200.
index, my_index

A character value specifying the target mode for conversion to binary image
when foreground and background are not declared. Defaults to "NB" (normal-
ized blue). See image_index() for more details.

plot Logical. If TRUE (default) generates a plot showing the results.

fill_hull Fill holes in the binary image? Defaults to FALSE. This is useful to fill holes in
objects that have portions with a color similar to the background. IMPORTANT:
Objects touching each other can be combined into one single object, which may
underestimate the number of objects in an image.

filter Performs median filtering after image processing? defaults to FALSE. See more
at image_filter().

invert Inverts the binary image, if desired. This is useful to process images with black
background. Defaults to FALSE.

workers The number of multiple sections to be used in the computation.

verbose If TRUE (default) a summary is shown in the console.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(pliman)
if(FALSE){
img <- image_pliman("soybean_touch.jpg")

starts with tolerance = 1
tune_tolerance(img, actual = 30)

Using a grid of tolerance and extension values
tune2 <-
tune_tolerance(img,

actual = 30,
grid = list(tolerance = seq(0, 5, by = 0.1),

extension = 1:4), plot = TRUE)
}

30 utils_dpi

utils_dpi Utilities for image resolution

Description

Provides useful conversions between size (cm), number of pixels (px) and dots per inch (dpi).

• dpi_to_cm() converts a known dpi value to centimeters.
• cm_to_dpi() converts a known centimeter values to dpi.
• pixels_to_cm() converts the number of pixels to centimeters, given a known resolution (dpi).
• cm_to_pixels() converts a distance (cm) to number of pixels, given a known resolution (dpi).
• distance() Computes the distance between two points in an image based on the Pythagorean

theorem.
• dpi() An interactive function to compute the image resolution given a known distance in-

formed by the user. See more information in the Details section.
• npixels() returns the number of pixels of an image.

Usage

dpi_to_cm(dpi)

cm_to_dpi(cm)

pixels_to_cm(px, dpi)

cm_to_pixels(cm, dpi)

npixels(image)

dpi(image, plot = TRUE)

distance(image, plot = TRUE)

Arguments

dpi The image resolution in dots per inch.
cm The size in centimeters.
px The number of pixels.
image An image object.
plot Call a new plot to image? Defaults to TRUE.

Details

dpi() only run in an interactive section. To compute the image resolution (dpi) the user must use
the left button mouse to create a line of known distance. This can be done, for example, using a
template with known distance in the image (e.g., la_leaves.jpg).

utils_file 31

Value

• dpi_to_cm(), cm_to_dpi(), pixels_to_cm(), and cm_to_pixels() return a numeric value
or a vector of numeric values if the input data is a vector.

• dpi() returns the computed dpi (dots per inch) given the known distance informed in the plot.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(pliman)
Convert dots per inch to centimeter
dpi_to_cm(c(1, 2, 3))

Convert centimeters to dots per inch
cm_to_dpi(c(1, 2, 3))

Convert centimeters to number of pixels with resolution of 96 dpi.
cm_to_pixels(c(1, 2, 3), 96)

Convert number of pixels to cm with resolution of 96 dpi.
pixels_to_cm(c(1, 2, 3), 96)

if(isTRUE(interactive())){
compute the dpi (dots per inch) resolution
only works in an interactive section
objects_300dpi.jpg has a known resolution of 300 dpi
img <- image_pliman("objects_300dpi.jpg")
Higher square: 10 x 10 cm
1) Run the function dpi()
2) Use the left mouse button to create a line in the higher square
3) Declare a known distance (10 cm)
4) See the computed dpi
dpi(img)

img2 <- image_pliman("la_leaves.jpg")
square leaf sample (2 x 2 cm)
dpi(img2)
}

utils_file Utilities for file manipulation

32 utils_file

Description

• file_extension() Get the extension of a file.
• file_name() Get the name of a file.
• file_dir() Get or directory of a file
• manipulate_files() Manipulate files in a directory with options to rename (insert prefix or

suffix) and save the new files to the same or other provided directory.
• pliman_indexes() Get the indexes available in pliman.
• pliman_indexes_eq() Get the equation of the indexes available in pliman.

Usage

file_extension(file)

file_name(file)

file_dir(file)

manipulate_files(
pattern,
dir = NULL,
prefix = NULL,
name = NULL,
suffix = NULL,
extension = NULL,
sep = "",
save_to = NULL,
overwrite = FALSE,
remove_original = FALSE,
verbose = TRUE

)

pliman_indexes()

pliman_indexes_eq()

Arguments

file The file name.
pattern A file name pattern.
dir The working directory containing the files to be manipulated. Defaults to the

current working directory.
prefix, suffix A prefix or suffix to be added in the new file names. Defaults to NULL (no prefix

or suffix).
name The name of the new files. Defaults to NULL (original names). name can be

either a single value or a character vector of the same length as the number of
files manipulated. If one value is informed, a sequential vector of names will be
created as "name_1", "name_2", and so on.

utils_file 33

extension The new extension of the file. If not declared (default), the original extensions
will be used.

sep An optional separator. Defaults to "".

save_to The directory to save the new files. Defaults to the current working directory. If
the file name of a file is not changed, nothing will occur. If save_to refers to
a subfolder in the current working directory, the files will be saved to the given
folder. In case of the folder doesn’t exist, it will be created. By default, the files
will not be overwritten. Set overwrite = TRUE to overwrite the files.

overwrite Overwrite the files? Defaults to FALSE.

remove_original

Remove original files after manipulation? defaults to FALSE. If TRUE the files in
pattern will be removed.

verbose If FALSE, the code is run silently.

Value

• file_extension(), file_name(), and file_dir() return a character string.

• manipulate_files() No return value. If verbose == TRUE, a message is printed indicating
which operation succeeded (or not) for each of the files attempted.

Examples

library(pliman)
get file name, directory and extension
file <- "E:/my_folder/my_subfolder/image1.png"
file_dir(file)
file_name(file)
file_extension(file)

manipulate files
dir <- tempdir()
list.files(dir)
file.create(paste0(dir, "/test.txt"))
list.files(dir)
manipulate_files("test",

dir = paste0(dir, "\\"),
prefix = "chang_",
save_to = paste0(dir, "\\"),
overwrite = TRUE)

list.files(dir)

34 utils_image

utils_image Import and export images

Description

Import images from files and URLs and write images to files, possibly with batch processing.

Usage

image_import(
image,
...,
pattern = NULL,
path = NULL,
plot = FALSE,
nrow = NULL,
ncol = NULL

)

image_export(image, name, prefix = "", extension = NULL, subfolder = NULL, ...)

image_pliman(image, plot = FALSE)

Arguments

image • For image_import(), a character vector of file names or URLs.
• For image_export(), an Image object, an array or a list of images.
• For image_pliman(), a charactere value specifying the image example.

See ?pliman_images for more details.
... Alternative arguments passed to the corresponding functions from the jpeg, png,

and tiff packages.
pattern A pattern of file name used to identify images to be imported. For example,

if pattern = "im" all images in the current working directory that the name
matches the pattern (e.g., img1.-, image1.-, im2.-) will be imported as a list.
Providing any number as pattern (e.g., pattern = "1") will select images that
are named as 1.-, 2.-, and so on. An error will be returned if the pattern matches
any file that is not supported (e.g., img1.pdf).

path A character vector of full path names; the default corresponds to the working
directory, getwd(). It will overwrite (if given) the path informed in image argu-
ment.

plot Plots the image after importing? Defaults to FALSE.
nrow, ncol Passed on to image_combine(). The number of rows and columns to use in the

composite image when plot = TRUE.
name An string specifying the name of the image. It can be either a character with the

image name (e.g., "img1") or name and extension (e.g., "img1.jpg"). If none file
extension is provided, the image will be saved as a *.jpg file.

utils_measures 35

prefix A prefix to include in the image name when exporting a list of images. Defaults
to "", i.e., no prefix.

extension When image is a list, extension can be used to define the extension of exported
files. This will overwrite the file extensions given in image.

subfolder Optional character string indicating a subfolder within the current working di-
rectory to save the image(s). If the folder doesn’t exist, it will be created.

Value

• image_import() returns a new Image object.

• image_export() returns an invisible vector of file names.

• image_pliman() returns a new Image object with the example image required. If an empty
call is used, the path to the tmp_images directory installed with the package is returned.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(pliman)
folder <- image_pliman()
full_path <- paste0(folder, "/sev_leaf.jpg")
(path <- file_dir(full_path))
(file <- basename(full_path))
image_import(image = full_path)
image_import(image = file, path = path)

utils_measures Utilities for object measures

Description

• get_measures() computes object measures (area, perimeter, radius) by using either a known
resolution (dpi) or an object with known measurements.

• plot_measures() draws the object measures given in an object to the current plot. The object
identification ("id") is drawn by default.

Usage

get_measures(
object,
id = NULL,
measure = NULL,
dpi = NULL,
sep = "_|-",
verbose = TRUE,

36 utils_measures

digits = 3
)

plot_measures(
object,
id = NULL,
measure = "id",
hjust = NULL,
vjust = NULL,
digits = 2,
size = 0.9,
col = "white",
...

)

Arguments

object An object computed with analyze_objects().

id An object in the image to indicate a known value.

measure For plot_measures(), a character string; for get_measures(), a two-sided
formula, e.g., measure = area ~ 100 indicating the known value of object id.
The right-hand side is the known value and the left-hand side can be one of the
following.

• area The known area of the object.
• perimeter The known perimeter of the object.
• radius_mean The known radius of the object.
• radius_min The known minimum radius of the object. If the object is

a square, then the radius_min of such object will be L/2 where L is the
length of the square side.

• radius_max The known maximum radius of the object. If the object is a
square, then the radius_max of such object according to the Pythagorean
theorem will be L x sqrt(2) / 2 where L is the length of the square side.

dpi A known resolution of the image in DPI (dots per inch).

sep Regular expression to manage file names. The function combines in the merge
object the object measures (sum of area and mean of all the other measures) of
all images that share the same filename prefix, defined as the part of the filename
preceding the first hyphen (-) or underscore (_) (no hyphen or underscore is
required). For example, the measures of images named L1-1.jpeg, L1-2.jpeg,
and L1-3.jpeg would be combined into a single image information (L1). This
feature allows the user to treat multiple images as belonging to a single sample,
if desired. Defaults to sep = "_|-".

verbose If FALSE, runs the code silently.

digits The number of significant figures. Defaults to 2.

hjust, vjust A numeric value to adjust the labels horizontally and vertically. Positive values
will move labels to right (hjust) and top (vjust). Negative values will move the
labels to left and bottom, respectively.

utils_measures 37

size The size of the text. Defaults to 0.9.

col The color of the text. Defaults to "white".

... Further arguments passed on to graphics::text().

Value

• For get_measures(), if measure is informed, the pixel values will be corrected by the value
of the known object, given in the unit of the right-hand side of measure. If dpi is informed,
then all the measures will be adjusted to the known dpi.

– If applied to an object of class anal_obj, returns a data frame with the object id and the
(corrected) measures.

– If applied to an object of class anal_obj_ls, returns a list of class measures_ls, with
two objects: (i) results, a data frame containing the identification of each image (img)
and object within each image (id); and (ii) summary a data frame containing the values for
each image. If more than one object is detected in a given image, the number of objects
(n), total area (area_sum), mean area (area_mean) and the standard deviation of the area
(area_sd) will be computed. For the other measures (perimeter and radius), the mean
values are presented.

• plot_measures() returns a NULL object, drawing the text according to the x and y coordinates
of the objects in object.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(pliman)
img <- image_pliman("objects_300dpi.jpg")
plot(img)
Image with four objects with a known resolution of 300 dpi
Higher square: 10 x 10 cm
Lower square: 5 x 5 cm
Rectangle: 4 x 2 cm
Circle: 3 cm in diameter

Count the objects using the blue band to segment the image
results <-

analyze_objects(img,
index = "B")

plot_measures(results, measure = "id")

Get object measures by declaring the known resolution in dots per inch
(measures <- get_measures(results, dpi = 300))

Calculated diagonal of the object 1
10 * sqrt(2) = 14.14

Observed diagonal of the object 1

38 utils_objects

measures[1, "radius_max"] * 2

Get object measures by declaring the known area of object 1
get_measures(results,

id = 1,
area ~ 100)

utils_objects Utilities for working with image objects

Description

• object_id() get the object identification in an image.

• object_coord() get the object coordinates and (optionally) draw a bounding rectangle around
multiple objects in an image.

• object_contour() returns the coordinates (x and y) for the contours of each object in the
image.

• object_isolate() isolates an object from an image.

Usage

object_coord(
image,
id = NULL,
index = "NB",
watershed = TRUE,
invert = FALSE,
fill_hull = FALSE,
threshold = "Otsu",
edge = 2,
extension = NULL,
tolerance = NULL,
object_size = "medium",
parallel = FALSE,
workers = NULL,
show_image = TRUE

)

object_contour(
image,
index = "NB",
invert = FALSE,
fill_hull = FALSE,
threshold = "Otsu",
watershed = TRUE,

utils_objects 39

extension = NULL,
tolerance = NULL,
object_size = "medium",
parallel = FALSE,
workers = NULL,
show_image = TRUE

)

object_isolate(image, id = NULL, parallel = FALSE, workers = NULL, ...)

object_id(image, parallel = FALSE, workers = NULL, ...)

Arguments

image An image of class Image or a list of Image objects.

id • For object_coord(), a vector (or scalar) of object id to compute the
bounding rectangle. Object ids can be obtained with object_id(). Set
id = "all" to compute the coordinates for all objects in the image. If id =
NULL (default) a bounding rectangle is drawn including all the objects.

• For object_isolate(), a scalar that identifies the object to be extracted.

index The index to produce a binary image used to compute bounding rectangle coor-
dinates. See image_binary() for more details.

watershed If TRUE (default) performs watershed-based object detection. This will detect
objects even when they are touching one other. If FALSE, all pixels for each
connected set of foreground pixels are set to a unique object. This is faster but
is not able to segment touching objects.

invert Inverts the binary image, if desired. Defaults to FALSE.

fill_hull Fill holes in the objects? Defaults to FALSE.

threshold By default (threshold = "Otsu"), a threshold value based on Otsu’s method
is used to reduce the grayscale image to a binary image. If a numeric value is
informed, this value will be used as a threshold. Inform any non-numeric value
different than "Otsu" to iteratively chosen the threshold based on a raster plot
showing pixel intensity of the index.

edge The number of pixels in the edge of the bounding rectangle. Defaults to 2.
extension, tolerance, object_size

Controls the watershed segmentation of objects in the image. See analyze_objects()
for more details.

parallel Processes the images asynchronously (in parallel) in separate R sessions running
in the background on the same machine. It may speed up the processing time
when image is a list. The number of sections is set up to 50% of available cores.

workers A positive numeric scalar or a function specifying the maximum number of
parallel processes that can be active at the same time.

show_image Shows the image with bounding rectangles? Defaults to TRUE.

... • For object_isolate(), further arguments passed on to object_coord().
• For object_id(), further arguments passed on to analyze_objects().

40 utils_pick

Value

• object_id() An image of class "Image" containing the object’s identification.

• object_coord() A list with the coordinates for the bounding rectangles. If id = "all" or a
numeric vector, a list with a vector of coordinates is returned.

• object_isolate() An image of class "Image" containing the isolated object.

Examples

library(pliman)
img <- image_pliman("la_leaves.jpg")
Get the object's (leaves) identification
object_id(img)

Get the coordinates and draw a bounding rectangle around leaves 1 and 3
object_coord(img, id = c(1, 3))

Isolate leaf 3
isolated <- object_isolate(img, id = 3)
plot(isolated)

utils_pick Picking up points in an image

Description

• pick_count() opens an interactive section where the user will be able to click in the image to
count objects (points) manually. In each mouse click, a point is drawn and an upward counter
is shown in the console. After n counts or after the user press Esc, the interactive process is
terminated and a data.frame with the x and y coordinates for each point is returned.

• pick_palette() creates an image palette by picking up color point(s) from the image.

• pick_rgb() Picks up the RGB values from selected point(s) in the image.

Usage

pick_count(
image,
n = Inf,
col = "red",
size = 0.8,
plot = TRUE,
verbose = TRUE

)

utils_pick 41

pick_rgb(image, n = Inf, col = "red", size = 0.8, plot = TRUE, verbose = TRUE)

pick_palette(
image,
n = Inf,
r = 3,
shape = "box",
random = TRUE,
width = 100,
height = 100,
col = "red",
size = 0.8,
plot = TRUE,
palette = TRUE,
verbose = TRUE

)

Arguments

image An Image object.

n The number of points of the pick_* function. Defaults to Inf. This means that
picking will run until the user press Esc.

col, size The color and size for the marker point.

plot Call a new plot(image) before processing? Defaults to TRUE.

verbose If TRUE (default) shows a counter in the console.

r The radius of neighborhood pixels. Defaults to 3.

shape A character vector indicating the shape of the brush around the selected pixel. It
can be "box", "disc", "diamond", "Gaussian" or "line". Defaults to "box".
In this case, if 'r = 1', all the 8 surrounding pixels are sampled. Setting to
"disc" and increasing the radius (r) will select surrounding pixels towards the
format of a sphere around the selected pixel.

random Randomize the selected pixels? Defaults to TRUE.

width, height The width and height of the generated palette. Defaults to 100 for both, i.e., a
square image of 100 x 100.

palette Plot the generated palette? Defaults to TRUE.

Value

• pick_count() returns data.frame with the x and y coordinates of the selected point(x).

• pick_rgb() returns a data.frame with the R, G, and B values of the selected point(s).

• pick_palette() returns an object of class Image.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

42 utils_polygon

Examples

if(interactive()){
library(pliman)
img <- image_pliman("soybean_touch.jpg")

start a counting process
pick_count(img)

get rgb from point(s)
pick_rgb(img)

create a palette from point(s)
pick_palette(img)
}

utils_polygon Utilities for Polygons

Description

• conv_hull() Compute convex hull of a set of points.

• poly_area() Compute the area of a polygon given by the vertices in the vectors x and y.

• poly_mass() Compute the center of mass of a polygon given by the vertices in the vectors x
and y.

• poly_spline() Smooths a polygon contour.

• plot_contour() Plot contour lines.

• plot_ellipse() Plots an ellipse that fits the major and minor axis for each object.

Usage

conv_hull(x, y = NULL, closed = TRUE)

poly_area(x, y = NULL)

poly_mass(x, y = NULL)

poly_spline(x, y = NULL, vertices = 100, k = 2, ...)

plot_contour(x, y = NULL, id = NULL, col = "black", lwd = 1, ...)

plot_mass(
x,
y = NULL,
id = NULL,
arrow = TRUE,
col = "black",

utils_polygon 43

cex = 1,
lwd = 1

)

plot_ellipse(object, id = NULL, col = "black", lwd = 1)

Arguments

x, y Coordinate vectors of points. This can be specified as two vectors (x and y),
or a 2-column matrix x. If x is a list of vector coordinates the function will be
applied to each element using base::lapply().

closed If TRUE (default) returns the vector of points of a closed polygon, i.e., the first
point is replicated as the last one.

vertices The number of spline vertices to create.

k The number of points to wrap around the ends to obtain a smooth periodic spline.

... • For plot_contour() and plot_ellipse() further arguments passed on to
graphics::lines().

• For plot_mass(), further arguments passed on to graphics::points().

id The object identification (numeric) to plot the contour/ellipse. By default (id =
NULL), the contour is plotted to all objects

col, lwd, cex The color, width of the lines, and size of point, respectively.

arrow If TRUE (default) plots two arrows connecting the center of mass to the minimum
and maximum radius.

object An object computed with analyze_objects().

Details

poly_area() computes the area of a polygon given a set of x and y coordinates using the Shoelace
formula, as follows (Lee and Lim, 2017).

A =
1

2

∣∣∣∣∣
n∑

i=1

(xiyi+1 − xi+1yi)

∣∣∣∣∣
, where x and y are the coordinates which form the corners of a polygon, and n is the number of
coordinates.

Value

• conv_hull() and poly_spline() returns a matrix with x and y coordinates for the convex
hull/smooth line in clockwise order. If x is a list, a list of points is returned.

• poly_area() returns a double, or a list if x is a list of vector points.

• poly_mass() returns a data.frame containing the coordinates for the center of mass, as well
as for the maximum and minimum distance from contour to the center of mass.

• plot_contour(), plot_mass(), and plot_ellipse() return a NULL object.

44 utils_polygon

References

Lee, Y., & Lim, W. (2017). Shoelace Formula: Connecting the Area of a Polygon and the Vector
Cross Product. The Mathematics Teacher, 110(8), 631–636. doi: 10.5951/mathteacher.110.8.0631

Examples

library(pliman)
A 2 x 2 square
x <- c(0, 0, 2, 2, 0)
y <- c(0, 2, 2, 0, 0)
df <- data.frame(x = x, y = y)
plot(df)
with(df, polygon(x, y, col = "red"))

poly_area(x, y)
poly_area(df)

center of mass of the square
cm <- poly_mass(df)
plot_mass(cm)

The convex hull will be the vertices of the square
(conv_square <- conv_hull(df))
plot_contour(conv_square,

col = "blue",
lwd = 6)

poly_area(conv_square)

############# Example with a polygon#############
x <- c(0, 1, 2, 3, 5, 2, -1, 0, 0)
y <- c(5, 6.5, 7, 3, 1, 1, 0, 2, 5)
df_poly <- data.frame(x = x, y = y)

area of the polygon
poly_area(df_poly)
plot(df_poly, pch = 19, col = "red")
with(df_poly, polygon(x, y, col = "red"))

center of mass of polygon
arrows from center of mass to maximum and minimum radius
cm <- poly_mass(df_poly)
plot_mass(cm, arrow = TRUE, col = "blue")

vertices of the convex hull
(conv_poly <- conv_hull(df_poly))

area of the convex hull
poly_area(conv_poly)

with(conv_poly,
polygon(x, y,

https://doi.org/10.5951/mathteacher.110.8.0631

utils_transform 45

col = rgb(1, 0, 0, 0.2)))

utils_transform Spatial transformations

Description

Performs image rotation and reflection

• image autocrop() Crops automatically an image to the area of objects.

• image_crop() Crops an image to the desired area.

• image_trim() Remove pixels from the edges of an image (20 by default).

• image_dimension() Gives the dimension (width and height) of an image.

• image_rotate() Rotates the image clockwise by the given angle.

• image_horizontal() Converts (if needed) an image to a horizontal image.

• image_vertical() Converts (if needed) an image to a vertical image.

• image_hreflect() Performs horizontal reflection of the image.

• image_vreflect() Performs vertical reflection of the image.

• image_resize() Resize the image. See more at EBImage::resize().

• image_contrast() Improve contrast locally by performing adaptive histogram equalization.
See more at EBImage::clahe().

• image_dilate() Performs image dilatation. See more at EBImage::dilate().

• image_erode() Performs image erosion. See more at EBImage::erode().

• image_opening() Performs an erosion followed by a dilation. See more at EBImage::opening().

• image_closing() Performs a dilation followed by an erosion. See more at EBImage::closing().

• image_filter() Performs median filtering in constant time. See more at EBImage::medianFilter().

• image_blur() Performs blurring filter of images. See more at EBImage::gblur().

• image_skeleton() Performs image skeletonization.

Usage

image_autocrop(
image,
index = "NB",
edge = 5,
parallel = FALSE,
workers = NULL,
verbose = TRUE,
plot = FALSE

)

46 utils_transform

image_crop(
image,
width = NULL,
height = NULL,
parallel = FALSE,
workers = NULL,
verbose = TRUE,
plot = FALSE

)

image_dimension(image, parallel = FALSE, workers = NULL, verbose = TRUE)

image_rotate(
image,
angle,
bg_col = "white",
parallel = FALSE,
workers = NULL,
verbose = TRUE,
plot = TRUE

)

image_horizontal(
image,
parallel = FALSE,
workers = NULL,
verbose = TRUE,
plot = FALSE

)

image_vertical(
image,
parallel = FALSE,
workers = NULL,
verbose = TRUE,
plot = FALSE

)

image_hreflect(
image,
parallel = FALSE,
workers = NULL,
verbose = TRUE,
plot = FALSE

)

image_vreflect(
image,

utils_transform 47

parallel = FALSE,
workers = NULL,
verbose = TRUE,
plot = FALSE

)

image_resize(
image,
rel_size = 100,
width,
height,
parallel = FALSE,
workers = NULL,
verbose = TRUE,
plot = FALSE

)

image_trim(
image,
edge = NULL,
top = NULL,
bottom = NULL,
left = NULL,
right = NULL,
parallel = FALSE,
workers = NULL,
verbose = TRUE,
plot = FALSE

)

image_dilate(
image,
kern = NULL,
size = NULL,
shape = "disc",
parallel = FALSE,
workers = NULL,
verbose = TRUE,
plot = FALSE

)

image_erode(
image,
kern = NULL,
size = NULL,
shape = "disc",
parallel = FALSE,
workers = NULL,

48 utils_transform

verbose = TRUE,
plot = FALSE

)

image_opening(
image,
kern = NULL,
size = NULL,
shape = "disc",
parallel = FALSE,
workers = NULL,
verbose = TRUE,
plot = FALSE

)

image_closing(
image,
kern = NULL,
size = NULL,
shape = "disc",
parallel = FALSE,
workers = NULL,
verbose = TRUE,
plot = FALSE

)

image_skeleton(
image,
kern = NULL,
parallel = FALSE,
workers = NULL,
verbose = TRUE,
plot = FALSE,
...

)

image_filter(
image,
size = 2,
cache = 512,
parallel = FALSE,
workers = NULL,
verbose = TRUE,
plot = FALSE

)

image_blur(
image,

utils_transform 49

sigma = 3,
parallel = FALSE,
workers = NULL,
verbose = TRUE,
plot = FALSE

)

image_contrast(
image,
parallel = FALSE,
workers = NULL,
verbose = TRUE,
plot = FALSE

)

Arguments

image An image or a list of images of class Image.

index The index to segment the image. See image_index() for more details. Defaults
to "NB" (normalized blue).

edge • for image_autocrop() the number of pixels in the edge of the cropped
image. If edge = 0 the image will be cropped to create a bounding rectangle
(x and y coordinates) around the image objects.

• for image_trim(), the number of pixels removed from the edges. By de-
fault, 20 pixels are removed from all the edges.

parallel Processes the images asynchronously (in parallel) in separate R sessions running
in the background on the same machine. It may speed up the processing time
when image is a list. The number of sections is set up to 70% of available cores.

workers A positive numeric scalar or a function specifying the maximum number of
parallel processes that can be active at the same time.

verbose If TRUE (default) a summary is shown in the console.

plot If TRUE plots the modified image. Defaults to FALSE.

width, height • For image_resize() the Width and height of the resized image. These
arguments can be missing. In this case, the image is resized according to
the relative size informed in rel_size.

• For image_crop() a numeric vector indicating the pixel range (x and y,
respectively) that will be maintained in the cropped image, e.g., width =
100:200

angle The rotation angle in degrees.

bg_col Color used to fill the background pixels, defaults to "white".

rel_size The relative size of the resized image. Defaults to 100. For example, setting
rel_size = 50 to an image of width 1280 x 720, the new image will have a
size of 640 x 360.

top, bottom, left, right

The number of pixels removed from top, bottom, left, and right when using
image_trim().

50 utils_transform

kern An Image object or an array, containing the structuring element. Defaults to a
brushe generated with EBImage::makeBrush().

size • For image_filter() is the median filter radius (integer). Defaults to 3.
• For image_dilate() and image_erode() is an odd number containing the

size of the brush in pixels. Even numbers are rounded to the next odd one.
The default depends on the image resolution and is computed as the image
resolution (megapixels) times 20.

shape A character vector indicating the shape of the brush. Can be box, disc, diamond,
Gaussian or line. Default is disc.

... Additional arguments passed on to image_binary().

cache The the L2 cache size of the system CPU in kB (integer). Defaults to 512.

sigma A numeric denoting the standard deviation of the Gaussian filter used for blur-
ring. Defaults to 3.

Value

• image_skeleton() returns a binary Image object.

• All other functions returns a modified version of image depending on the image_*() function
used.

• If image is a list, a list of the same length will be returned.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(pliman)
img <- image_pliman("sev_leaf.jpg")
plot(img)
img <- image_resize(img, 50)
img1 <- image_rotate(img, 45)
img2 <- image_hreflect(img)
img3 <- image_vreflect(img)
img4 <- image_vertical(img)
image_combine(img1, img2, img3, img4)

Index

∗ images
pliman_images, 24

%>% (pipe), 23

analyze_objects, 2
analyze_objects(), 2, 27, 36, 39, 43

base::expand.grid(), 28
base::lapply(), 43

cm_to_dpi (utils_dpi), 30
cm_to_dpi(), 30, 31
cm_to_pixels (utils_dpi), 30
cm_to_pixels(), 30, 31
conv_hull (utils_polygon), 42

distance (utils_dpi), 30
distance(), 30
dpi (utils_dpi), 30
dpi(), 30, 31
dpi_to_cm (utils_dpi), 30
dpi_to_cm(), 30, 31

EBImage::clahe(), 45
EBImage::closing(), 45
EBImage::dilate(), 45
EBImage::erode(), 45
EBImage::gblur(), 45
EBImage::makeBrush(), 50
EBImage::medianFilter(), 45
EBImage::opening(), 45
EBImage::resize(), 45
EBImage::watershed(), 19

file_dir (utils_file), 31
file_extension (utils_file), 31
file_name (utils_file), 31

get_measures (utils_measures), 35
getwd(), 34
graphics::lines(), 43

graphics::points(), 43
graphics::text(), 37

image_autocrop (utils_transform), 45
image_autocrop(), 49
image_binary, 8
image_binary(), 6, 39, 50
image_blur (utils_transform), 45
image_blur(), 22
image_closing (utils_transform), 45
image_combine, 10
image_combine(), 34
image_contrast (utils_transform), 45
image_crop (utils_transform), 45
image_dilate (utils_transform), 45
image_dimension (utils_transform), 45
image_erode (utils_transform), 45
image_export (utils_image), 34
image_filter (utils_transform), 45
image_filter(), 4, 22, 29
image_horizontal (utils_transform), 45
image_hreflect (utils_transform), 45
image_import (utils_image), 34
image_index, 11
image_index(), 5, 9, 14, 15, 19, 29, 49
image_opening (utils_transform), 45
image_palette (palettes), 22
image_pliman (utils_image), 34
image_resize (utils_transform), 45
image_rotate (utils_transform), 45
image_segment, 14
image_segment_iter (image_segment), 14
image_skeleton (utils_transform), 45
image_to_mat, 16
image_trim (utils_transform), 45
image_trim(), 49
image_vertical (utils_transform), 45
image_vreflect (utils_transform), 45

lattice::densityplot(), 6

51

52 INDEX

lattice::histogram(), 6

manipulate_files (utils_file), 31
measure_disease, 17
measure_disease(), 25, 26
measure_disease_iter (measure_disease),

17

npixels (utils_dpi), 30
npixels(), 30

object_contour (utils_objects), 38
object_coord (utils_objects), 38
object_coord(), 39
object_id (utils_objects), 38
object_id(), 39
object_isolate (utils_objects), 38

palettes, 22
pick_count (utils_pick), 40
pick_palette (utils_pick), 40
pick_palette(), 21
pick_rgb (utils_pick), 40
pipe, 23
pixels_to_cm (utils_dpi), 30
pixels_to_cm(), 30, 31
pliman_images, 24
pliman_indexes (utils_file), 31
pliman_indexes(), 9, 12, 15
pliman_indexes_eq (utils_file), 31
pliman_indexes_eq(), 5
plot.anal_obj (analyze_objects), 2
plot.anal_obj(), 2
plot.image_index (image_index), 11
plot_contour (utils_polygon), 42
plot_ellipse (utils_polygon), 42
plot_mass (utils_polygon), 42
plot_measures (utils_measures), 35
png(), 26
poly_area (utils_polygon), 42
poly_mass (utils_polygon), 42
poly_spline (utils_polygon), 42

rgb_to_hsv, 25

sad, 25
sad(), 26
summary_index, 27

tune_tolerance, 28

utils_dpi, 30
utils_file, 31
utils_image, 34
utils_measures, 35
utils_objects, 38
utils_pick, 40
utils_polygon, 42
utils_transform, 45

	analyze_objects
	image_binary
	image_combine
	image_index
	image_segment
	image_to_mat
	measure_disease
	palettes
	pipe
	pliman_images
	rgb_to_hsv
	sad
	summary_index
	tune_tolerance
	utils_dpi
	utils_file
	utils_image
	utils_measures
	utils_objects
	utils_pick
	utils_polygon
	utils_transform
	Index

