Package ‘pointblank’

October 14, 2022

Type Package
Version 0.11.2

Title Data Validation and Organization of Metadata for Local and
Remote Tables

Description Validate data in data frames, 'tibble’ objects, 'Spark’
'DataFrames', and database tables. Validation pipelines can be made using
easily-readable, consecutive validation steps. Upon execution of the
validation plan, several reporting options are available. User-defined
thresholds for failure rates allow for the determination of appropriate
reporting actions. Many other workflows are available including an
information management workflow, where the aim is to record, collect, and
generate useful information on data tables.

License MIT + file LICENSE

URL https://rich-iannone.github.io/pointblank/,
https://github.com/rich-iannone/pointblank

BugReports https://github.com/rich-iannone/pointblank/issues
Encoding UTF-8

LazyData true

ByteCompile true

RoxygenNote 7.2.1

Depends R (>=3.5.0)

Imports base6denc (>= 0.1-3), blastula (>= 0.3.2), cli (>=2.5.0), DBI
(>=1.1.0), digest (>= 0.6.27), dplyr (>= 1.0.6), dbplyr (>=
2.1.1), fs (>=1.5.2), glue (>= 1.6.2), gt (>=0.6.0),
htmltools (>= 0.5.2), knitr (>= 1.30), rlang (>= 1.0.3),
magrittr, scales (>= 1.1.1), testthat (>= 2.3.2), tibble (>=
3.1.7), tidyr (>= 1.2.0), tidyselect (>= 1.1.2), yaml (>=
2.2.1)

Suggests arrow, bigrquery, covr, crayon, data.table, duckdb, ggforce,
ggplot2, jsonlite, log4r, lubridate, RSQLite, RMySQL,
RPostgres, readr, rmarkdown, sparklyr, dittodb, odbc

1

https://rich-iannone.github.io/pointblank/
https://github.com/rich-iannone/pointblank
https://github.com/rich-iannone/pointblank/issues

2 R topics documented:

NeedsCompilation no

Author Richard Iannone [aut, cre] (<https://orcid.org/0000-0003-3925-190X>),
Mauricio Vargas [aut] (<https://orcid.org/0000-0003-1017-7574>)

Maintainer Richard Iannone <riannone@me.com>
Repository CRAN
Date/Publication 2022-10-08 23:30:02 UTC

R topics documented:

action_levels L e 4
ACHIVALE_SIEPS « « . v v v e e e e e e e e e e e 9
affix_date e e e e e 10
affix_datetime e 13
all_passed e e 16
col_count_match e 17
COLEXISIS . . o o o e 23
colis_character e 28
colis_date e e e e e e 33
col is_factoro e 38
col_is_integer e e 43
col_is_logical e 48
COl S NUMETIC o e 53
COLAS_POSIX . .« v v v o e e e e e e e e e e 58
col_schema e e e e 63
col_schema_match 65
col_vals_between e e 72
col_vals_decreasing e e 79
col_vals_equal 87
col_vals_expr e e e 94
colvals_gt e 100
col_vals_gte 107
col_vals_InCreasing ot i e e e e e e 114
col_vals_in_set e 122
colvals It e, 128
colvals_Ite e 135
col_vals_make_set e 142
col_vals_make subset e 149
col_vals_not_between 155
col_vals_not_equal 163
col_vals_not_in_Set e 170
col_vals_not_null e 176
col_vals_null e 182
col_vals_regex 188
col_vals_within_spec e 195
conjointly 203

Create_agent v v v vttt e e e e e e e e e e e 209

https://orcid.org/0000-0003-3925-190X
https://orcid.org/0000-0003-1017-7574

R topics documented: 3

create_informant L L L e e e 217
create_multiagent L. L e e 222
db_tbl e 224
deactivate_Stepso e e e 230
draft_validation e e e 231
email _blast e 237
email_Create e 241
EXPOTE_TEPOTE . o . v v v v v e 242
file_tbl e 246
from_github 250
QAME_TEVENUE v v o e v vt e e e e e e e e e e e e e 252
game_revenue_info L L 253
GEL_agent_TEePOTL v v it e e e e e e e e e e e e 254
get_agent_X_list L 258
get_data_extractS e e e e e e e e e 261
get_informant_report e e e 263
get_multiagent_report e e 265
get_sundered_data L 269
L tE_PAram e e e e e e e e e e e e e 273
has_columns e 275
INCOTPOTALE o v v e it it e e e e e e 278
info_columns e e e e e e 280
info_columns_from_tbl 283
INfO_SECHON o e 286
INfO_SNIPPet o e e e e e 289
info_tabular e e e e e 292
INEEITOZAE o o v o o o e e e e e e e e e e e 295
[ogdr Step o o e e 297
read_disk_multiagent 300
TEMOVE_SIEPS -« « v ¢ v v v e v e e e e e e e e e e e e e e e e e e e 301
rows_complete L e 302
rows_diStINCt e e e 308
row_count_match e 314
scan_data e, 321
seriallyo e 323
set_tbl e e e e 330
small table e e 331
small_table_sqlite 332
snip_highest L e 333
SNp_liSt e e 334
smip_lowest 336
SMIP_SEALS e e e e e e e e e e e e e e e 337
specially e e 339
specifications 345
stock_msg_body 346
stock_msg_footer L e e 346
stop_if_not . ..o L 347

thl_get 348

4 action_levels

tblLmatch e 350
tblosource e 356
bl StOre e e 358
tt_string_info L. Lo 366
t_SUMMAry_statS e e e e e e e e e e e e e e 367
tt_tbl_colnames e 370
tthbl_dimS e 372
tt_time _shift s 374
tt_time_SliCe e e e e e e e e e e e e e 376
validate_rmd L e 378
write_testthat_file e 379
x_read_disk s 384
x_write_disk e e 386
yaml_agent_interrogateo e e e e e e e 390
yaml_agent_ShOW_eXprs 0 i i e e e e 392
yaml_agent_String e e e 394
yaml_eXeC e e e e e 395
yaml_informant incorporate 398
yaml_read_agent e e 399
yaml_read_informant 401
vaml_Write e e e 402
Index 409
action_levels Set action levels: failure thresholds and functions to invoke
Description

The action_levels() function works with the actions argument that is present in the create_agent ()
function and in every validation step function (which also has an actions argument). With it, we
can provide threshold fail levels for any combination of warn, stop, or notify states.

We can react to any entrance of a state by supplying corresponding functions to the fns argu-
ment. They will undergo evaluation at the time when the matching state is entered. If provided to
create_agent () then the policies will be applied to every validation step, acting as a default for
the validation as a whole.

Calls of action_levels() could also be applied directly to any validation step and this will act
as an override if set also in create_agent(). Usage of action_levels() is required to have
any useful side effects (i.e., warnings, throwing errors) in the case of validation functions oper-
ating directly on data (e.g., mtcars %>% col_vals_lt("mpg", 35)). There are two helper func-
tions that are convenient when using validation functions directly on data (the agent-less work-
flow): warn_on_fail() and stop_on_fail(). These helpers either warn or stop (default fail-
ure threshold for each is set to 1), and, they do so with informative warning or error messages.
The stop_on_fail() helper is applied by default when using validation functions directly on data
(more information on this is provided in Details).

action_levels 5

Usage

action_levels(warn_at = NULL, stop_at = NULL, notify_at = NULL, fns = NULL)

warn_on_fail(warn_at

D

stop_on_fail(stop_at = 1)

Arguments

warn_at, stop_at, notify_at

The threshold number or fraction of test units that can provide a fail result be-
fore entering the warn, stop, or notify failure states. If this a decimal value
between @ and 1 then it’s a proportional failure threshold (e.g., @.15 indicates
that if 15% percent of the test units are found to fail, then the designated fail-
ure state is entered). Absolute values starting from 1 can be used instead, and
this constitutes an absolute failure threshold (e.g., 10 means that if 10 of the test
units are found to fail, the failure state is entered).

fns A named list of functions that is to be paired with the appropriate failure states.
The syntax for this list involves using failure state names from the set of warn,
stop, and notify. The functions corresponding to the failure states are pro-
vided as formulas (e.g., list(warn = ~warning("Too many failures.")). A
series of expressions for each named state can be used by enclosing the set of
statements with { }.

Details

The output of the action_levels() call in actions will be interpreted slightly differently if using
an agent or using validation functions directly on a data table. For convenience, when working
directly on data, any values supplied to warn_at or stop_at will be automatically given a stock
warning() or stop() function. For example using small_table %>% col_is_integer("date")
will provide a detailed stop message by default, indicating the reason for the failure. If you were to
supply the fns for stop or warn manually then the stock functions would be overridden. Further-
more, if actions is NULL in this workflow (the default), pointblank will use a stop_at value of 1
(providing a detailed, context-specific error message if there are any fail units). We can absolutely
suppress this automatic stopping behavior by at each validation step by setting active = FALSE. In
this interactive data case, there is no stock function given for notify_at. The notify failure state
is less commonly used in this workflow as it is in the agent-based one.

When using an agent, we often opt to not use any functions in fns as the warn, stop, and notify
failure states will be reported on when using create_agent_report() (and, usually that’s suffi-
cient). Instead, using the end_fns argument is a better choice since that scheme provides useful
data on the entire interrogation, allowing for finer control on side effects and reducing potential for
duplicating any side effects.

Examples

For these examples, we will use the included small_table dataset.

small_table

#> # A tibble:

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

O N O Ol WN —

©o

10
11
12
13

date_time
<dttm>
2016-01-04
2016-01-04
2016-01-05
2016-01-06
2016-01-09
2016-01-11
2016-01-15
2016-01-17
2016-01-20
2016-01-20
2016-01-26
2016-01-28
2016-01-30

11

00:
13:
17:
12:
06:
18:

11

04:
04:
20:
02:
:23:

11

13 x 8

:00:
32:
32:
23:
36:
15:
46:
:27:
30:
30:
Q7:
100

51

00
00
00
00
00
00
00
00
00
00
00

00

date
<date>
2016-01-04
2016-01-04
2016-01-05
2016-01-06
2016-01-09
2016-01-11
2016-01-15
2016-01-17
2016-01-20
2016-01-20
2016-01-26
2016-01-28
2016-01-30

a
<int>

= NP W WS N DOONOWDN

b

<chr>
1-bcd-345
5-egh-163
8-kdg-938
5-jdo-903
3-1dm-038
2-dhe-923
1-knw-093
5-boe-639
5-bce-642
5-bce-642
2-dmx-010
7-dmx-010
3-dka-303

C
<dbl>
3
8
3

=
00NN WOW WONWDNII>

=
>

de
<db1l>
3423.
10000.
2343.
3892.
284.
3291.
843.
1036.
838.
838.
834.
108.
2230.

<lgl>
TRUE
TRUE
TRUE
FALSE
TRUE
TRUE
TRUE
FALSE
FALSE
FALSE
TRUE
FALSE
TRUE

action_levels

.F
<chr>
high
low
high
mid
low
mid
high
low
high
high
low
low
high

Create an action_levels object with fractional values for the warn, stop, and notify states.

al <-
action_levels(

warn_at = 0.

stop_at = 0.

notify_at =
)

S 0N

A summary of settings for the al object is shown by printing it.

Create a pointblank agent and apply the al object to actions. Add two validation steps and inter-
rogate the small_table.

agent_1 <-
create_agent(
tbl = small_table,
actions = al
) %>%
col_vals_gt(
columns =
) %%
col_vals_1t(
columns =
) %%
interrogate()

1
N

vars(a), value

vars(d), value = 20000

The report from the agent will show that the warn state has been entered for the first validation step
but not the second one. We can confirm this in the console by inspecting the warn component in the
agent’s x-list.

action_levels 7

x_list <- get_agent_x_list(agent = agent_1)
x_list$warn
[1] TRUE FALSE

Applying the action_levels object to the agent means that all validation steps will inherit these
settings but we can override this by applying another such object to the validation step instead (this
time using the warn_on_fail() shorthand).

agent_2 <-
create_agent(
tbl = small_table,
actions = al
) %%
col_vals_gt(
columns = vars(a), value = 2,
actions = warn_on_fail(warn_at = 0.5)
) %>%
col_vals_1t(
columns = vars(d), value = 20000
) %>%
interrogate()

In this case, the first validation step has a less stringent failure threshold for the warn state and
it’s high enough that the condition is not entered. This can be confirmed in the console through
inspection of the x-list warn component.

x_list <- get_agent_x_list(agent = agent_2)
x_list$warn
[1] FALSE FALSE

In the context of using validation functions directly on data (i.e., no involvement of an agent) we
want to trigger warnings and raise errors. The following will yield a warning if it is executed
(returning the small_table data).

small_table %>%
col_vals_gt(
columns = vars(a), value = 2,
actions = warn_on_fail(warn_at = 2)

)
A tibble: 13 x 8
date_time date ab C de
<dttm> <date> <int> <chr> <dbl> <dbl> <1lgl>

1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-. . . 3 3423. TRUE

##
##
##
##
##
##
##
##
##
##
##
##
##
#i#
##
##
##
##

x failure level (4) >= failure threshold (2)

action_levels

2 2016-01-04 00:32:00 2016-01-04 3 . TRUE
3 2016-01-05 13:32:00 2016-01-05 6 . TRUE
4 2016-01-06 17:23:00 2016-01-06 2 . FALSE
5 2016-01-09 12:36:00 2016-01-09 8 7 . TRUE
6 2016-01-11 06:15:00 2016-01-11 4 4 . TRUE
7 2016-01-15 18:46:00 2016-01-15 7 3 . TRUE
8 2016-01-17 11:27:00 2016-01-17 4 2 . FALSE
9 2016-01-20 04:30:00 2016-01-20 3 9 . FALSE
10 2016-01-20 04:30:00 2016-01-20 3 9 . FALSE
11 2016-01-26 20:07:00 2016-01-26 4 7 . TRUE
12 2016-01-28 02:51:00 2016-01-28 2 8 . FALSE
13 2016-01-30 11:23:00 2016-01-30 1 NA . TRUE
... with 1 more variable: f <chr>
Warning message:
Exceedance of failed test units where values in should have been >
t2t.
The “col_vals_gt()" validation failed beyond the absolute threshold
level (2).

With the same pipeline, not supplying anything for actions (it’s NULL by default) will have the

same effect as using stop_on_fail(stop_at =1).

small_table %>%

Error:

been > ‘2%
The ‘col_vals_gt()" validation failed beyond the absolute threshold
level (1).

x failure level (4) >= failure threshold (1)

col_vals_gt(columns

vars(a), value

Exceedance of failed test units where values in

Here’s the equivalent set of statements:

small_table %>%

Error:

col_vals_gt(

columns = vars(a), value = 2,

actions = stop_on_fail(stop_at = 1)

been > 2%,
The ‘col_vals_gt()* validation failed beyond the absolute threshold
level (1).

* failure level (4) >= failure threshold (1)

Exceedance of failed test units where values in

should have

should have

This is because the stop_on_fail() call is auto-injected in the default case (when operating on
data) for your convenience. Behind the scenes a ’secret agent’ uses ’covert actions’: all so you can
type less.

activate_steps 9

Function ID

1-5

See Also

Other Planning and Prep: create_agent(), create_informant(), db_tbl(),draft_validation(),
file_tb1l(), scan_data(), thl_get(), tbl_source(), thl_store(), validate_rmd()

activate_steps Activate one or more of an agent’s validation steps

Description

If certain validation steps need to be activated after the creation of the validation plan for an agent,
use the activate_steps() function. This is equivalent to using the active = TRUE for the selected
validation steps (active is an argument in all validation functions). This will replace any function
that may have been defined for the active argument during creation of the targeted validation steps.

Usage

activate_steps(agent, i = NULL)

Arguments
agent An agent object of class ptblank_agent.
i The validation step number, which is assigned to each validation step in the
order of definition.
Value

A ptblank_agent object.

Function ID

9-5

See Also

For the opposite behavior, use the deactivate_steps() function.

Other Object Ops: deactivate_steps(), export_report(), remove_steps(), set_tbl(), x_read_disk(),
x_write_disk()

10 affix_date

Examples

Create an agent that has the
‘small_table® object as the
target table, add a few inactive
validation steps, and then use
‘interrogate()*
agent_1 <-
create_agent(
tbl = small_table,
tbl_name = "small_table”,
label = "An example.”
) %%
col_exists(
columns = vars(date),
active = FALSE
) %%
col_vals_regex(
columns = vars(b),
regex = "[0-9]-[a-z1{3}-[0-91{3}",
active = FALSE
) %%
interrogate()

o o

In the above, the data is
not actually interrogated
because the ‘active' setting
was ‘FALSE® in all steps; we
can selectively change this
with ‘activate_steps()*
agent_2 <-

agent_1 %>%

activate_steps(i = 1) %>%
interrogate()

Hod ¥ o O

affix_date Put the current date into a file name

Description

This function helps to affix the current date to a filename. This is useful when writing agent and/or
informant objects to disk as part of a continuous process. The date can be in terms of UTC time
or the local system time. The date can be affixed either to the end of the filename (before the file
extension) or at the beginning with a customizable delimiter.

The x_write_disk(), yaml_write() functions allow for the writing of pointblank objects to disk.
Furthermore the log4r_step() function has the append_to argument that accepts filenames, and,
it’s reasonable that a series of log files could be differentiated by a date component in the naming
scheme. The modification of the filename string takes effect immediately but not at the time of
writing a file to disk. In most cases, especially when using affix_date() with the aforementioned

affix_date

11

file-writing functions, the file timestamps should approximate the time components affixed to the

filenames.
Usage
affix_date(
filename,
position = c("end”, "start"),
format = "%Y-%m-%d",
delimiter = "_",
utc_time = TRUE
)
Arguments
filename The filename to modify.
position Where to place the formatted date. This could either be at the "end"” of the
filename (the default) or at the "start”.
format A base::strptime() format string for formatting the date. By default, this is
"%Y-%m-%d" which expresses the date according to the ISO 8601 standard (as
YYYY-MM-DD). Refer to the documentation on base: : strptime() for conversion
specifications if planning to use a different format string.
delimiter The delimiter characters to use for separating the date string from the original
file name.
utc_time An option for whether to use the current UTC time to establish the date (the
default, with TRUE), or, use the system’s local time (FALSE).
Value

A character vector.

Examples

The basics of creating a filename with the current date:
Taking the generic "pb_file" name for a file, we add the current date to it as a suffix.

affix_date(filename = "pb_file")

[1] "pb_file_2022-04-01"

File extensions won’t get in the way:

affix_date(filename = "pb_file.rds")

[1] "pb_file_2022-04-01.rds"

The date can be used as a prefix.

affix_date(
filename = "pb_file",
position = "start"

)

12 affix_date

[1] "2022-04-01_pb_file”
The date pattern can be changed and so can the delimiter.

affix_date(
filename = "pb_file.yml",
format = "%Y%m%d",
delimiter = "-"

)

[1] "pb_file-20220401.yml"

Using a date-based filename in a pointblank workflow:

We can use a file-naming convention involving dates when writing output files immediately after
interrogating. This is just one example (any workflow involving a filename argument is applica-
ble). It’s really advantageous to use date-based filenames when interrogating directly from YAML
in a scheduled process.

yaml_agent_interrogate(
filename = system.file(
"yaml”, "agent-small_table.yml",
package = "pointblank”
)
) %>%
x_write_disk(
filename = affix_date(
filename = "small_table_agent.rds",
delimiter = "-"
),
keep_tbl = TRUE,
keep_extracts = TRUE
)

In the above, we used the written-to-disk agent (The "agent-small_table.yml"” YAML file) for
an interrogation via yaml_agent_interrogate(). Then, the results were written to disk as an
RDS file. In the filename argument of x_write_disk(), the affix_date() function was used
to ensure that a daily run would produce a file whose name indicates the day of execution.

Function ID

13-3

See Also

The affix_datetime() function provides the same features except it produces a datetime string
by default.

Other Utility and Helper Functions: affix_datetime(), col_schema(), from_github(), has_columns(),
stop_if_not()

affix_datetime 13

affix_datetime Put the current datetime into a file name

Description

This function helps to affix the current datetime to a filename. This is useful when writing agent
and/or informant objects to disk as part of a continuous process. The datetime string can be based on
the current UTC time or the local system time. The datetime can be affixed either to the end of the
filename (before the file extension) or at the beginning with a customizable delimiter. Optionally,
the time zone information can be included. If the datetime is based on the local system time, the
user system time zone is shown with the format <time>(+/-)hhmm. If using UTC time, then the
<time>Z format is adopted.

The x_write_disk(), yaml_write() functions allow for the writing of pointblank objects to
disk. The modification of the filename string takes effect immediately but not at the time of writing
a file to disk. In most cases, especially when using affix_datetime() with the aforementioned
file-writing functions, the file timestamps should approximate the time components affixed to the

filenames.
Usage
affix_datetime(
filename,
position = c("end", "start"),
format = "%Y-%m-%d_%H-%M-%S" ,
delimiter = "_",

utc_time = TRUE,
add_tz = FALSE

)
Arguments

filename The filename to modify.

position Where to place the formatted datetime. This could either be at the "end” of the
filename (the default) or at the "start".

format A base::strptime() format string for formatting the datetime. By default,
this is "%Y-%m-%dT%H: %M:%S" which expresses the date according to the ISO
8601 standard. For example, if the current datetime is 2020-12-04 13:11:23,
the formatted string would become "2020-12-04T13:11:23". Refer to the doc-
umentation on base: :strptime() for conversion specifications if planning to
use a different format string.

delimiter The delimiter characters to use for separating the datetime string from the orig-
inal file name.

utc_time An option for whether to use the current UTC time to establish the datetime (the

default, with TRUE), or, use the system’s local time (FALSE).

14 affix_datetime

add_tz Should the time zone (as an offset from UTC) be provided? If TRUE then
the UTC offset will be either provided as <time>Z (if utc_time = TRUE) or
<time>(+/-)hhmm. By default, this is FALSE.

Value

A character vector.

Examples

The basics of creating a filename with the current date and time:

Taking the generic "pb_file" name for a file, we add the current datetime to it as a suffix.
affix_datetime(filename = "pb_file")

[1] "pb_file_2022-04-01_00-32-53"

File extensions won’t get in the way:

affix_datetime(filename = "pb_file.rds")

[1] "pb_file_2022-04-01_00-32-53.rds"

The datetime can be used as a prefix.

affix_datetime(
filename = "pb_file",
position = "start"”

)
[1] "2022-04-01_00-32-53_pb_file”
The datetime pattern can be changed and so can the delimiter.

affix_datetime(
filename = "pb_file.yml",
format = "%Y%m%d_%H%EM%S" ,
delimiter = "-"

)
[1] "pb_file-20220401_003253.yml"
Time zone information can be included. By default, all datetimes are given in the UTC time zone.

affix_datetime(
filename = "pb_file.yml",
add_tz = TRUE

)

[1] "pb_file_2022-04-01_00-32-53Z.yml"

We can use the system’s local time zone with utc_time = FALSE.

affix_datetime 15

affix_datetime(
filename = "pb_file.yml",
utc_time = FALSE,
add_tz = TRUE

)

[1] "pb_file_2022-03-31_20-32-53-0400.yml"

Using a datetime-based filename in a pointblank workflow:

We can use a file-naming convention involving datetimes when writing output files immediately
after interrogating. This is just one example (any workflow involving a filename argument is
applicable). It’s really advantageous to use datetime-based filenames when interrogating directly
from YAML in a scheduled process, especially if multiple validation runs per day are being exe-
cuted on the same target table.

yaml_agent_interrogate(
filename = system.file(
"yaml"”, "agent-small_table.yml",
package = "pointblank”
)
) %>%
x_write_disk(
filename = affix_datetime(
filename = "small_table_agent.rds”,
delimiter = "-"
),
keep_tbl = TRUE,
keep_extracts = TRUE

)

In the above, we used the written-to-disk agent (The "agent-small_table.yml” YAML file) for
an interrogation via yaml_agent_interrogate(). Then, the results were written to disk as an
RDS file. In the filename argument of x_write_disk(), the affix_datetime() function was
used to ensure that frequent runs would produce files whose names indicate the day and time of
execution.

Function ID

13-4

See Also

The affix_date() function provides the same features except it produces a date string by default.

Other Utility and Helper Functions: affix_date(), col_schema(), from_github(), has_columns(),
stop_if_not()

16 all_passed

all_passed Did all of the validations fully pass?

Description

Given an agent’s validation plan that had undergone interrogation via interrogate(), did every
single validation step result in zero failing test units? Using the all_passed() function will let us
know whether that’s TRUE or not.

Usage
all_passed(agent, i = NULL)

Arguments

agent An agent object of class ptblank_agent.

i A vector of validation step numbers. These values are assigned to each vali-
dation step by pointblank in the order of definition. If NULL (the default), all
validation steps will be used for the evaluation of complete passing.

Details

The all_passed() function provides a single logical value based on an interrogation performed in
the agent-based workflow. For very large-scale validation (where data quality is a known issue, and
is perhaps something to be tamed over time) this function is likely to be less useful since it is quite
stringent (all test units must pass across all validation steps).

Should there be a requirement for logical values produced from validation, a more flexible alterna-
tive is in using the test (test_x()) variants of the validation functions. Each of those produce a sin-
gle logical value and each and have a threshold option for failure levels. Another option is to uti-
lize post-interrogation objects within the agent’s x-list (obtained by using the get_agent_x_list()
function). This allows for many possibilities in producing a single logical value from an interroga-
tion.

Value

A logical value.

Examples

Create a simple table with a column of numerical values.

tbl <- dplyr::tibble(a = c(4, 5, 7, 8))

tbl
#> # A tibble: 4 x 1
#> a

#> <dbl>

col _count_match 17

#> 1
#> 2
#> 3
#> 4

o N O b

Validate that values in column a are always greater than 4.

agent <-
create_agent(tbl = tbl) %>%
col_vals_gt(columns = vars(a), value = 3) %>%
col_vals_lte(columns = vars(a), value = 10) %>%
col_vals_increasing(columns = vars(a)) %>%
interrogate()

Determine if these column validations have all passed by using all_passed() (they do).

all_passed(agent = agent)

#> [1] TRUE

Function ID

8-4

See Also

Other Post-interrogation: get_agent_x_list(), get_data_extracts(), get_sundered_data(),
write_testthat_file()

col_count_match Does the column count match that of a different table?

Description

The col_count_match() validation function, the expect_col_count_match() expectation func-
tion, and the test_col_count_match() test function all check whether the column count in the
target table matches that of a comparison table. The validation function can be used directly on a
data table or with an agent object (technically, a ptblank_agent object) whereas the expectation
and test functions can only be used with a data table. As a validation step or as an expectation, there
is a single test unit that hinges on whether the column counts for the two tables are the same (after
any preconditions have been applied).

18

col _count_match

= NULL,

Usage

col_count_match(
X,
count,
preconditions
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_col_count_match(object, count, preconditions = NULL, threshold = 1)

test_col_count_match(object, count, preconditions = NULL, threshold = 1)

Arguments

X

count

preconditions

actions

step_id

label

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent().

Either a literal value for the number of columns, or, a table to compare against
the target table in terms of column count values. If supplying a comparison table,

it can either be a table object such as a data frame, a tibble, a tb1_dbi object, or a
tbl_spark object. Alternatively, a table-prep formula (~ <table reading code>)
or a function (function() <table reading code>) can be used to lazily read
in the comparison table at interrogation time.

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr: :mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

col _count_match

brief

active

object

threshold

Value

19

An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d, e))). The default for active is TRUE.

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

¢ data frames (data.frame) and tibbles (tb1l_df)
» Spark DataFrames (tb1l_spark)
* the following database tables (tb1l_dbi):

PostgreSQL tables (using the RPostgres: :Postgres() as driver)
MySQL tables (with RMySQL: :MySQL())

Microsoft SOQL Server tables (via odbc)

BigQuery tables (using bigrquery: :bigquery())

DuckDB tables (through duckdb: :duckdb())

SQLite (with RSQLite: :SQLite())

20 col _count_match

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that this particular validation requires some op-
eration on the target table before the column count comparison takes place. Using preconditions
can be useful at times since since we can develop a large validation plan with a single target table
and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed. Alternatively, a function could instead be supplied.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold
level (specified as either the fraction of test units failed, or, an absolute value), often using the
warn_at argument. Using action_levels(warn_at =1) or action_levels(stop_at=1) are
good choices depending on the situation (the first produces a warning, the other stop()s).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_count_match() is represented in YAML (under the
top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_count_match() as a validation step is
expressed in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_count_match(

count = ~ file_tb1(
file = from_github(
file = "sj_all_revenue_large.rds",

repo = "rich-iannone/intendo”,

col _count_match 21

subdir = "data-large”
)
),
preconditions = ~ . %>% dplyr::filter(a < 10),

actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_count_match()"‘ step.”,
active = FALSE

)

YAML representation:

steps:
- col_count_match:
count: ~ file_tbhl(
file = from_github(

file = "sj_all_revenue_large.rds”,
repo = "rich-iannone/intendo”,
subdir = "data-large”
)
)
preconditions: ~. %>% dplyr::filter(a < 10)
actions:

warn_fraction: 0.1

stop_fraction: 0.2
label: The ‘col_count_match()‘ step.
active: false

In practice, both of these will often be shorter. Arguments with default values won’t be written to
YAML when using yaml_write() (though it is acceptable to include them with their default when
generating the YAML by other means). It is also possible to preview the transformation of an agent
to YAML without any writing to disk by using the yaml_agent_string() function.

Examples

Create a simple table with three columns and three rows of values:

tbl <-
dplyr: :tibble(
a=c(, 7, 6),

b=c(7, 1, 0,
c=c(, 1, 1
)

tbl
#> # A tibble: 3 x 3
#> a b C
#> <dbl> <dbl> <dbl>
#> 1 5 7 1
#> 2 7 1 1

#> 3 6 0 1

22

col _count_match
Create a second table which is quite different but has the same number of columns as tb1l.
tbl_2 <-

dplyr::tibble(
e = C(”a”, NA, llaH, "C”)’

f =c(2.6, 1.2, 9, NA),
g = c("f", "g", "h", "i")
)

tbl_2

#> # A tibble: 4 x 3

#> e fg

#> <chr> <dbl> <chr>

#> 1 a 2.6 f

#> 2 <NA> 1.2 g

#> 3 a 0 h

#> 4 c NA i

We’ll use these tables with the different function variants.

A: Using an agent with validation functions and then interrogate():

Validate that the count of columns in the target table (tbl) matches that of the comparison table
(tb1_2).

agent <-
create_agent(tbl = tbl) %>%
col_count_match(count = tbl_2) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter: data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>% col_count_match(count = tbhl_2)
#> # A tibble: 3 x 3

#> a b C
#> <dbl> <dbl> <dbl>
#> 1 5 7 1
#> 2 7 1 1
#> 3 6 Q 1

C: Using the expectation function:

With the expect_x* () form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

col_exists 23

expect_col_count_match(tbl, count = tbl_2)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

tbl %>% test_col_count_match(count = 3)
#> [1] TRUE

Function ID

2-32

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(),col_is_factor(),
col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gte(),
col_vals_gt(),col_vals_in_set(), col_vals_increasing(), col_vals_1lte(),col_vals_1t(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),

tbl_match()

col_exists Do one or more columns actually exist?

Description

The col_exists() validation function, the expect_col_exists() expectation function, and the
test_col_exists() test function all check whether one or more columns exist in the target table.
The only requirement is specification of the column names. The validation function can be used
directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the
expectation and test functions can only be used with a data table. Each validation step or expectation
will operate over a single test unit, which is whether the column exists or not.

Usage

col_exists(
X,
columns,
actions = NULL,
step_id = NULL,

label = NULL,
brief = NULL,
active = TRUE

)
expect_col_exists(object, columns, threshold = 1)

test_col_exists(object, columns, threshold = 1)

24

Arguments

X

columns

actions

step_id

label

brief

active

object

threshold

col_exists

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is created with create_agent().

One or more columns from the table in focus. This can be provided as a vector
of column names using c() or bare column names enclosed in vars().

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels. This is to be created with the action_levels()
helper function.

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

An optional label for the validation step. This label appears in the agent report
and for the best appearance it should be kept short.

An optional, text-based description for the validation step. If nothing is provided
here then an autobrief is generated by the agent, using the language provided
in create_agent()’s lang argument (which defaults to "en” or English). The
autobrief incorporates details of the validation step so it’s often the preferred
option in most cases (where a 1abel might be better suited to succinctly describe
the validation).

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(vars(d, e))). The default for active is TRUE.

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tb1l_spark)
that serves as the target table for the expectation function or the test function.

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

col_exists 25

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

e data frames (data.frame) and tibbles (tb1_df)
e Spark DataFrames (tb1l_spark)
* the following database tables (tb1_dbi):
— PostgreSQL tables (using the RPostgres: :Postgres() as driver)
MySQL tables (with RMySQL: :MySQL())
Microsoft SQL Server tables (via odbc)
BigQuery tables (using bigrquery: :bigquery())
DuckDB tables (through duckdb: :duckdb())
SQLite (with RSQLite: :SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

If providing multiple column names, the result will be an expansion of validation steps to that
number of column names (e.g., vars(col_a, col_b) will result in the entry of two validation
steps). Aside from column names in quotes and in vars(), tidyselect helper functions are available
for specifying columns. They are: starts_with(), ends_with(), contains(), matches(), and
everything().

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold
level (specified as either the fraction of test units failed, or, an absolute value), often using the
warn_at argument. Using action_levels(warn_at =1) or action_levels(stop_at=1) are
good choices depending on the situation (the first produces a warning, the other stop()s).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

26 col_exists

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_exists() is represented in YAML (under the top-level
steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of col_exists() as a validation step is expressed in R
code and in the corresponding YAML representation.

R statement:

agent %>%
col_exists(
columns = vars(a),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_exists()" step.”,
active = FALSE

YAML representation:

steps:
- col_exists:
columns: vars(a)
actions:
warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘col_exists()"‘ step.
active: false

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Examples

For all examples here, we’ll use a simple table with two columns: a and b.

tbl <-
dplyr::tibble(
a=c(5 7, 6,5, 8,7,
b c(7, 1, 0, 0, 0, 3)
)

tbl
#> # A tibble: 6 x 2
#> a b

col _exists 27

#> <dbl> <dbl>

#> 1 5 7
#> 2 7 1
#> 3 6 0
#> 4 5 0
#> 5 8 0
#> 6 7 3

We’ll use this table with the different function variants.

A: Using an agent