R package pomdp - Infrastructure for Partially Observable Markov Decision Processes (POMDP)

CRAN version stream r-universe status CRAN RStudio mirror downloads

Provides the infrastructure to define and analyze the solutions of optimal control problems formulated as Partially Observable Markov Decision Processes (POMDP). The package uses the solvers from pomdp-solve (Cassandra, 2015) available in the R package pomdpSolve to solve POMDPs using a variety of algorithms.

The package provides the following algorithms:

Installation

Stable CRAN version: Install from within R with

install.packages("pomdp")

Current development version: Install from r-universe.

install.packages("pomdp", repos = "https://mhahsler.r-universe.dev")

Usage

Solving the simple infinite-horizon Tiger problem.

library("pomdp")
data("Tiger")
Tiger
## POMDP, list - Tiger Problem
##   Discount factor: 0.75
##   Horizon: Inf epochs
##   List components: 'name', 'discount', 'horizon', 'states', 'actions',
##     'observations', 'transition_prob', 'observation_prob', 'reward',
##     'start', 'terminal_values'
sol <- solve_POMDP(model = Tiger)
sol
## POMDP, list - Tiger Problem
##   Discount factor: 0.75
##   Horizon: Inf epochs
##   Solved:
##     Solution converged: TRUE
##     Total expected reward: 1.933439
##   List components: 'name', 'discount', 'horizon', 'states', 'actions',
##     'observations', 'transition_prob', 'observation_prob', 'reward',
##     'start', 'solution', 'solver_output'
plot_value_function(sol, ylim = c(0, 20))

plot_policy_graph(sol)

References

Acknowledgments

Development of this package was supported in part by National Institute of Standards and Technology (NIST) under grant number 60NANB17D180.