The mice
function is one of the most used functions to
apply multiple imputation. This page shows how functions in the
psfmi
package can be easily used in combination with
mice
. In this way multivariable models can easily be
developed in combination with mice.
You can install the released version of psfmi with:
install.packages("psfmi")
And the development version from GitHub with:
# install.packages("devtools")
::install_github("mwheymans/psfmi") devtools
You can install the released version of mice with:
install.packages("mice")
library(psfmi)
library(mice)
#>
#> Attaching package: 'mice'
#> The following object is masked from 'package:stats':
#>
#> filter
#> The following objects are masked from 'package:base':
#>
#> cbind, rbind
<- mice(lbp_orig, m=5, maxit=5)
imp #>
#> iter imp variable
#> 1 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 1 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 1 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 1 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 1 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
<- complete(imp, action = "long", include = FALSE)
data_comp
library(psfmi)
<- psfmi_lr(data=data_comp, nimp=5, impvar=".imp",
pool_lr formula=Chronic ~ Gender + Smoking + Function +
+ JobDemands + SocialSupport, method="D1")
JobControl $RR_model
pool_lr#> $`Step 1 - no variables removed -`
#> term estimate std.error statistic df p.value
#> 1 (Intercept) 0.794535475 2.38901533 0.33257864 139.16705 0.739952808
#> 2 Gender -0.414112047 0.41671442 -0.99375502 142.22094 0.322029903
#> 3 Smoking 0.094381864 0.34012175 0.27749435 148.30951 0.781786970
#> 4 Function -0.134004029 0.04310015 -3.10913123 120.44903 0.002341997
#> 5 JobControl 0.001986044 0.01988292 0.09988693 127.63515 0.920590815
#> 6 JobDemands -0.005350054 0.04045574 -0.13224460 52.62727 0.895295148
#> 7 SocialSupport 0.030604837 0.05699086 0.53701307 123.98115 0.592221016
#> OR lower.EXP upper.EXP
#> 1 2.2134126 0.01966485 249.1346692
#> 2 0.6609269 0.29000222 1.5062794
#> 3 1.0989793 0.56117145 2.1522042
#> 4 0.8745865 0.80305177 0.9524935
#> 5 1.0019880 0.96333237 1.0421948
#> 6 0.9946642 0.91712875 1.0787547
#> 7 1.0310780 0.92109121 1.1541982
Back to Examples
library(psfmi)
library(mice)
<- mice(lbp_orig, m=5, maxit=5)
imp #>
#> iter imp variable
#> 1 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 1 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 1 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 1 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 1 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
<- complete(imp, action = "long", include = FALSE)
data_comp
library(psfmi)
<- psfmi_lr(data=data_comp, nimp=5, impvar=".imp",
pool_lr formula=Chronic ~ Gender + Smoking + Function +
+ JobDemands + SocialSupport,
JobControl p.crit = 0.157, method="D1", direction = "FW")
#> Entered at Step 1 is - Function
#>
#> Selection correctly terminated,
#> No new variables entered the model
$RR_model_final
pool_lr#> $`Final model`
#> term estimate std.error statistic df p.value OR
#> 1 (Intercept) 1.1728111 0.46254657 2.535552 141.1350 0.012316373 3.2310626
#> 2 Function -0.1343115 0.04116987 -3.262373 132.6166 0.001404953 0.8743177
#> lower.EXP upper.EXP
#> 1 1.2948512 8.0625217
#> 2 0.8059399 0.9484967
Back to Examples