Package 'qat'

October 13, 2022

Type Package
Title Quality Assurance Toolkit
Version 0.74
Date 2016-07-21
Author Andre Duesterhus
Maintainer Andre Duesterhus <andre.duesterhus@uni-hamburg.de></andre.duesterhus@uni-hamburg.de>
Encoding latin1
Description Functions for a scientific quality assurance of meteorological data.
Depends R (>= 2.6.1)
Imports ncdf4, gplots, XML, gdata, moments, boot, fields
License GPL-2
<pre>URL http://www.aduesterhus.net/qat</pre>
NeedsCompilation no
Repository CRAN
Date/Publication 2016-07-24 16:11:04
R topics documented:
qat-package

qat_add_all_descriptions8qat_add_comment9qat_add_description10qat_add_resultfile11qat_analyse_block_distribution_1d12qat_analyse_block_distribution_2d13qat_analyse_boot_distribution_1d15qat_analyse_boot_distribution_2d16qat_analyse_distribution_1d17qat_analyse_distribution_2d18

qat_analyse_histogram_test_ld	. 20
qat_analyse_histogram_test_2d	. 21
qat_analyse_histogram_test_emd_1d	. 23
qat_analyse_histogram_test_emd_2d	
qat_analyse_histogram_test_jsd_1d	. 25
qat_analyse_histogram_test_jsd_2d	
qat_analyse_histogram_test_kld_1d	
qat_analyse_histogram_test_kld_2d	
qat_analyse_histogram_test_ms_1d	
qat_analyse_histogram_test_ms_2d	
qat_analyse_histogram_test_rms_1d	
qat_analyse_histogram_test_rms_2d	
qat_analyse_lim_rule_dynamic_1d	
qat_analyse_lim_rule_dynamic_2d	
qat_analyse_lim_rule_sigma_1d	. 39
qat_analyse_lim_rule_sigma_2d	. 40
qat_analyse_lim_rule_static_1d	. 41
qat_analyse_lim_rule_static_2d	. 42
qat_analyse_noc_rule_1d	. 44
qat_analyse_noc_rule_2d	. 45
qat_analyse_roc_rule_dynamic_1d	. 46
qat_analyse_roc_rule_dynamic_2d	. 48
qat_analyse_roc_rule_static_1d	. 49
qat_analyse_roc_rule_static_2d	. 51
qat_analyse_set_addup_1d	. 52
qat_analyse_set_addup_2d	
qat_analyse_set_mean_1d	
qat_analyse_set_mean_2d	
qat_analyse_set_nans_1d	
qat_analyse_set_nans_2d	
qat_analyse_set_nans_above_1d	
qat_analyse_set_nans_above_2d	
qat_analyse_set_nans_below_1d	
qat_analyse_set_nans_below_1d	
qat_analyse_slide_distribution_1d	
• •	
qat_analyse_slide_distribution_2d	
qat_analyse_trimmed_distribution_1d	
qat_analyse_trimmed_distribution_2d	
qat_call_block_distribution	
qat_call_boot_distribution	
qat_call_distribution	
qat_call_histogram_test	
qat_call_lim_rule	. 72
qat_call_noc_rule	. 73
qat_call_plot_block_distribution	. 74
qat_call_plot_boot_distribution	. 76
qat_call_plot_distribution	
gat call plot histogram test	

qat_call_plot_lim_rule
qat_call_plot_noc_rule
qat_call_plot_roc_rule
qat_call_plot_slide_distribution
qat_call_plot_trimmed_distribution
qat_call_roc_rule
qat_call_save_block_distribution
qat_call_save_boot_distribution
qat_call_save_distribution
qat_call_save_histogram_test
qat_call_save_lim_rule
qat_call_save_noc_rule
qat_call_save_roc_rule
qat_call_save_set_addup
qat_call_save_set_mean
qat_call_save_set_nans
qat_call_save_slide_distribution
qat_call_save_trimmed_distribution
qat_call_set_addup
qat_call_set_mean
qat_call_set_nans
qat_call_slide_distribution
qat_call_trimmed_distribution
qat_config_read_workflow
qat_config_write_workflow
qat_data_close_ncdf
qat_data_nameofvars_ncdf
qat_data_numofvars_ncdf
qat_data_read_ncdf
qat_data_varcontent_ncdf
qat_measure_histogram_difference
qat_plot_block_distribution_1d
qat_plot_block_distribution_2d
qat_plot_boot_distribution_1d
qat_plot_distribution_1d
qat_plot_lim_rule_dynamic_1d
• •
qat_plot_lim_rule_dynamic_2d
qat_plot_lim_rule_sigma_1d
qat_plot_lim_rule_static_1d
qat_plot_lim_rule_static_2d
qat_plot_nnc_rule_1d
qat_plot_noc_rule_2d
qat_plot_noc_rule_dynamic_1d
qat_plot_roc_rule_dynamic_2d
qat_plot_roc_rule_static_1d
qat_plot_roc_rule_static_rd

4 qat-package

	package Ouality Assurance Toolkit	
Index		179
	qat_style_plot	. 177
	qat_save_trimmed_distribution_2d	
	qat_save_trimmed_distribution_1d	
	qat_save_slide_distribution_2d	
	qat_save_slide_distribution_1d	. 173
	qat_save_set_nans_below_1d	. 172
	qat_save_set_nans_above_1d	
	qat_save_set_nans_1d	
	qat_save_set_mean_1d	
	qat_save_set_addup_1d	
	qat_save_roc_rule_static_2d	
	qat_save_roc_rule_static_1d	
	qat_save_roc_rule_dynamic_2d	
	qat_save_roc_rule_dynamic_1d	
	qat_save_result_ncdf	
	qat_save_noc_rule_2d	
	qat_save_noc_rule_1d	
	qat_save_lim_rule_static_2d	
	qat_save_lim_rule_static_1d	
	qat_save_lim_rule_sigma_2d	
	qat_save_lim_rule_sigma_1d	
	qat_save_lim_rule_dynamic_2d	
	qat_save_lim_rule_dynamic_1d	
	qat_save_distribution_rd	
	qat_save_distribution_1d	
	qat_save_boot_distribution_1d	
	qat_save_block_distribution_2d	
	qat_save_block_distribution_1d	
	qat_run_workflow_save	
	qat_run_workflow_plot	
	qat_run_workflow_check	
	qat_read_parameter	
	qat_plot_trimmed_distribution_2d	
	qat_plot_trimmed_distribution_1d	
	qat_plot_slide_distribution_2d	
	qat_plot_slide_distribution_ld	

Description

This package helps to provide a quality assurance on data.

qat-package 5

Details

6 qat_add_algorithm

Package: qat
Type: Package
Version: 0.72
Date: 2013-06-13
License: GPL-2

Author(s)

Andre Duesterhus

Maintainer: Andre Duesterhus <andue@uni-bonn.de>

Examples

```
library("qat")
# define testvector
testvector<-rnorm(200)
# read in workflow from systemfiles
filename_in <- system.file("extdata/workflowexample.xml", package="qat")</pre>
workflowlist <- gat_config_read_workflow(filename_in)</pre>
# define some additional vectors
maxlim <- seq(3,1,length.out=200)</pre>
minlim <- seq(-1,-3,length.out=200)</pre>
uproc <- seq(1,3,length.out=200)</pre>
downroc <- seq(3,1,length.out=200)</pre>
# run the workflow on the testvector
rlist <- qat_run_workflow_check(testvector,workflowlist,vec1=maxlim, vec2=minlim,</pre>
vec3=uproc, vec4=downroc)
# produce some plots of the result in teh current directory
qat_run_workflow_plot(rlist, measurement_name="Test", basename="test")
# add some more informations for the workflow
workflowlist <- qat_add_all_descriptions(workflowlist)</pre>
workflowlist <- qat_add_all_algorithms(workflowlist)</pre>
workflowlist <- qat_add_comment(workflowlist, 1, "No problems")</pre>
filename_out <- "myworkflow_result.xml"</pre>
# write edited workflow in current directory
qat_config_write_workflow(workflowlist, output_filename=filename_out)
```

qat_add_algorithm

Algorithm of a check

Description

For each check in the workflow it is possible to add a algorithm of the test. This will be saved into the XML result file under agolgorithm. This function adds a new or replace an existing algorithm.

qat_add_all_algorithms 7

Usage

```
qat_add_algorithm(workflowlist, listelem, algorithm_text)
```

Arguments

workflowlist A workflowlist like it will be created by qat_config_read_workflow listelem Number of check, where the algorithm should be added.

algorithm_text Text of the algorithm.

Value

Give back the edited workflowlist.

Author(s)

Andre Duesterhus

See Also

```
qat_config_read_workflow
```

Examples

```
library("qat")
## read in workflow from systemfiles
# filename_in <- system.file("extdata/workflowexample.xml", package="qat")
# workflowlist <- qat_config_read_workflow(filename_in)
## add some more informations for the workflow
# workflowlist <- qat_add_algorithm(workflowlist, 1, "Algorithm information")
# filename_out <- "myworkflow_result.xml"
## write edited workflow in current directory
# qat_config_write_workflow(workflowlist, output_filename=filename_out)</pre>
```

```
qat\_add\_all\_algorithms
```

Adds all algorithms to a workflow

Description

For each check in the workflow it is possible to add a algorithm of the test. This will be saved into the XML result file under agolgorithm. This function adds for each test the known algorithm-information.

```
qat_add_all_algorithms(workflowlist)
```

Arguments

workflowlist A workflowlist like it will be created by qat_config_read_workflow

Details

This function use the informatio, which is stored in the system file qat_basetools.xml.

Value

Give back the edited workflowlist.

Author(s)

Andre Duesterhus

See Also

```
qat_config_read_workflow
```

Examples

```
library("qat")
# read in workflow from systemfiles
# filename_in <- system.file("extdata/workflowexample.xml", package="qat")
# workflowlist <- qat_config_read_workflow(filename_in)
# add some more informations for the workflow
# workflowlist <- qat_add_all_descriptions(workflowlist)
# workflowlist <- qat_add_all_algorithms(workflowlist)
# filename_out <- "myworkflow_result.xml"
# write edited workflow in current directory
# qat_config_write_workflow(workflowlist, output_filename=filename_out)</pre>
```

```
qat_add_all_descriptions
```

Adds all descriptions to a workflow

Description

For each check in the workflow it is possible to add a description of the test. This will be saved into the XML result file under the description. This function adds for each test the known description-information.

```
qat_add_all_descriptions(workflowlist)
```

qat_add_comment 9

Arguments

Details

This function use the informatio, which is stored in the system file qat_basetools.xml.

Value

Give back the edited workflowlist.

Author(s)

Andre Duesterhus

See Also

```
qat_config_read_workflow
```

Examples

```
library("qat")
# read in workflow from systemfiles
filename_in <- system.file("extdata/workflowexample.xml", package="qat")
workflowlist <- qat_config_read_workflow(filename_in)
# add some more informations for the workflow
workflowlist <- qat_add_all_descriptions(workflowlist)
workflowlist <- qat_add_all_algorithms(workflowlist)

filename_out <- "myworkflow_result.xml"
# write edited workflow in current directory
qat_config_write_workflow(workflowlist, output_filename=filename_out)</pre>
```

qat_add_comment

Comment on result

Description

For each check in the workflow it is possible to add a comment on the result of the test. This will be saved into the XML result file under the tag result/comment_on_result. This function adds a new or replace an existing comment.

```
qat_add_comment(workflowlist, listelem, comment_text)
```

10 qat_add_description

Arguments

workflowlist A workflowlist like it will be created by qat_config_read_workflow

listelem Number of check, which should be commented.

Value

Give back the edited workflowlist.

Author(s)

Andre Duesterhus

See Also

```
qat_config_read_workflow
```

Examples

```
library("qat")
# read in workflow from systemfiles
filename_in <- system.file("extdata/workflowexample.xml", package="qat")
workflowlist <- qat_config_read_workflow(filename_in)
# add some more informations for the workflow
workflowlist <- qat_add_comment(workflowlist, 1, "No problems")
filename_out <- "myworkflow_result.xml"
# write edited workflow in current directory
qat_config_write_workflow(workflowlist, output_filename=filename_out)</pre>
```

qat_add_description

Description of a check

Description

For each check in the workflow it is possible to add a description of the test. This will be saved into the XML result file under the description. This function adds a new or replace an existing description.

Usage

```
qat_add_description(workflowlist, listelem, description_text)
```

Arguments

```
workflowlist A workflowlist like it will be created by qat\_config\_read\_workflow listelem Number of check, where the description should be added. description_text
```

Text of the description.

qat_add_resultfile 11

Value

Give back the edited workflowlist.

Author(s)

Andre Duesterhus

See Also

```
qat_config_read_workflow
```

Examples

```
library("qat")
# read in workflow from systemfiles
filename_in <- system.file("extdata/workflowexample.xml", package="qat")
workflowlist <- qat_config_read_workflow(filename_in)
# add some more informations for the workflow
workflowlist <- qat_add_description(workflowlist, 1, "How the test works...")
filename_out <- "myworkflow_result.xml"
# write edited workflow in current directory
qat_config_write_workflow(workflowlist, output_filename=filename_out)</pre>
```

qat_add_resultfile

Resultfile of a check

Description

For each check in the workflow it is possible to add one or more result files of the test. This will be saved into the XML result file under result_file. This function adds a new resultfile.

Usage

```
qat_add_resultfile(workflowlist, listelem, resultfile_text)
```

Arguments

workflowlist A workflowlist like it will be created by qat_config_read_workflow.

listelem Number of check, where the resultfile should be added.

resultfile_text

Text of the resultfile.

Value

Give back the edited workflowlist.

Author(s)

Andre Duesterhus

See Also

```
qat_config_read_workflow
```

Examples

```
library("qat")
# read in workflow from systemfiles
filename_in <- system.file("extdata/workflowexample.xml", package="qat")
workflowlist <- qat_config_read_workflow(filename_in)
# add some more informations for the workflow
workflowlist <- qat_add_resultfile(workflowlist, 1, "filename.png")
filename_out <- "myworkflow_result.xml"
# write edited workflow in current directory
qat_config_write_workflow(workflowlist, output_filename=filename_out)</pre>
```

```
qat_analyse_block_distribution_1d

Perform a block distribution check
```

Description

The measurement vector will be splitted into blocks, and on every block some statistical parameters will be calculated.

Usage

```
qat_analyse_block_distribution_1d(measurement_vector, blocksize)
```

Arguments

```
measurement_vector
```

The measurement vector, which should be tested

blocksize Length of the blocks

Details

The measurement vector will be splitted into blocks, with the length of the given blocksize parameter. After this some statistical parameters will be calculated for every block. As a result a list will be given back, with these parameters, where every entry got a length of the length of the measurement vector divided by the blocksize, which is rounded down to the next integer.

Value

It returns a list with the following entries:

first_moment First moment of the measurement vector
second_moment Second moment of the measurement vector
third_moment Third moment of the measurement vector

fourth_moment Fourth moment of the measurement vector standard_deviation

Standard deviation of the measurement vector

skewness Skewness of the measurement vector
kurtosis Kurtosis of the measurement vector
median Median of the measurement vector
p5 quantile 5 percent quantile of the measurement

p5_quantile 5 percent quantile of the measurement vector p95_quantile 95 percent quantile of the measurement vector p25_quantile 25 percent quantile of the measurement vector p75_quantile 75 percent quantile of the measurement vector

blocksize Length of the used blocks

Author(s)

Andre Duesterhus

See Also

```
qat_plot_block_distribution_1d
```

Examples

```
vec <- rnorm(1000)
result <- qat_analyse_block_distribution_1d(vec, 50)</pre>
```

```
qat_analyse_block_distribution_2d
```

Perform a block distribution check

Description

The measurement vector will be splitted into blocks in the direction of the first dimension. After this on every block some statistical parameters will be calculated.

Usage

```
qat_analyse_block_distribution_2d(measurement_vector, blocksize)
```

Arguments

measurement_vector

The measurement vector (2d array), which should be tested

blocksize Length of the blocks

Details

The measurement vector will be splitted into blocks for each element of the second dimension, with the length of the given blocksize parameter. After this some statistical parameters will be calculated for each block. As a result a list will be given back, with these parameters, where every entry got the dimension of the measurement vector, where the first dimension is divided by the blocksize, which is rounded down to the next integer.

Value

It returns a list with the following entries:

first_moment First moment of the measurement vector second_moment Second moment of the measurement vector Third moment of the measurement vector third_moment Fourth moment of the measurement vector fourth_moment standard_deviation Standard deviation of the measurement vector skewness Skewness of the measurement vector kurtosis Kurtosis of the measurement vector Median of the measurement vector median p5_quantile 5 percent quantile of the measurement vector p95_quantile 95 percent quantile of the measurement vector p25_quantile 25 percent quantile of the measurement vector p75_quantile 75 percent quantile of the measurement vector

Length of the used blocks

Author(s)

Andre Duesterhus

blocksize

See Also

```
qat_analyse_block_distribution_1d, qat_plot_block_distribution_2d
```

Examples

```
vec <- array(rnorm(500),c(25,20))
result <- qat_analyse_block_distribution_2d(vec, 5)</pre>
```

```
qat_analyse_boot_distribution_1d
```

Perform a bootstrapped distribution check

Description

The measurement vector will be bootstrapped and statistical parameters will be determined.

Usage

```
qat_analyse_boot_distribution_1d(measurement_vector, bootruns)
```

Arguments

measurement_vector

The measurement vector, which should be tested

bootruns Number of bootstrap runs, which should be performed

Details

The measurement vector will be bottstrapped with the number of runs, which is given by the parameter bootruns. From each runs, some statistical parameters will be calculated and given back in the resultlist.

Value

It returns a list with the following entries:

first_moment	First moments of the bootstrapped measurement vector	
second_moment	Second moments of the bootstrapped measurement vector	
third_moment	Third moments of the bootstrapped measurement vector	
fourth_moment	Fourth moments of the bootstrapped measurement vector	
standard deviation		

standard_deviation

Standard deviations of the bootstrapped measurement vector

skewness	Skewness of the bootstrapped measurement vector
kurtosis	Kurtosis of the bootstrapped measurement vector
median	Medians of the bootstrapped measurement vector

p5_quantile 5 percent quantiles of the bootstrapped measurement vector 95_quantile 95 percent quantiles of the bootstrapped measurement vector p25_quantile 25 percent quantiles of the bootstrapped measurement vector p75_quantile 75 percent quantiles of the bootstrapped measurement vector

Author(s)

Andre Duesterhus

See Also

```
qat_plot_boot_distribution_1d
```

Examples

```
vec <- rnorm(1000)
result <- qat_analyse_boot_distribution_1d(vec, 1000)</pre>
```

```
qat_analyse_boot_distribution_2d
```

Perform a bootstrapped distribution check

Description

The measurement vector will be bootstrapped and statistical parameters will be determined.

Usage

```
qat_analyse_boot_distribution_2d(measurement_vector, bootruns)
```

Arguments

measurement_vector

The measurement vector (2d array), which should be tested

bootruns Number of bootstrap runs, which should be performed

Details

The measurement vector will be bottstrapped in direction of the first dimension with the number of runs, which is given by the parameter bootruns. From each runs, some statistical parameters will be calculated and given back in the resultlist.

Value

It returns a list with the following entries:

first_moment First moments of the bootstrapped measurement vector second_moment Second moments of the bootstrapped measurement vector third_moment Third moments of the bootstrapped measurement vector fourth_moment Fourth moments of the bootstrapped measurement vector

 $standard_deviation$

Standard deviations of the bootstrapped measurement vector

skewness Skewness of the bootstrapped measurement vector Kurtosis Kurtosis of the bootstrapped measurement vector median Medians of the bootstrapped measurement vector

p5_quantile	5 percent quantiles of the bootstrapped measurement vector
p95_quantile	95 percent quantiles of the bootstrapped measurement vector
p25_quantile	25 percent quantiles of the bootstrapped measurement vector
p75_quantile	75 percent quantiles of the bootstrapped measurement vector

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_boot_distribution_1d, qat_plot_boot_distribution_1d
```

Examples

```
vec <- array(rnorm(100),c(25,20))
result <- qat_analyse_boot_distribution_2d(vec, 50)</pre>
```

Description

This check makes a histogram and gives back some statistical parameters of the given measurement vector.

Usage

```
qat_analyse_distribution_1d(measurement_vector, numofbars)
```

Arguments

```
measurement_vector
```

The measurement vector, which should be tested

numofbars Numbers of bars of the histogram plot

Details

From a given measurement vector a histogram will be performed. The number of bars of this will be given by the parameter numofbars. Additionally some statistical parameters, like the first moments and some quantiles will be calculated.

Value

It returns a list with the following entries:

first_moment First moment of the measurement vector Second moment of the measurement vector second_moment third_moment Third moment of the measurement vector fourth_moment Fourth moment of the measurement vector standard_deviation

Standard deviation of the measurement vector

Skewness of the measurement vector skewness Kurtosis of the measurement vector kurtosis median Median of the measurement vector

5 percent quantile of the measurement vector p5_quantile 95 percent quantile of the measurement vector p95_quantile 25 percent quantile of the measurement vector p25_quantile p75_quantile 75 percent quantile of the measurement vector

numofbars Number of bars of the histogram

Elements of the histogram

Author(s)

Andre Duesterhus

See Also

```
qat_plot_distribution_1d
```

Examples

```
vec <- rnorm(1000)</pre>
result <- qat_analyse_distribution_1d(vec, 15)</pre>
```

```
qat_analyse_distribution_2d
```

Perform a distribution check

Description

This check makes a histogram and gives back some statistical parameters of the given measurement vector.

```
qat_analyse_distribution_2d(measurement_vector, numofbars)
```

Arguments

measurement_vector

The measurement vector (2d array), which should be tested

numofbars Numbers of bars of the histogram plot

Details

From a given measurement vector (2d array) a histogram will be performed. The number of bars of this will be given by the parameter numofbars. Additionally some statistical parameters, like the first moments and some quantiles will be calculated.

Value

It returns a list with the following entries:

first_moment	First moment of the measurement vector	
second_moment	Second moment of the measurement vector	
third_moment	Third moment of the measurement vector	
fourth_moment	Fourth moment of the measurement vector	
standard doviation		

standard_deviation

Standard deviation of the measurement vector

skewness	Skewness of the measurement vector
kurtosis	Kurtosis of the measurement vector
median	Median of the measurement vector

p5_quantile 5 percent quantile of the measurement vector p95_quantile 95 percent quantile of the measurement vector p25_quantile 25 percent quantile of the measurement vector p75_quantile 75 percent quantile of the measurement vector

numofbars Number of bars of the histogram

... Elements of the histogram

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_distribution_1d, qat_plot_distribution_1d
```

Examples

```
vec <- array(rnorm(500),c(25,20))
result <- qat_analyse_distribution_2d(vec, 10)</pre>
```

```
qat_analyse_histogram_test_1d
```

Perform a histogram test with a given metric

Description

This check divides the data into blocks, estimates their probability density functions by histograms and compares them by using a given metric.

Usage

```
qat_analyse_histogram_test_1d(measurement_vector,
co_measurement_vector=measurement_vector, metric="EMD", blocksize=100, numofbars=65,
factorofbar=100)
```

Arguments

measurement_vector

The measurement vector, which should be tested.

co_measurement_vector

An optional second measurement vector, which is compared to the first. The

default is the first measurement vector.

metric Metric of the comparison. Details see below.

blocksize Number of elements, which should be used for each block.

numofbars Number of bins of the histogram.

factorofbar Correction factor for non-value bins.

Details

The field will be divided into blocks, with a length given by the parameter blocksize. From these blocks histograms are computed and afterwards compared. As a metric for the comparison one of the following five options are usable: EMD: Earth Mover's Distance (default); KLD: Kullback-Leibler Distance; JSD: Jenson-Shannon Distance; RMS: Root Mean Square; MS: Mean Square. As a result a field is generated, which includes the results of the comparison between every combination of blocks.

Value

It returns a list with the following entries:

field Result matrix of the comparison.

blocksize Size of blocks in the first dimension.

numofbars Number of bins of the used histograms.

metric Used metric in the comparisons.

runs Number of blocks, which are compared.

Author(s)

Andre Duesterhus

References

Duesterhus, A., Hense, A. (2012) Advanced Information Criterion for Environmental Data Quality Assurance, _Advances in Science and Research_, *8*, 99-104.

See Also

```
qat_analyse_histogram_test_2d
```

Examples

```
vec <- array(rnorm(1000), c(100, 20))
vec[51:100, ] <- vec[51:100, ] + 2
result <- qat_analyse_histogram_test_2d(vec, metric="EMD", blocksize=4, numofbars=65)
qat_plot_histogram_test(result$field, "test_emd_2d", result$blocksize, result$numofbars,
"emd", result$runs)</pre>
```

```
qat_analyse_histogram_test_2d
```

Perform a histogram test with a given metric

Description

This check divides the data into blocks, estimates their probability density functions by histograms and compares them by using a given metric.

Usage

```
qat_analyse_histogram_test_2d(measurement_vector, co_measurement_vector=
measurement_vector, metric="EMD", blocksize=100, numofbars=65, factorofbar=100)
```

Arguments

measurement_vector

The measurement vector (2d array), which should be tested.

co_measurement_vector

An optional second measurement vector (2d array), which is compared to the

frst. The default is the first measurement vector.

metric Metric of the comparison. Details see below.

blocksize Number of elements in the first dimension, which should be used for each block.

numofbars Number of bins of the histogram.
factorofbar Correction factor for non-value bins.

Details

The field will be divided into blocks in the first dimension, with a length given by the parameter blocksize. From these blocks histograms are computed and afterwards compared. As a metric for the comparison one of the following five options are usable: EMD: Earth Mover's Distance (default); KLD: Kullback-Leibler Distance; JSD: Jenson-Shannon Distance; RMS: Root Mean Square; MS: Mean Square. As a result a field is generated, which includes the results of the comparison between every combination of blocks.

Value

It returns a list with the following entries:

field Result matrix of the comparison.

blocksize Size of blocks in the first dimension.

numofbars Number of bins of the used histograms.

metric Used metric in the comparisons.

runs Number of blocks, which are compared.

Author(s)

Andre Duesterhus

References

Duesterhus, A., Hense, A. (2012) Advanced Information Criterion for Environmental Data Quality Assurance, _Advances in Science and Research_, *8*, 99-104.

See Also

```
qat_analyse_histogram_test_1d
```

Examples

```
vec <- array(rnorm(1000), c(100, 20))
vec[51:100, ] <- vec[51:100, ] + 2
result <- qat_analyse_histogram_test_2d(vec, metric="EMD", blocksize=4, numofbars=65)
qat_plot_histogram_test(result$field, "test_emd_2d", result$blocksize, result$numofbars,
"emd", result$runs)</pre>
```

```
qat_analyse_histogram_test_emd_1d
```

Perform a histogram test with the metric EMD

Description

This check divides the data into blocks, estimates their probability density functions by histograms and compares them by using the Earth Movers Distance.

Usage

```
qat_analyse_histogram_test_emd_1d(measurement_vector, blocksize, numofbars)
```

Arguments

measurement_vector

The measurement vector, which should be tested

blocksize Number of elements in the first dimension, which should be used for each block

numofbars Number of bins of the histogram

Details

The vector will be divided into blocks, with a length given by the parameter blocksize. From these blocks histograms are computed and afterwards compared. As a metric for the comparison the Earth Movers Distance is used. As a result a field is generated, which includes the results of the comparison between every combination of blocks.

Value

It returns a list with the following entries:

field Result matrix of the comparison.

blocksize Size of blocks in the first dimension.

numofbars Number of bins of the used histograms.

metric Used metric in the comparisons.

runs Number of blocks, which are compared.

Author(s)

Andre Duesterhus

References

Duesterhus, A., Hense, A. (2012) Advanced Information Criterion for Environmental Data Quality Assurance, _Advances in Science and Research_, *8*, 99-104.

See Also

 $\label{lem:control_qat_analyse_histogram_test_emd_2d, qat_analyse_histogram_test_kld_1d, qat_analyse_histogram_test_jsd_qat_analyse_histogram_test_rms_1d, qat_analyse_histogram_test_ms_1d$

Examples

```
vec <- c(rnorm(1000), rnorm(1000)+1)
result <- qat_analyse_histogram_test_emd_1d(vec, 50, 65)
qat_plot_histogram_test(result$field, "test_emd_1d", result$blocksize,
result$numofbars, "emd", result$runs)</pre>
```

qat_analyse_histogram_test_emd_2d

Perform a histogram test with the metric EMD

Description

This check divides the data into blocks, estimates their probability density functions by histograms and compares them by using the Earth Movers Distance.

Usage

```
qat_analyse_histogram_test_emd_2d(measurement_vector, blocksize, numofbars)
```

Arguments

measurement_vector

The measurement vector (2d array), which should be tested

blocksize Number of elements in the first dimension, which should be used for each block

numofbars Number of bins of the histogram

Details

The field will be divided into blocks in the first dimension, with a length given by the parameter blocksize. From these blocks histograms are computed and afterwards compared. As a metric for the comparison the Earth Movers Distance is used. As a result a field is generated, which includes the results of the comparison between every combination of blocks.

Value

It returns a list with the following entries:

field Result matrix of the comparison.

blocksize Size of blocks in the first dimension.

numofbars Number of bins of the used histograms.

metric Used metric in the comparisons.

runs Number of blocks, which are compared.

Author(s)

Andre Duesterhus

References

Duesterhus, A., Hense, A. (2012) Advanced Information Criterion for Environmental Data Quality Assurance, _Advances in Science and Research_, *8*, 99-104.

See Also

```
qat_analyse_histogram_test_emd_1d, qat_analyse_histogram_test_kld_2d, qat_analyse_histogram_test_jsd_
qat_analyse_histogram_test_rms_2d, qat_analyse_histogram_test_ms_2d
```

Examples

```
vec <- array(rnorm(1000), c(100, 20))
vec[51:100, ] <- vec[51:100, ] + 1
result <- qat_analyse_histogram_test_emd_2d(vec, 4, 65)
qat_plot_histogram_test(result$field, "test_emd_2d", result$blocksize,
result$numofbars, "emd", result$runs)

qat_analyse_histogram_test_jsd_1d</pre>
```

Perform a histogram test with the metric JSD

Description

This check divides the data into blocks, estimates their probability density functions by histograms and compares them by using the Jenson-Shannon Divergence.

Usage

```
qat_analyse_histogram_test_jsd_1d(measurement_vector, blocksize, numofbars,
factorofbar)
```

Arguments

measurement_vector

The measurement vector, which should be tested

blocksize Number of elements in the first dimension, which should be used for each block

numofbars Number of bins of the histogram factorofbar Correction factor for non-value bins

Details

The vector will be divided into blocks, with a length given by the parameter blocksize. From these blocks histograms are computed and afterwards compared. As a metric for the comparison the Jenson-Shannon Divergence is used. As a result a field is generated, which includes the results of the comparison between every combination of blocks.

Value

It returns a list with the following entries:

field Result matrix of the comparison.

blocksize Size of blocks in the first dimension.

numofbars Number of bins of the used histograms.

factorofbar Correction factor used for the used histograms.

metric Used metric in the comparisons.

runs Number of blocks, which are compared.

Author(s)

Andre Duesterhus

References

Duesterhus, A., Hense, A. (2012) Advanced Information Criterion for Environmental Data Quality Assurance, _Advances in Science and Research_, *8*, 99-104.

See Also

```
qat_analyse_histogram_test_jsd_2d, qat_analyse_histogram_test_kld_1d, qat_analyse_histogram_test_rms_
qat_analyse_histogram_test_ms_1d, qat_analyse_histogram_test_emd_1d
```

Examples

```
vec <- c(rnorm(1000), round(rnorm(1000)))
result <- qat_analyse_histogram_test_jsd_1d(vec, 50, 65, 100)
qat_plot_histogram_test(result$field, "test_jsd_1d", result$blocksize, result$numofbars,
result$factorofbar, "jsd", result$runs)</pre>
```

```
qat_analyse_histogram_test_jsd_2d
```

Description

This check divides the data into blocks, estimates their probability density functions by histograms and compares them by using the Jenson-Shannon Divergence.

Perform a histogram test with the metric JSD

```
qat_analyse_histogram_test_jsd_2d(measurement_vector, blocksize, numofbars,
factorofbar)
```

Arguments

measurement_vector

The measurement vector (2d array), which should be tested

blocksize Number of elements in the first dimension, which should be used for each block

numofbars Number of bins of the histogram factorofbar Correction factor for non-value bins

Details

The field will be divided into blocks in the first dimension, with a length given by the parameter blocksize. From these blocks histograms are computed and afterwards compared. As a metric for the comparison the Jenson-Shannon Divergence is used. As a result a field is generated, which includes the results of the comparison between every combination of blocks.

Value

It returns a list with the following entries:

field Result matrix of the comparison.

blocksize Size of blocks in the first dimension.

numofbars Number of bins of the used histograms.

factorofbar Correction factor used for the used histograms.

metric Used metric in the comparisons.

runs Number of blocks, which are compared.

Author(s)

Andre Duesterhus

References

Duesterhus, A., Hense, A. (2012) Advanced Information Criterion for Environmental Data Quality Assurance, _Advances in Science and Research_, *8*, 99-104.

See Also

```
qat_analyse_histogram_test_jsd_1d, qat_analyse_histogram_test_kld_2d, qat_analyse_histogram_test_rms_
qat_analyse_histogram_test_ms_2d, qat_analyse_histogram_test_emd_2d
```

Examples

```
vec <- array(rnorm(1000), c(100, 20))
vec[51:100, ] <- round(vec[51:100, ])
result <- qat_analyse_histogram_test_jsd_2d(vec, 4, 65, 100)
qat_plot_histogram_test(result$field, "test_jsd_2d", result$blocksize,
result$numofbars, result$factorofbar, "jsd", result$runs)</pre>
```

```
qat_analyse_histogram_test_kld_1d

Perform a histogram test with the metric KLD
```

Description

This check divides the data into blocks, estimates their probability density functions by histograms and compares them by using the Kullback-Leibler Divergence.

Usage

```
qat_analyse_histogram_test_kld_1d(measurement_vector, blocksize =
floor(length(measurement_vector)/20), numofbars = 65, factorofbar = 100)
```

Arguments

measurement_vector

The measurement vector, which should be tested

blocksize Number of elements in the first dimension, which should be used for each block

numofbars Number of bins of the histogram factorofbar Correction factor for non-value bins

Details

The vector will be divided into blocks, with a length given by the parameter blocksize. From these blocks histograms are computed and afterwards compared. As a metric for the comparison the Kullback-Leibler Divergence is used. As a result a field is generated, which includes the results of the comparison between every combination of blocks.

Value

It returns a list with the following entries:

field Result matrix of the comparison.

blocksize Size of blocks in the first dimension.

numofbars Number of bins of the used histograms.

factorofbar Correction factor used for the used histograms.

metric Used metric in the comparisons.

runs Number of blocks, which are compared.

Author(s)

Andre Duesterhus

References

Duesterhus, A., Hense, A. (2012) Advanced Information Criterion for Environmental Data Quality Assurance, _Advances in Science and Research_, *8*, 99-104.

See Also

```
\label{lem:control_qat_analyse_histogram_test_ms_1} qat_analyse\_histogram\_test\_histogram\_test\_ms\_ld, qat_analyse\_histogram\_test\_ms\_ld, qat_analyse\_histogram\_test\_emd\_ld
```

Examples

```
vec <- c(rnorm(1000), round(rnorm(1000)))
result <- qat_analyse_histogram_test_kld_1d(vec, 50, 65, 100)
qat_plot_histogram_test(result$field, "test_kld_1d", result$blocksize,
result$numofbars, result$factorofbar, "kld", result$runs)</pre>
```

```
qat_analyse_histogram_test_kld_2d
```

Perform a histogram test with the metric KLD

Description

This check divides the data into blocks, estimates their probability density functions by histograms and compares them by using the Kullback-Leibler Divergence.

Usage

```
qat_analyse_histogram_test_kld_2d(measurement_vector, blocksize =
floor(length(measurement_vector)/20), numofbars = 65, factorofbar = 100)
```

Arguments

measurement_vector

The measurement vector (2d array), which should be tested

blocksize Number of elements in the first dimension, which should be used for each block

numofbars Number of bins of the histogram factorofbar Correction factor for non-value bins

Details

The field will be divided into blocks in the first dimension, with a length given by the parameter blocksize. From these blocks histograms are computed and afterwards compared. As a metric for the comparison the Kullback-Leibler Divergence is used. As a result a field is generated, which includes the results of the comparison between every combination of blocks.

Value

It returns a list with the following entries:

field Result matrix of the comparison.

blocksize Size of blocks in the first dimension.

numofbars Number of bins of the used histograms.

factorofbar Correction factor used for the used histograms.

metric Used metric in the comparisons.

runs Number of blocks, which are compared.

Author(s)

Andre Duesterhus

References

Duesterhus, A., Hense, A. (2012) Advanced Information Criterion for Environmental Data Quality Assurance, _Advances in Science and Research_, *8*, 99-104.

See Also

```
qat_analyse_histogram_test_kld_1d, qat_analyse_histogram_test_jsd_2d, qat_analyse_histogram_test_rms_
qat_analyse_histogram_test_ms_2d, qat_analyse_histogram_test_emd_2d
```

Examples

```
vec <- array(rnorm(1000), c(100, 20))
vec[51:100, ] <- round(vec[51:100, ])
result <- qat_analyse_histogram_test_kld_2d(vec, 4, 65, 100)
qat_plot_histogram_test(result$field, "test_kld_2d", result$blocksize,
result$numofbars, result$factorofbar, "kld", result$runs)</pre>
```

```
qat_analyse_histogram_test_ms_1d
```

Perform a histogram test with the metric MS

Description

This check divides the data into blocks, estimates their probability density functions by histograms and compares them by using the Mean Square.

```
qat_analyse_histogram_test_ms_1d(measurement_vector, blocksize, numofbars)
```

Arguments

measurement_vector

The measurement vector, which should be tested

blocksize Number of elements in the first dimension, which should be used for each block

numofbars Number of bins of the histogram

Details

The vector will be divided into blocks, with a length given by the parameter blocksize. From these blocks histograms are computed and afterwards compared. As a metric for the comparison the Mean Square is used. As a result a field is generated, which includes the results of the comparison between every combination of blocks.

Value

It returns a list with the following entries:

field Result matrix of the comparison.

blocksize Size of blocks in the first dimension.

numofbars Number of bins of the used histograms.

metric Used metric in the comparisons.

runs Number of blocks, which are compared.

Author(s)

Andre Duesterhus

References

Duesterhus, A., Hense, A. (2012) Advanced Information Criterion for Environmental Data Quality Assurance, _Advances in Science and Research_, *8*, 99-104.

See Also

```
qat_analyse_histogram_test_ms_2d, qat_analyse_histogram_test_kld_1d, qat_analyse_histogram_test_jsd_1d
qat_analyse_histogram_test_rms_1d, qat_analyse_histogram_test_emd_1d
```

Examples

```
vec <- c(rnorm(1000), rnorm(1000)+2)
result <- qat_analyse_histogram_test_ms_1d(vec, 50, 65)
qat_plot_histogram_test(result$field, "test_ms_1d", result$blocksize,
result$numofbars, "ms", result$runs)</pre>
```

```
qat_analyse_histogram_test_ms_2d
```

Perform a histogram test with the metric MS

Description

This check divides the data into blocks, estimates their probability density functions by histograms and compares them by using the Mean Square.

Usage

```
qat_analyse_histogram_test_ms_2d(measurement_vector, blocksize, numofbars)
```

Arguments

measurement_vector

The measurement vector (2d array), which should be tested

blocksize Number of elements in the first dimension, which should be used for each block

numofbars Number of bins of the histogram

Details

The field will be divided into blocks in the first dimension, with a length given by the parameter blocksize. From these blocks histograms are computed and afterwards compared. As a metric for the comparison the Mean Square is used. As a result a field is generated, which includes the results of the comparison between every combination of blocks.

Value

It returns a list with the following entries:

field Result matrix of the comparison.

blocksize Size of blocks in the first dimension.

numofbars Number of bins of the used histograms.

metric Used metric in the comparisons.

runs Number of blocks, which are compared.

Author(s)

Andre Duesterhus

References

Duesterhus, A., Hense, A. (2012) Advanced Information Criterion for Environmental Data Quality Assurance, _Advances in Science and Research_, *8*, 99-104.

See Also

qat_analyse_histogram_test_ms_1d, qat_analyse_histogram_test_kld_2d, qat_analyse_histogram_test_jsd_2
qat_analyse_histogram_test_rms_2d, qat_analyse_histogram_test_emd_2d

Examples

```
vec <- array(rnorm(1000), c(100, 20))
vec[51:100, ] <- vec[51:100, ] + 2
result <- qat_analyse_histogram_test_ms_2d(vec, 4, 65)
qat_plot_histogram_test(result$field, "test_ms_2d", result$blocksize,
result$numofbars, "ms", result$runs)</pre>
```

qat_analyse_histogram_test_rms_1d

Perform a histogram test with the metric RMS

Description

This check divides the data into blocks, estimates their probability density functions by histograms and compares them by using the Root-Mean Square.

Usage

```
qat_analyse_histogram_test_rms_1d(measurement_vector, blocksize, numofbars)
```

Arguments

measurement_vector

The measurement vector, which should be tested

blocksize Number of elements in the first dimension, which should be used for each block

numofbars Number of bins of the histogram

Details

The vector will be divided into blocks, with a length given by the parameter blocksize. From these blocks histograms are computed and afterwards compared. As a metric for the comparison the Root-Mean Square is used. As a result a field is generated, which includes the results of the comparison between every combination of blocks.

Value

It returns a list with the following entries:

field Result matrix of the comparison.

blocksize Size of blocks in the first dimension.

numofbars Number of bins of the used histograms.

metric Used metric in the comparisons.

runs Number of blocks, which are compared.

Author(s)

Andre Duesterhus

References

Duesterhus, A., Hense, A. (2012) Advanced Information Criterion for Environmental Data Quality Assurance, \ Advances in Science and Research\, *8*, 99-104.

See Also

```
qat_analyse_histogram_test_rms_2d, qat_analyse_histogram_test_kld_1d, qat_analyse_histogram_test_jsd_
qat_analyse_histogram_test_ms_1d, qat_analyse_histogram_test_emd_1d
```

Examples

```
vec <- c(rnorm(1000), rnorm(1000)+2)
result <- qat_analyse_histogram_test_rms_1d(vec, 50, 65)
qat_plot_histogram_test(result$field, "test_rms_1d", result$blocksize,
result$numofbars, "rms", result$runs)</pre>
```

```
qat_analyse_histogram_test_rms_2d
```

Perform a histogram test with the metric RMS

Description

This check divides the data into blocks, estimates their probability density functions by histograms and compares them by using the Root-Mean Square.

Usage

```
qat_analyse_histogram_test_rms_2d(measurement_vector, blocksize, numofbars)
```

Arguments

measurement_vector

The measurement vector (2d array), which should be tested

blocksize Number of elements in the first dimension, which should be used for each block

numofbars Number of bins of the histogram

Details

The field will be divided into blocks in the first dimension, with a length given by the parameter blocksize. From these blocks histograms are computed and afterwards compared. As a metric for the comparison the Root-Mean Square is used. As a result a field is generated, which includes the results of the comparison between every combination of blocks.

Value

It returns a list with the following entries:

field Result matrix of the comparison.

blocksize Size of blocks in the first dimension.

numofbars Number of bins of the used histograms.

metric Used metric in the comparisons.

runs Number of blocks, which are compared.

Author(s)

Andre Duesterhus

References

Duesterhus, A., Hense, A. (2012) Advanced Information Criterion for Environmental Data Quality Assurance, _Advances in Science and Research_, *8*, 99-104.

See Also

```
qat_analyse_histogram_test_rms_1d, qat_analyse_histogram_test_kld_2d, qat_analyse_histogram_test_jsd_
qat_analyse_histogram_test_ms_2d, qat_analyse_histogram_test_emd_2d
```

Examples

```
vec <- array(rnorm(1000), c(100, 20))
vec[51:100, ] <- vec[51:100, ] + 2
result <- qat_analyse_histogram_test_rms_2d(vec, 4, 65)
qat_plot_histogram_test(result$field, "test_rms_2d", result$blocksize,
result$numofbars, "rms", result$runs)</pre>
```

Description

This check tests data on whether it exceeds a dynamic threshold.

```
qat_analyse_lim_rule_dynamic_1d(measurement_vector, min_vector = NULL,
max_vector = NULL, min_vector_name = NULL, max_vector_name = NULL,
min_vector_identifier = NULL, max_vector_identifier = NULL)
```

Arguments

measurement_vector

The measurement vector, which should be tested

min_vector A vector which consists of the minimum threshold values, with the same dimen-

sion like the measurement vector

max_vector A vector which consists of the maximum threshold values, with the same di-

mension like the measurement vector

min_vector_name

A name or title of the minimum vector, which will be given back in the result

max_vector_name

A name or title of the maximum vector, which will be given back in the result

max_vector_identifier

The identifier of the maximum vector

min_vector_identifier

The identifier of the minimum vector

Details

This tests tests every element, on whether it exceeds the minimum or maximum threshold. The result will be given back as a list, which contains the result of the test as a flagvector and its parameters. For every element of the measurement vector the flagvector contains a -1, if its exceeding its dedicated minimum vector element, a 1, if its exceeding its dedicated maximum vector element, or a 0, when no exceeding has happend. NaN-values in the measurement vector will be given back as a 0 in the flagvector, NaN-values in the minimum or maximum-vector are considered as not existing. There is no checking, if the maximum-vector is greater than the minimum-vector.

Value

It returns a list with the following entries:

flagvector A vector of length of measurement vector. For every element of the measure-

ment vector the flagvector contains a -1, if its exceeding its dedicated minimum vector element, a 1, if its exceeding its dedicated maximum vector element, or a

0, when no exceeding has happend.

Give back the given max_vector

min_vector Give back the given min_vector

min_vector_name

max_vector

Give back the given min_vector_name

max_vector_name

Give back the given max_vector_name

Warning

There is no checking, if the maximum-vector is greater than the minimum-vector.

Author(s)

Andre Duesterhus

References

Meek, D.W., Hatfield, J.L. (1994) Data quality checking for single station meteorological databases, _Agricultural and Forest Meteorology_, *69* (1-2), 85-109.

See Also

```
qat_plot_lim_rule_dynamic_1d, qat_call_lim_rule, qat_analyse_lim_rule_static_1d, qat_analyse_lim_rule_s
```

Examples

```
vec <- rnorm(1000)
min_vector<-seq(-1,-2,length.out=1000)
max_vector<-seq(1,2,length.out=1000)
result <- qat_analyse_lim_rule_dynamic_1d(vec, min_vector, max_vector, min_vector_name="minimum vector", max_vector_name="maximum vector")</pre>
```

```
qat_analyse_lim_rule_dynamic_2d
```

Perform a dynamic lim-rule-check

Description

This check tests data on whether it exceeds a dynamic threshold.

Usage

```
qat_analyse_lim_rule_dynamic_2d(measurement_vector, min_vector = NULL,
max_vector = NULL, min_vector_name = NULL, max_vector_name = NULL,
min_vector_identifier = NULL, max_vector_identifier = NULL)
```

Arguments

measurement_vector

The measurement vector (2d array), which should be tested

min_vector A 2d array which consists of the minimum threshold values, with the same di-

mensions like the measurement vector

max_vector A 2d array which consists of the maximum threshold values, with the same

dimensions like the measurement vector

min_vector_name

A name or title of the minimum vector, which will be given back in the result

max_vector_name

A name or title of the maximum vector, which will be given back in the result

max_vector_identifier

The identifier of the maximum vector

min_vector_identifier

The identifier of the minimum vector

Details

This tests tests every element, on whether it exceeds the minimum or maximum threshold. The result will be given back as a list, which contains the result of the test as a flagvector (2d array) and its parameters. For every element of the measurement vector the flagvector contains a -1, if its exceeding its dedicated minimum vector element, a 1, if its exceeding its dedicated maximum vector element, or a 0, when no exceeding has happend. NaN-values in the measurement vector will be given back as a 0 in the flagvector, NaN-values in the minimum or maximum-vector are considered as not existing. There is no checking, if the maximum-vector is greater than the minimum-vector.

Value

It returns a list with the following entries:

flagvector A vector of length of measurement vector. For every element of the measure-

ment vector the flagvector contains a -1, if its exceeding its dedicated minimum vector element, a 1, if its exceeding its dedicated maximum vector element, or a

0, when no exceeding has happend.

min_vector Give back the given min_vector

max_vector Give back the given max_vector

min_vector_name

Give back the given min_vector_name

max_vector_name

Give back the given max_vector_name

Warning

There is no checking, if the maximum-vector is greater than the minimum-vector.

Author(s)

Andre Duesterhus

References

Meek, D.W., Hatfield, J.L. (1994) Data quality checking for single station meteorological databases, _Agricultural and Forest Meteorology_, *69* (1-2), 85-109.

See Also

```
qat_analyse_lim_rule_dynamic_1d, qat_plot_lim_rule_dynamic_2d, qat_call_lim_rule,
qat_analyse_lim_rule_static_2d, qat_analyse_lim_rule_sigma_2d
```

```
vec <- array(rnorm(100),c(5,20))
min_vector<-array(rnorm(100)-2,c(5,20))
max_vector<-array(rnorm(100)+2,c(5,20))
result <- qat_analyse_lim_rule_dynamic_2d(vec, min_vector, max_vector, min_vector_name="minimum vector", max_vector_name="maximum vector")</pre>
```

qat_analyse_lim_rule_sigma_1d

Perform a sigma lim-rule-check

Description

This check tests data on whether it exceeds a threshold formed by multiple standard derviations away from the mean.

Usage

```
qat_analyse_lim_rule_sigma_1d(measurement_vector, sigma_factor)
```

Arguments

measurement_vector

The measurement vector, which should be tested

sigma_factor Multiplier of standard derivation, which determin the maximum allowed devia-

tion from the mean

Details

First the mean and the standard derivation of the measurement vector will be calculated. After this the limits will be determined by

$$lim_{\pm} = \mu \pm f\sigma,$$

where f is the given sigma factor.

Value

It returns a list with the following entries:

flagvector A vector of length of measurement vector. For every element of the measure-

ment vector the flagvector contains a -1, if its exceeding its dedicated minimum vector element, a 1, if its exceeding its dedicated maximum vector element, or a

0, when no exceeding has happend.

sigma_factor Give back the given sigma_factor

meanofvector Give back the calculated mean of the measurement vector

sdofvector Give back the calculated standard deviation of the measurement vector

Author(s)

Andre Duesterhus

References

Meek, D.W., Hatfield, J.L. (1994) Data quality checking for single station meteorological databases, _Agricultural and Forest Meteorology_, *69* (1-2), 85-109.

See Also

qat_plot_lim_rule_sigma_1d, qat_call_lim_rule, qat_analyse_lim_rule_static_1d, qat_analyse_lim_rule_dyn

Examples

```
vec <- rnorm(1000)
result <- qat_analyse_lim_rule_sigma_1d(vec, 2)</pre>
```

```
qat_analyse_lim_rule_sigma_2d
```

Perform a sigma lim-rule-check

Description

This check tests data on whether it exceeds a threshold formed by multiple standard derviations away from the mean.

Usage

```
qat_analyse_lim_rule_sigma_2d(measurement_vector, sigma_factor)
```

Arguments

measurement_vector

The measurement vector (2d array), which should be tested

sigma_factor

Multiplier of standard derivation, which determin the maximum allowed devia-

tion from the mean

Details

First the mean and the standard derivation of the measurement vector will be calculated. After this the limits will be determined by

$$lim_{\pm} = \mu \pm f\sigma,$$

where f is the given sigma factor.

Value

It returns a list with the following entries:

flagvector A vector of length of measurement vector. For every element of the measure-

ment vector the flagvector (2d array) contains a -1, if its exceeding its dedicated minimum vector element, a 1, if its exceeding its dedicated maximum vector

element, or a 0, when no exceeding has happenned.

sigma_factor Give back the given sigma_factor

meanofvector Give back the calculated mean of the measurement vector

sdofvector Give back the calculated standard deviation of the measurement vector

```
qat_analyse_lim_rule_static_1d
```

41

Author(s)

Andre Duesterhus

References

Meek, D.W., Hatfield, J.L. (1994) Data quality checking for single station meteorological databases, _Agricultural and Forest Meteorology_, *69* (1-2), 85-109.

See Also

```
qat_analyse_lim_rule_sigma_1d, qat_plot_lim_rule_sigma_2d, qat_call_lim_rule, qat_analyse_lim_rule_star
qat_analyse_lim_rule_dynamic_2d
```

Examples

```
vec <- array(rnorm(100),c(5,20))
result <- qat_analyse_lim_rule_sigma_2d(vec, 2)</pre>
```

```
qat_analyse_lim_rule_static_1d
```

Perform a static lim-rule-check

Description

This check tests data on whether it exceeds a static threshold.

Usage

```
qat_analyse_lim_rule_static_1d(measurement_vector, min_value, max_value)
```

Arguments

measurement_vector

The measurement vector, which should be tested

min_value The minimum threshold
max_value The maximum threshold

Details

This check tests every element, on whether it exceeds the minimum or maximum threshold. The result will be given back as a list, which contains the result of the test as a flagvector and its parameters. For every element of the measurement vector the flagvector contains a -1, if its exceeding the minimum value, a 1, if its exceeding the maximum value, or a 0, when no exceeding has happend.

Value

It returns a list with the following entries:

flagvector A vector of length of measurement vector. For every element of the measure-

ment vector the flagvector contains a -1, if its exceeding the minimum value, a

1, if its exceeding the maximum value, or a 0, when no exceeding has happend.

min_value Give back the given min_value
max_value Give back the given max_value

Warning

There is no checking, if the maximum-value is greater than the minimum-value.

Author(s)

Andre Duesterhus

References

Meek, D.W., Hatfield, J.L. (1994) Data quality checking for single station meteorological databases, _Agricultural and Forest Meteorology_, *69* (1-2), 85-109.

See Also

```
qat_plot_lim_rule_static_1d, qat_call_lim_rule, qat_analyse_lim_rule_dynamic_1d, qat_analyse_lim_rule_static_1d
```

Examples

Description

This check tests data on whether it exceeds a static threshold.

Usage

```
qat_analyse_lim_rule_static_2d(measurement_vector, min_value, max_value)
```

Arguments

measurement_vector

The measurement vector (2d array), which should be tested

min_value The minimum threshold max_value The maximum threshold

Details

This check tests every element, on whether it exceeds the minimum or maximum threshold. The result will be given back as a list, which contains the result of the test as a flagvector (2d array) and its parameters. For every element of the measurement vector the flagvector contains a -1, if its exceeding the minimum value, a 1, if its exceeding the maximum value, or a 0, when no exceeding has happend.

Value

It returns a list with the following entries:

flagvector A vector of length of measurement vector. For every element of the measure-

ment vector the flagvector contains a -1, if its exceeding the minimum value, a 1, if its exceeding the maximum value, or a 0, when no exceeding has happend.

min_value Give back the given min_value

max_value Give back the given max_value

Warning

There is no checking, if the maximum-value is greater than the minimum-value.

Author(s)

Andre Duesterhus

References

Meek, D.W., Hatfield, J.L. (1994) Data quality checking for single station meteorological databases, _Agricultural and Forest Meteorology_, *69* (1-2), 85-109.

See Also

```
qat_analyse_lim_rule_static_1d, qat_plot_lim_rule_static_2d, qat_call_lim_rule, qat_analyse_lim_rule_dqat_analyse_lim_rule_sigma_2d
```

```
vec <- array(rnorm(100),c(5,20))
result <- qat_analyse_lim_rule_static_2d(vec, -2,2)</pre>
```

```
qat_analyse_noc_rule_1d
```

Perform a noc-rule-check

Description

This check tests data on whether it changes after a given amount of values.

Usage

```
qat_analyse_noc_rule_1d(measurement_vector, max_return_elements)
```

Arguments

measurement_vector

The measurement vector, which should be tested

max_return_elements

Number of coherent elements, which are allowed to have no change between the single values, without indicate an error

flagvektor with the dimension of measurement vector, where a 0 indicates no

Details

This check tests the given measurement vector from the beginning to the end, on how much values in a row got the same value. If the number of values, which is defined by max\return\elements prior to the actual element got the same value as the actual element, the resulting flagvector will be set to 1 on the actual position. Else it will be set to 0.

Value

It returns a list with the following entries:

error and a 1 that there is a repetition error

max_return_elements

Give back the given max_return_elements

Author(s)

Andre Duesterhus

flagvector

References

Meek, D.W., Hatfield, J.L. (1994) Data quality checking for single station meteorological databases, _Agricultural and Forest Meteorology_, *69* (1-2), 85-109.

See Also

```
qat_plot_noc_rule_1d, qat_call_noc_rule
```

Examples

```
vec <- c(1,2,3,4,4,4,5,5,4,3,NaN,3,2,1)
result <- qat_analyse_noc_rule_1d(vec, 1)</pre>
```

```
qat_analyse_noc_rule_2d
```

Perform a noc-rule-check

Description

This check tests data on whether it changes after a given amount of values.

Usage

```
qat_analyse_noc_rule_2d(measurement_vector, max_return_elements)
```

Arguments

measurement_vector

The measurement vector (2d array), which should be tested

max_return_elements

Number of coherent elements, which are allowed to have no change between the single values, without indicate an error

Details

This check tests the given measurement vector (2d array) in direction of the first dimension, on how much values in a row gut the same value. If the number of values, which is defined by max\return\elements prior to the actual element got the same value as the actual element, the resulting flagvector will be set to 1 on the actual position. Else it will be set to 0.

Value

It returns a list with the following entries:

flagvektor (2d array) with the dimension of measurement vector, where a 0 indicates no error and a 1 that there is a repetition error

max_return_elements

Give back the given max_return_elements

Author(s)

Andre Duesterhus

flagvector

References

Meek, D.W., Hatfield, J.L. (1994) Data quality checking for single station meteorological databases, _Agricultural and Forest Meteorology_, *69* (1-2), 85-109.

See Also

```
qat_plot_noc_rule_1d, qat_call_noc_rule
```

Examples

```
vec <- array(c(1,1,1,2,2),c(5,20))
result <- qat_analyse_noc_rule_2d(vec, 2)</pre>
```

```
qat_analyse_roc_rule_dynamic_1d
```

Perform a dynamic roc-rule-check

Description

This check tests data on whether the change between two consecutive data points exceeds a dynamic threshold.

Usage

```
qat_analyse_roc_rule_dynamic_1d(measurement_vector, max_upward_vector = NULL,
max_downward_vector = NULL, upward_vector_name = NULL, downward_vector_name = NULL,
upward_vector_identifier = NULL, downward_vector_identifier = NULL)
```

Arguments

measurement_vector

The measurement vector, which should be tested

max_upward_vector

A vector which consists of the threshold values for upward changes, with the same dimension like the measurement vector

max_downward_vector

A vector which consists of the threshold values for downward changes, with the same dimension like the measurement vector and have to be positive definite

upward_vector_name

A name or title of the upward vector, which will be given back in the result

downward_vector_name

A name or title of the downward vector, which will be given back in the result

upward_vector_identifier

The identifier of the upward vector

downward_vector_identifier

The identifier of the downward vector

Details

This check tests two consecutive elements, on wether the change of values between those two exceeds the upward or downward threshold. The result will be given back as a list, which contains the result of the test as a flagvector and its parameters. For every change between two elements of the measurement vector the flagvector contains a -1, if its exceeding its dedicated downward vector element, a 1, if its exceeding its dedicated upward vector element, or a 0, when no exceeding has happend. NaN-values in the measurement vector will be given back as a 0 in the flagvector, NaN-values in the upward or downward-vector are considered as not existing.

Value

It returns a list with the following entries:

flagvector

A vector of length of measurement vector. For every change between two elements of the measurement vector the flagvector contains a -1, if its exceeding its dedicated downward vector element, a 1, if its exceeding its dedicated upward vector element, or a 0, when no exceeding has happend.

```
max_upward_vector
Give back the given max\_upward\_vector
max_downward_vector
Give back the given max\_downward\_vector
upward_vector_name
```

Give back the given upward_vector_name downward_vector_name

Give back the given downward_vector_name

Author(s)

Andre Duesterhus

References

Meek, D.W., Hatfield, J.L. (1994) Data quality checking for single station meteorological databases, _Agricultural and Forest Meteorology_, *69* (1-2), 85-109.

See Also

```
qat_plot_roc_rule_dynamic_1d, qat_call_roc_rule, qat_analyse_roc_rule_static_1d
```

```
vec <- rnorm(100)
min_vector<-seq(1,2,length.out=100)
max_vector<-seq(1,2,length.out=100)
result <- qat_analyse_roc_rule_dynamic_1d(vec, min_vector, max_vector,
upward_vector_name="upward vector", downward_vector_name="downward vector")</pre>
```

Description

This check tests data on whether the change between two consecutive data points exceeds a dynamic threshold.

Usage

```
qat_analyse_roc_rule_dynamic_2d(measurement_vector, max_upward_vector = NULL,
max_downward_vector = NULL, upward_vector_name = NULL, downward_vector_name = NULL,
upward_vector_identifier = NULL, downward_vector_identifier = NULL)
```

Arguments

measurement_vector

The measurement vector (2d array), which should be tested

max_upward_vector

A vector (2d array) which consists of the threshold values for upward changes, with the same dimensions like the measurement vector

max_downward_vector

A vector (2d array) which consists of the threshold values for downward changes, with the same dimension like the measurement vector and have to be positive definite

upward_vector_name

A name or title of the upward vector, which will be given back in the result

downward_vector_name

A name or title of the downward vector, which will be given back in the result

upward_vector_identifier

The identifier of the upward vector

downward_vector_identifier

The identifier of the downward vector

Details

This check tests two consecutive elements (in the direction of the first dimension), on wether the change of values between those two exceeds the upward or downward threshold. The result will be given back as a list, which contains the result of the test as a flagvector and its parameters. For every change between two elements of the measurement vector the flagvector contains a -1, if its exceeding its dedicated downward vector element, a 1, if its exceeding its dedicated upward vector element, or a 0, when no exceeding has happend. NaN-values in the measurement vector will be given back as a 0 in the flagvector, NaN-values in the upward or downward-vector are considered as not existing.

Value

It returns a list with the following entries:

flagvector

A 2d array with the dimensions of the measurement vector. For every change between two elements of the measurement vector the flagvector contains a -1, if its exceeding its dedicated downward vector element, a 1, if its exceeding its dedicated upward vector element, or a 0, when no exceeding has happend.

max_upward_vector

Give back the given max_upward_vector

max_downward_vector

Give back the given max_downward_vector

upward_vector_name

Give back the given upward_vector_name

downward_vector_name

Give back the given downward_vector_name

Author(s)

Andre Duesterhus

References

Meek, D.W., Hatfield, J.L. (1994) Data quality checking for single station meteorological databases, _Agricultural and Forest Meteorology_, *69* (1-2), 85-109.

See Also

```
qat_analyse_roc_rule_dynamic_1d, qat_plot_roc_rule_dynamic_2d, qat_call_roc_rule,
qat_analyse_roc_rule_static_2d
```

Examples

```
vec <- array(rnorm(100),c(5,20))
min_vector<-array(rnorm(100)+2,c(5,20))
max_vector<-array(rnorm(100)+2,c(5,20))
result <- qat_analyse_roc_rule_dynamic_2d(vec, min_vector, max_vector, upward_vector_name="upward vector", downward_vector_name="downward vector")</pre>
```

```
qat_analyse_roc_rule_static_1d
```

Perform a static roc-rule-check

Description

This check tests data on whether the change between two consecutive data points exceeds a static threshold.

Usage

```
qat_analyse_roc_rule_static_1d(measurement_vector, max_upward_value,
max_downward_value)
```

Arguments

```
measurement_vector
```

The measurement vector, which should be tested

max_upward_value

The upward threshold

max_downward_value

The downward threshold, which should be positive definite

Details

This check tests two consecutive elements, on wether the change of values between those two exceeds the upward or downward threshold. The result will be given back as a list, which contains the result of the test as a flagvector and its parameters. For every change between two elements of the measurement vector the flagvector contains a -1, if its exceeding the downward value, a 1, if its exceeding the upward value, or a 0, when no exceeding has happend.

Value

It returns a list with the following entries:

flagvector

A vector of length of measurement vector. For every change between two elements of the measurement vector the flagvector contains a -1, if its exceeding the downward value, a 1, if its exceeding the upward value, or a 0, when no exceeding has happend.

max_upward_value

Give back the given max_upward_value

max_downward_value

Give back the given max_downward_value

Author(s)

Andre Duesterhus

References

Meek, D.W., Hatfield, J.L. (1994) Data quality checking for single station meteorological databases, _Agricultural and Forest Meteorology_, *69* (1-2), 85-109.

See Also

```
qat_plot_roc_rule_static_1d, qat_call_roc_rule, qat_analyse_roc_rule_dynamic_1d
```

Examples

Description

This check tests data on whether the change between two consecutive data points exceeds a static threshold.

Usage

```
qat_analyse_roc_rule_static_2d(measurement_vector, max_upward_value,
max_downward_value)
```

Arguments

```
measurement_vector
The measurement vector (2d array), which should be tested
max_upward_value
The upward threshold
max_downward_value
The downward threshold, which should be positive definite
```

Details

This check tests two consecutive elements (in the direction of the first dimension), on wether the change of values between those two exceeds the upward or downward threshold. The result will be given back as a list, which contains the result of the test as a flagvector and its parameters. For every change between two elements of the measurement vector the flagvector contains a -1, if its exceeding the downward value, a 1, if its exceeding the upward value, or a 0, when no exceeding has happend.

Value

It returns a list with the following entries:

flagvector A vector with

A vector with the dimensions of the measurement vector. For every change between two elements of the measurement vector the flagvector contains a -1, if its exceeding the downward value, a 1, if its exceeding the upward value, or a 0, when no exceeding has happend.

```
max_upward_value
```

Give back the given max_upward_value

max_downward_value

Give back the given max_downward_value

Author(s)

Andre Duesterhus

References

Meek, D.W., Hatfield, J.L. (1994) Data quality checking for single station meteorological databases, _Agricultural and Forest Meteorology_, *69* (1-2), 85-109.

See Also

```
qat_analyse_roc_rule_static_1d, qat_plot_roc_rule_static_2d, qat_call_roc_rule, qat_analyse_roc_rule_d
```

Examples

Description

This function adds up sucessive values of a given vector

Usage

```
qat_analyse_set_addup_1d(measurement_vector, blocksize)
```

Arguments

measurement_vector

The measurement vector, which should be tested

blocksize Number of elements, which should be added up

Details

Starting with the first element the measurement vector will be splitted up into blocks of the size of the parameter block size. In a second step the elements of these blocks will be summed up. If the last block haven't the size of block size, this block will be ignored.

Value

Give back a list, which includes the vector with the results of the blocks.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_set_mean_1d, qat_analyse_set_nans_1d
```

Examples

```
vec <- c(1,2,3,4,5,4,3,2,1)
result <- qat_analyse_set_addup_1d(vec, 3)</pre>
```

qat_analyse_set_addup_2d

Addup values of a vector

Description

This function adds up successive values of a given vector

Usage

```
qat_analyse_set_addup_2d(measurement_vector, blocksize)
```

Arguments

measurement_vector

The measurement vector, which should be tested

blocksize

Number of elements, which should be added up

Details

Starting with the first element the measurement vector will be split up into blocks of the size of the parameter block size. In a second step the elements of these blocks will be summed up. If the last block haven't the size of block size, this block will be ignored.

Value

Give back a list, which includes the vector with the results of the blocks.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_set_mean_2d, qat_analyse_set_nans_2d
```

```
vec <- array(rnorm(144), c(12,12))
result <- qat_analyse_set_addup_2d(vec, 3)</pre>
```

```
qat_analyse_set_mean_1d

Mean of values of a vector
```

Description

This function makes a mean of sucessive values of a given vector.

Usage

```
qat_analyse_set_mean_1d(measurement_vector, blocksize)
```

Arguments

measurement_vector

The measurement vector, which should be tested

blocksize

Number of elements, which should be added up

Details

Starting with the first element the measurement vector will be splitted up into blocks of the size of the parameter block size. In a second step a mean will be formed with the elements of these blocks. If the last block haven't the size of block size, this block will be ignored.

Value

Give back a list, which includes the vector with the results of the blocks.

Author(s)

Andre Duesterhus

```
vec <- c(1,2,3,4,5,4,3,2,1)
result <- qat_analyse_set_mean_1d(vec, 3)</pre>
```

```
qat_analyse_set_mean_2d
```

```
qat_analyse_set_mean_2d
```

Mean of values of a vector

Description

This function makes a mean of successive values of a given vector.

Usage

```
qat_analyse_set_mean_2d(measurement_vector, blocksize)
```

Arguments

measurement_vector

The measurement vector, which should be tested

blocksize

Number of elements, which should be added up

Details

Starting with the first element the measurement vector will be split up into blocks of the size of the parameter block size. In a second step a mean will be formed with the elements of these blocks. If the last block haven't the size of block size, this block will be ignored.

Value

Give back a list, which includes the vector with the results of the blocks.

Author(s)

Andre Duesterhus

```
vec <- array(rnorm(144), c(12,12))
result <- qat_analyse_set_mean_2d(vec, 3)</pre>
```

```
qat_analyse_set_nans_1d
```

Set given values of a vector to NaN

Description

This function set a specified value of a vector to NaN.

Usage

```
qat_analyse_set_nans_1d(measurement_vector, nan_value)
```

Arguments

```
measurement_vector
```

The measurement vector, which should be worked on

nan_value

Value, which should be replaced by NaN

Details

In the given measurement vector, the value, which is specified by nan_value, will be replaced by NaN.

Value

Retrun a list, which includes the measurement vector with the replaced values.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_set_addup_1d, qat_analyse_set_mean_1d
```

```
vec <- c(1,2,3,4,5,4,3,2,1)
result <- qat_analyse_set_nans_1d(vec, 4)</pre>
```

```
qat_analyse_set_nans_2d
```

```
qat_analyse_set_nans_2d
```

Set given values of a vector to NaN

Description

This function set a specified value of a vector to NaN.

Usage

```
qat_analyse_set_nans_2d(measurement_vector, nan_value)
```

Arguments

```
measurement_vector
```

The measurement vector, which should be worked on

nan_value

Value, which should be replaced by NaN

Details

In the given measurement vector, the value, which is specified by nan_value, will be replaced by NaN.

Value

Retrun a list, which includes the measurement vector with the replaced values.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_set_addup_2d, qat_analyse_set_mean_2d
```

```
vec <- array(c(1,2,3,4,5,4,3,2,1), c(3,3))
result <- qat_analyse_set_nans_2d(vec, 4)</pre>
```

```
qat_analyse_set_nans_above_1d

Set values above threshold to NaN
```

Description

This function set a values of a vector above a given value to NaN.

Usage

```
qat_analyse_set_nans_above_1d(measurement_vector, nan_above)
```

Arguments

measurement_vector

The measurement vector, which should be worked on

nan_above

Value, above the values should be replaced by NaN

Details

In the given measurement vector, the values, which are above nan_above, will be replaced by NaN.

Value

Return a list, which includes the measurement vector with the replaced values.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_set_addup_1d, qat_analyse_set_mean_1d, qat_analyse_set_nans_1d, qat_analyse_set_nans_below.
```

```
vec <- c(1,2,3,4,5,4,3,2,1)
result <- qat_analyse_set_nans_above_1d(vec, 4)</pre>
```

```
qat_analyse_set_nans_above_2d
```

59

```
qat_analyse_set_nans_above_2d

Set values above threshold to NaN
```

Description

This function set a values of a vector above a given value to NaN.

Usage

```
qat_analyse_set_nans_above_2d(measurement_vector, nan_above)
```

Arguments

```
measurement_vector
```

The measurement vector, which should be worked on

nan_above

Value, above the values should be replaced by NaN

Details

In the given measurement vector, the values, which are above nan_above, will be replaced by NaN.

Value

Return a list, which includes the measurement vector with the replaced values.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_set_addup_2d, qat_analyse_set_mean_2d, qat_analyse_set_nans_2d, qat_analyse_set_nans_below.
```

```
vec <- array(c(1,2,3,4,5,4,3,2,1), c(3,3))
result <- qat_analyse_set_nans_above_2d(vec, 4)</pre>
```

```
qat_analyse_set_nans_below_1d

Set values below threshold to NaN
```

Description

This function set a values of a vector below a given value to NaN.

Usage

```
qat_analyse_set_nans_below_1d(measurement_vector, nan_below)
```

Arguments

measurement_vector

The measurement vector, which should be worked on

nan_below

Value, below the values should be replaced by NaN

Details

In the given measurement vector, the values, which are below nan_below, will be replaced by NaN.

Value

Return a list, which includes the measurement vector with the replaced values.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_set_addup_1d,qat_analyse_set_mean_1d,qat_analyse_set_nans_1d,qat_analyse_set_nans_above
```

```
vec <- c(1,2,3,4,5,4,3,2,1)
result <- qat_analyse_set_nans_below_1d(vec, 4)</pre>
```

```
qat_analyse_set_nans_below_2d
```

61

```
qat_analyse_set_nans_below_2d
```

Set values below threshold to NaN

Description

This function set a values of a vector below a given value to NaN.

Usage

```
qat_analyse_set_nans_below_2d(measurement_vector, nan_below)
```

Arguments

measurement_vector

The measurement vector, which should be worked on

nan_below

Value, below the values should be replaced by NaN

Details

In the given measurement vector, the values, which are below nan_below, will be replaced by NaN.

Value

Return a list, which includes the measurement vector with the replaced values.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_set_addup_2d, qat_analyse_set_mean_2d, qat_analyse_set_nans_2d, qat_analyse_set_nans_above
```

```
vec <- array(c(1,2,3,4,5,4,3,2,1), c(3,3))
result <- qat_analyse_set_nans_below_2d(vec, 4)</pre>
```

```
qat_analyse_slide_distribution_1d

Perform a slide distribution check
```

Description

The measurement vector will be scanned stepwise by a sliding window, and on every step some statistical parameters will be calculated.

Usage

```
qat_analyse_slide_distribution_1d(measurement_vector, blocksize)
```

Arguments

measurement_vector

The measurement vector, which should be tested

blocksize Length of the sliding window

Details

The measurement vector will be scanned stepwise by a sliding window, which got a length of the given parameter blocksize. At every step some statistical parameters will be calculated for the actual window. As a result a list will be given back, with these parameters, where every entry got a length of the length of the measurement vector minus the blocksize plus one.

Value

It returns a list with the following entries:

first_moment	First moment of the measurement vector	
second_moment	Second moment of the measurement vector	
third_moment	Third moment of the measurement vector	
fourth_moment	Fourth moment of the measurement vector	
standard_deviation		

Standard deviation of the measurement vector

skewness Skewness of the measurement vector kurtosis Kurtosis of the measurement vector median Median of the measurement vector

p5_quantile 5 percent quantile of the measurement vector p95_quantile 95 percent quantile of the measurement vector p25_quantile 25 percent quantile of the measurement vector p75_quantile 75 percent quantile of the measurement vector

blocksize Length of the used blocks

Author(s)

Andre Duesterhus

See Also

```
qat_plot_slide_distribution_1d
```

Examples

```
vec <- rnorm(100)
result <- qat_analyse_slide_distribution_1d(vec, 10)</pre>
```

```
qat_analyse_slide_distribution_2d
```

Perform a slide distribution check

Description

The measurement vector will be scanned stepwise by a sliding window, and on every step some statistical parameters will be calculated.

Usage

```
qat_analyse_slide_distribution_2d(measurement_vector, blocksize)
```

Arguments

measurement_vector

The measurement vector (2d array), which should be tested

blocksize Length of the sliding window

Details

The measurement vector will be scanned stepwise by a sliding window for each element of the second dimension, which got a length of the given parameter blocksize. At every step some statistical parameters will be calculated for the actual window. As a result a list will be given back, with these parameters, where every entry got the same dimension like the measurement vector, where the first dimension is reduced by the blocksize plus one.

Value

It returns a list with the following entries:

first_moment First moment of the measurement vector
second_moment Second moment of the measurement vector
third_moment Third moment of the measurement vector
fourth_moment Fourth moment of the measurement vector

standard_deviation

skewness Skewness of the measurement vector
kurtosis Kurtosis of the measurement vector
median Median of the measurement vector
p5_quantile 5 percent quantile of the measurement vector

p95_quantile 95 percent quantile of the measurement vector p25_quantile 25 percent quantile of the measurement vector p75_quantile 75 percent quantile of the measurement vector p75_quantile 95 percent quantile 95 percent quantile of the measurement vector p75_quantile 95 percent quantile 95

blocksize Length of the used blocks

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_slide_distribution_1d, qat_plot_slide_distribution_2d
```

Examples

```
vec <- array(rnorm(100),c(25,20))
result <- qat_analyse_slide_distribution_2d(vec, 5)</pre>
```

```
qat_analyse_trimmed_distribution_1d
```

Perform a trimmed distribution check

Description

The measurement vector will be trimmed at each side stepwise and at every step some statistical parameters will be calculated.

Usage

```
qat_analyse_trimmed_distribution_1d(measurement_vector)
```

Arguments

```
measurement_vector
```

The measurement vector, which should be tested

Details

The measurement vector will be trimmed at each side stepwise, with a step of 1 percent. At each step some statistical parameters will be calculated. As a result a list will be given back, with these parameters, where every entry got a length of 50.

Value

It returns a list with the following entries:

first_moment	First moment of the measurement vector	
second_moment	Second moment of the measurement vector	
third_moment	Third moment of the measurement vector	
fourth_moment	Fourth moment of the measurement vector	
- #		

standard_deviation

Standard deviation of the measurement vector

skewness	Skewness of the measurement vector
kurtosis	Kurtosis of the measurement vector
median	Median of the measurement vector

p5_quantile 5 percent quantile of the measurement vector p95_quantile 95 percent quantile of the measurement vector p25_quantile 25 percent quantile of the measurement vector p75_quantile 75 percent quantile of the measurement vector

Author(s)

Andre Duesterhus

See Also

```
qat_plot_trimmed_distribution_1d
```

Examples

```
vec <- rnorm(1000)
result <- qat_analyse_trimmed_distribution_1d(vec)</pre>
```

Description

The measurement vector (2d array) will be handled separately for every element in the direction of the second dimension. Each vector will be trimmed stepwise at each side and at every step some statistical parameters will be calculated.

Usage

```
qat_analyse_trimmed_distribution_2d(measurement_vector)
```

Arguments

```
measurement_vector
```

The measurement vector, which should be tested

Details

The measurement vector will be trimmed, in direction of the first dimension, at each side stepwise, with a step of 1 percent. At each step some statistical parameters will be calculated. As a result a list will be given back, with these parameters, where every entry got the first dimension of 50 and as the second the second dimension of the measurement vector.

Value

It returns a list with the following entries:

first_moment	First moment of the measurement vector	
second_moment	Second moment of the measurement vector	
third_moment	Third moment of the measurement vector	
fourth_moment	Fourth moment of the measurement vector	
standard_deviation		
	Standard deviation of the measurement vector	

skewness Skewness of the measurement vector kurtosis Kurtosis of the measurement vector median Median of the measurement vector

p5_quantile
 p95_quantile
 p5 percent quantile of the measurement vector
 p25_quantile
 p25_quantile
 p25_quantile
 p25_quantile
 p25_quantile
 p25 percent quantile of the measurement vector
 p25_quantile
 p26_quantile
 p27_quantile
 p27_quantile

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_trimmed_distribution_1d, qat_plot_trimmed_distribution_2d
```

```
vec <- array(rnorm(100),c(25,20))
result <- qat_analyse_trimmed_distribution_2d(vec)</pre>
```

```
qat_call_block_distribution
```

Perform a block distribution check

Description

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_block_distribution_1d.

Usage

```
qat_call_block_distribution(measurement_vector, workflowlist_part, element = -999,
time = NULL, height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL,
vec3 = NULL, vec4 = NULL, resultlist = list(), resultlistcounter = 1)
```

Arguments

measurement_vector

The measurement vector, which should be tested

workflowlist_part

A list with the parameters of the check

element	Element-identifier for the result, which will be given back in the resultlist
time	A vector of time elements with the length of the measurement vector
height	A vector of height elements with the length of the measurement vector
lat	A vector of latitude elements with the length of the measurement vector
lon	A vector of longitude elements with the length of the measurement vector

vec1 An additional vector, which is named as vec1
vec2 An additional vector, which is named as vec2
vec3 An additional vector, which is named as vec3
vec4 An additional vector, which is named as vec4

resultlist A list with results of tests

resultlistcounter

Number of elements of the resultlist

Details

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_block_distribution_1d. As a result the resultlist will get additional entries, which are defined by the tests, which may called by this function.

Value

The given resultlist will be returned, with included results of the functions which may called in this function.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_slide_distribution_1d
```

Examples

```
vec <- rnorm(1000)
workflowlist_part <- list(blocksize=50)
result <- qat_call_block_distribution(vec, workflowlist_part)</pre>
```

```
qat_call_boot_distribution
```

Perform a bootstrapped distribution check

Description

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_boot_distribution_1d.

Usage

```
qat_call_boot_distribution(measurement_vector, workflowlist_part, element = -999,
time = NULL, height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL,
vec3 = NULL, vec4 = NULL, resultlist = list(), resultlistcounter = 1)
```

Arguments

measurement_vector

The measurement vector, which should be tested

workflowlist_part

A list with the parameters of the check

element Element-identifier for the result, which will be given back in the resultlist time A vector of time elements with the length of the measurement vector height A vector of height elements with the length of the measurement vector at A vector of latitude elements with the length of the measurement vector A vector of longitude elements with the length of the measurement vector

vec1 An additional vector, which is named as vec1
vec2 An additional vector, which is named as vec2
vec3 An additional vector, which is named as vec3
vec4 An additional vector, which is named as vec4

resultlist A list with results of tests

resultlistcounter

Number of elements of the resultlist

qat_call_distribution 69

Details

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_boot_distribution_1d. As a result the resultlist will get additional entries, which are defined by the tests, which may called by this function.

Value

The given resultlist will be returned, with included results of the functions which may called in this function.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_boot_distribution_1d
```

Examples

```
vec <- rnorm(1000)
workflowlist_part <- list(bootruns=1000)
result <- qat_call_boot_distribution(vec, workflowlist_part)</pre>
```

```
qat_call_distribution Perform a distribution check
```

Description

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_distribution_1d.

Usage

```
qat_call_distribution(measurement_vector, workflowlist_part, element = -999,
time = NULL, height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL,
vec3 = NULL, vec4 = NULL, resultlist = list(), resultlistcounter = 1)
```

Arguments

```
measurement_vector
```

The measurement vector, which should be tested

workflowlist_part

A list with the parameters of the check

element Element-identifier for the result, which will be given back in the resultlist time A vector of time elements with the length of the measurement vector height A vector of height elements with the length of the measurement vector

lat	A vector of latitude elements with the length of the measurement vector	
lon	A vector of longitude elements with the length of the measurement vector	
vec1	An additional vector, which is named as vec1	
vec2	An additional vector, which is named as vec2	
vec3	An additional vector, which is named as vec3	
vec4	An additional vector, which is named as vec4	
resultlist	A list with results of tests	
resultlistcounter		
	Number of elements of the resultlist	

Details

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_distribution_1d. As a result the resultlist will get additional entries, which are defined by the tests, which may called by this function.

Value

The given resultlist will be returned, with included results of the functions which may called in this function.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_distribution_1d
```

Examples

```
vec <- rnorm(1000)
workflowlist_part <- list(numofbars=15)
result <- qat_call_distribution(vec, workflowlist_part)</pre>
```

```
qat_call_histogram_test
```

Perform a LIM Rule Check

Description

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_histogram_test_xxx_xd.

qat_call_histogram_test

Usage

```
qat_call_histogram_test(measurement_vector, workflowlist_part, element = -999,
time = NULL, height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL,
vec3 = NULL, vec4 = NULL, resultlist = list(), resultlistcounter = 1)
```

Arguments

measurement_vector

The measurement vector, which should be tested

workflowlist_part

A list with the parameters of the check

element Element-identifier for the result, which will be given back in the resultlist time A vector of time elements with the length of the measurement vector height A vector of height elements with the length of the measurement vector A vector of latitude elements with the length of the measurement vector lon A vector of longitude elements with the length of the measurement vector

vec1 An additional vector, which is named as vec1
vec2 An additional vector, which is named as vec2
vec3 An additional vector, which is named as vec3
vec4 An additional vector, which is named as vec4

resultlist A list with results of tests

resultlistcounter

Number of elements of the resultlist

Details

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_lim_rule_dynamic_1d, qat_analyse_lim_rule_static_1d and qat_analyse_lim_rule_sigma_1d. As a result the resultlist will get additional entries, which are defined by the tests, which may called by this function.

Value

The given resultlist will be returned, with included results of the functions which may called in this function.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_histogram_test_kld_1d, qat_analyse_histogram_test_jsd_1d, qat_analyse_histogram_test_rms_ qat_analyse_histogram_test_ms_1d, qat_analyse_histogram_test_emd_1d, qat_analyse_histogram_test_kld_2 qat_analyse_histogram_test_jsd_2d, qat_analyse_histogram_test_rms_2d, qat_analyse_histogram_test_ms_2 qat_analyse_histogram_test_emd_2d
```

72 qat_call_lim_rule

Examples

```
vec <- c(rnorm(1000), rnorm(1000)+1)
workflowlist_part <- list(blocksize=50, numofbars=65, metric="emd")
resultlist <- qat_call_histogram_test(vec, workflowlist_part, element=1)
savelist <- qat_call_save_histogram_test(resultlist[[2]])</pre>
```

qat_call_lim_rule

Perform a LIM Rule Check

Description

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_lim_rule_dynamic_1d, qat_analyse_lim_rule_static_1d and qat_analyse_lim_rule_sigma_1d.

Usage

```
qat_call_lim_rule(measurement_vector, workflowlist_part, element = -999, time = NULL,
height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL, vec3 = NULL,
vec4 = NULL, resultlist = list(), resultlistcounter = 1)
```

Arguments

measurement_vector

The measurement vector, which should be tested

workflowlist_part

A list with the parameters of the check

element Element-identifier for the result, which will be given back in the resultlist time A vector of time elements with the length of the measurement vector height A vector of height elements with the length of the measurement vector 1 A vector of latitude elements with the length of the measurement vector 1 A vector of longitude elements with the length of the measurement vector 1 A vector of longitude elements with the length of the measurement vector 1 A vector of longitude elements with the length of the measurement vector 1 A vector of longitude elements with the length of the measurement vector 1 A vector of longitude elements with the length of the measurement vector 1 A vector of longitude elements with the length of the measurement vector 1 A vector of longitude elements with the length of the measurement vector 1 A vector of longitude elements with the length of the measurement vector 1 A vector of longitude elements with the length of the measurement vector 1 A vector of longitude elements with the length of the measurement vector 1 A vector of longitude elements with the length of the measurement vector 1 A vector of longitude elements with the length of the measurement vector 1 A vector of longitude elements with the length of the measurement vector 1 A vector of longitude elements with the length of the measurement vector 1 A vector of longitude elements with the length of the measurement vector 1 A vector of longitude elements with the length of the measurement vector 1 A vector of longitude elements with the length of the measurement vector 1 A vector of longitude elements with the length of the measurement vector 1 A vector of longitude elements with the length of the measurement vector 1 A vector of longitude elements with the length of the measurement vector 1 A vector of longitude elements with the length of the measurement vector 1 A vector of longitude elements with the length of the measurement vector 1 A vector of longitude elements with the length of the measurement vector 1 A vector

vec1 An additional vector, which is named as vec1
vec2 An additional vector, which is named as vec2
vec3 An additional vector, which is named as vec3
vec4 An additional vector, which is named as vec4

resultlist A list with results of tests

resultlistcounter

Number of elements of the resultlist

Details

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_lim_rule_dynamic_1d, qat_analyse_lim_rule_static_1d and qat_analyse_lim_rule_sigma_1d. As a result the resultlist will get additional entries, which are defined by the tests, which may called by this function.

qat_call_noc_rule 73

Value

The given resultlist will be returned, with included results of the functions which may called in this function.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_lim_rule_static_1d, qat_analyse_lim_rule_dynamic_1d, qat_analyse_lim_rule_sigma_1d,
qat_plot_lim_rule_dynamic_1d, qat_plot_lim_rule_static_1d, qat_plot_lim_rule_sigma_1d
```

Examples

```
vec <- rnorm(1000)
min_vector<-seq(-1,-2,length.out=1000)
max_vector<-seq(1,2,length.out=1000)
workflowlist_part <- list(minimum_value=-2, maximum_value=2,minimum_vector="vec1",
maximum_vector="vec2",minimum_vector_name="minimum vector",maximum_vector_name="maximum vector",
sigma_factor=2)
result <- qat_call_lim_rule(vec, workflowlist_part, vec1=min_vector, vec2=max_vector)</pre>
```

qat_call_noc_rule

Perform a NOC Rule Check

Description

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_noc_rule_1d.

Usage

```
qat_call_noc_rule(measurement_vector, workflowlist_part, element = -999, time = NULL,
height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL, vec3 = NULL,
vec4 = NULL, resultlist = list(), resultlistcounter = 1)
```

Arguments

 ${\tt measurement_vector}$

The measurement vector, which should be tested

workflowlist_part

A list with the parameters of the check

element Element-identifier for the result, which will be given back in the resultlist time A vector of time elements with the length of the measurement vector height A vector of height elements with the length of the measurement vector A vector of latitude elements with the length of the measurement vector

lon	A vector of longitude elements with the length of the measurement vector
vec1	An additional vector, which is named as vec1
vec2	An additional vector, which is named as vec2
vec3	An additional vector, which is named as vec3
vec4	An additional vector, which is named as vec4
resultlist resultlistcount	A list with results of tests
	NI make and Colombia Cale and Additional Allina

Number of elements of the resultlist

Details

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_noc_rule_1d. As a result the resultlist will get additional entries, which are defined by the tests, which may called by this function.

Value

The given resultlist will be returned, with included results of the functions which may called in this function.

Author(s)

Andre Duesterhus

See Also

```
qat_plot_noc_rule_1d
```

Examples

```
vec <- c(1,2,3,4,4,4,5,5,4,3,NaN,3,2,1)
workflowlist_part <- list(max_return_elements=1)
result <- qat_call_noc_rule(vec, workflowlist_part)</pre>
```

```
qat_call_plot_block_distribution
```

Plot a result of a block distribution check

Description

A result of qat_analyse_block_distribution_1d will be plotted.

Usage

```
qat_call_plot_block_distribution(resultlist_part, measurement_vector = NULL, time=NULL,
height= NULL, lat=NULL, lon=NULL, measurement_name = "", directoryname = "",
basename = "", plotstyle = NULL)
```

Arguments

resultlist_part

A list with the result, which is directly or indirectly produced by qat_analyse_block_distribution_1d.

measurement_vector

The measurement vector, which was tested

time A vector of time elements with the length of the measurement vector

height A vector of height elements with the length of the measurement vector

A vector of latitude elements with the length of the measurement vector

A vector of longitude elements with the length of the measurement vector

measurement_name

Name of the data, which will be used as an indicator on the plot

directoryname Definition of the directory, where the plot should be stored

basename Basic name of the resulting file plotstyle A list with a qat color scheme

Details

A plot will be produced, which base on the resulting list of qat_analyse_block_distribution_1d. The measurement_name will be used as a title of the plot and the plotstyle list define the colors of the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory. As a filename the basename with additional information will be used (number of test and a label, which indicate which test was performed).

Value

No return value.

Author(s)

Andre Duesterhus

See Also

```
qat_plot_block_distribution_1d
```

Examples

```
vec <- rnorm(1000)
workflowlist_part <- list(blocksize=50)
resultlist <- qat_call_block_distribution(vec, workflowlist_part, element=1)
# this example produce the files exampleplot_1_blockdist_1.png, exampleplot_1_blockdist_2.png
# and exampleplot_1_blockdist_3.png in the current directory
qat_call_plot_block_distribution(resultlist[[2]], measurement_vector=vec,
measurement_name="Result of Check", basename="exampleplot")</pre>
```

```
qat_call_plot_boot_distribution
```

Plot a result of a bootstrapped distribution check

Description

A result of qat_analyse_boot_distribution_1d will be plotted.

Usage

```
qat_call_plot_boot_distribution(resultlist_part, measurement_vector = NULL,
time = NULL, height = NULL, lat = NULL, lon = NULL, measurement_name = "",
directoryname = "", basename = "", plotstyle = NULL)
```

Arguments

resultlist_part

A list with the result, which is directly or indirectly produced by qat_analyse_boot_distribution_1d.

measurement_vector

The measurement vector, which was tested

time A vector of time elements with the length of the measurement vector

A vector of height elements with the length of the measurement vector

A vector of latitude elements with the length of the measurement vector

A vector of longitude elements with the length of the measurement vector

measurement_name

Name of the data, which will be used as an indicator on the plot

directoryname Definition of the directory, where the plot should be stored

basename Basic name of the resulting file plotstyle A list with a qat color scheme

Details

A plot will be produced, which base on the resulting list of qat_analyse_boot_distribution_1d. The measurement_name will be used as a title of the plot and the plotstyle list define the colors of the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory. As a filename the basename with additional information will be used (number of test and a label, which indicate which test was performed).

Value

No return value.

Author(s)

Andre Duesterhus

See Also

```
qat_plot_boot_distribution_1d
```

Examples

```
vec <- rnorm(500)
workflowlist_part <- list(bootruns=100)
resultlist <- qat_call_boot_distribution(vec, workflowlist_part, element=1)
# this example produce the file exampleplot_1_bootdist.png in the current directory
qat_call_plot_boot_distribution(resultlist[[2]], measurement_vector=vec,
measurement_name="Result of Check", basename="exampleplot")</pre>
```

```
qat_call_plot_distribution
```

Plot a result of a distribution check

Description

A result of qat_analyse_distribution_1d will be plotted.

Usage

```
qat_call_plot_distribution(resultlist_part, measurement_vector = NULL, time = NULL,
height = NULL, lat = NULL, lon = NULL, measurement_name = "", directoryname = "",
basename = "", plotstyle = NULL)
```

Arguments

resultlist_part

A list with the result, which is directly or indirectly produced by qat_analyse_distribution_1d.

measurement_vector

The measurement vector, which was tested

time A vector of time elements with the length of the measurement vector

height A vector of height elements with the length of the measurement vector

A vector of latitude elements with the length of the measurement vector

A vector of longitude elements with the length of the measurement vector

measurement_name

Name of the data, which will be used as an indicator on the plot

directoryname Definition of the directory, where the plot should be stored

basename Basic name of the resulting file
plotstyle A list with a qat color scheme

Details

A plot will be produced, which base on the resulting list of qat_analyse_distribution_1d. The measurement_name will be used as a title of the plot and the plotstyle list define the colors of the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory. As a filename the basename with additional information will be used (number of test and a label, which indicate which test was performed).

Value

No return value.

Author(s)

Andre Duesterhus

See Also

```
qat_plot_distribution_1d
```

Examples

```
vec <- rnorm(1000)
workflowlist_part <- list(numofbars=15)
resultlist <- qat_call_distribution(vec, workflowlist_part, element=1)
# this example produce a file exampleplot_1_dist.png in the current directory
qat_call_plot_distribution(resultlist[[2]], measurement_vector=vec,
measurement_name="Result of Check", basename="exampleplot")</pre>
```

```
{\tt qat\_call\_plot\_histogram\_test}
```

Plot a result of a histogram test

Description

A result of qat_analyse_histogram_test_xxx_xd will be plotted.

Usage

```
qat_call_plot_histogram_test(resultlist_part, measurement_vector = NULL, time = NULL,
height = NULL, lat = NULL, lon = NULL, measurement_name = "", directoryname = "",
basename = "", plotstyle = NULL)
```

Arguments

resultlist_part

A list with the result, which is directly or indirectly produced by qat_analyse_histogram_test_xxx_xd.

measurement_vector

The measurement vector, which was tested

time A vector of time elements with the length of the measurement vector

height A vector of height elements with the length of the measurement vector

lat A vector of latitude elements with the length of the measurement vector

1on A vector of longitude elements with the length of the measurement vector

measurement_name

Name of the data, which will be used as an indicator on the plot

directoryname Definition of the directory, where the plot should be stored

basename Basic name of the resulting file
plotstyle A list with a qat color scheme

Details

A plot will be produced, which base on the resulting list of qat_analyse_histogram_test_xxx_xd. The measurement_name will be used as a title of the plot and the plotstyle list define the colors of the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory. As a filename the basename with additional information will be used (number of test and a label, which indicate which test was performed).

Value

No return value.

Author(s)

Andre Duesterhus

Examples

```
vec <- c(rnorm(1000), rnorm(1000)+1)
workflowlist_part <- list(blocksize=50, numofbars=65, metric="emd")
resultlist <- qat_call_histogram_test(vec, workflowlist_part, element=1)
# this example produce the file exampleplot_1_histogramtest_emd.png in the current
# directory
qat_call_plot_histogram_test(resultlist[[2]], measurement_vector=vec,
measurement_name="Result of Check", basename="exampleplot")</pre>
```

```
qat_call_plot_lim_rule
```

Plot a result of a LIM rule check

Description

A result of qat_analyse_lim_rule_static_1d, qat_analyse_lim_rule_sigma_1d or qat_analyse_lim_rule_dynamics_ will be plotted.

Usage

```
qat_call_plot_lim_rule(resultlist_part, measurement_vector = NULL, time = NULL,
height = NULL, lat = NULL, lon = NULL, measurement_name = "", directoryname = "",
basename = "", plotstyle = NULL)
```

Arguments

resultlist_part

A list with the result, which is directly or indirectly produced by qat_analyse_lim_rule_static_1d, qat_analyse_lim_rule_sigma_1d or qat_analyse_lim_rule_dynamics_1d.

measurement_vector

The measurement vector, which was tested

time A vector of time elements with the length of the measurement vector

height A vector of height elements with the length of the measurement vector

A vector of latitude elements with the length of the measurement vector

A vector of longitude elements with the length of the measurement vector

measurement_name

Name of the data, which will be used as an indicator in the plot

directoryname Definition of the directory, where the plot should be stored

basename Basic name of the resulting file plotstyle A list with a qat color scheme

Details

A plot will be produced, which base on the resulting list of qat_analyse_lim_rule_static_1d, qat_analyse_lim_rule_sigma_1d or qat_analyse_lim_rule_dynamics_1d. The measurement_name will be used as a title of the plot and the plotstyle list define the colors of the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory. As a filename the basename with additional information will be used (number of test and a label, which indicate which test was performed).

Value

No return value.

qat_call_plot_noc_rule

81

Author(s)

Andre Duesterhus

See Also

```
qat_plot_lim_rule_dynamic_1d, qat_plot_lim_rule_static_1d, qat_plot_lim_rule_sigma_1d
```

Examples

```
vec <- rnorm(1000)
min_vector<-seq(-1,-2,length.out=1000)
max_vector<-seq(1,2,length.out=1000)
workflowlist_part <- list(minimum_value=-2, maximum_value=2,minimum_vector="vec1",
maximum_vector="vec2",minimum_vector_name="minimum vector",
maximum_vector_name="maximum vector", sigma_factor=2)
resultlist <- qat_call_lim_rule(vec, workflowlist_part, element=1, vec1=min_vector,
vec2=max_vector)
# this example produce the files exampleplot_1_lim_sigma.png, exampleplot_1_lim_static.png
# and exampleplot_1_lim_dynamic.png in the current directory
for (ii in 2:4) {
    qat_call_plot_lim_rule(resultlist[[ii]], measurement_vector=vec,
    measurement_name="Result of Check", basename="exampleplot")
}</pre>
```

```
qat_call_plot_noc_rule
```

Plot a result of a NOC rule check

Description

A result of qat_analyse_noc_rule_1d will be plotted.

Usage

```
qat_call_plot_noc_rule(resultlist_part, measurement_vector = NULL, time = NULL,
height = NULL, lat = NULL, lon = NULL, measurement_name = "", directoryname = "",
basename = "", plotstyle = NULL)
```

Arguments

```
resultlist_part
```

A list with the result, which is directly or indirectly produced by qat_analyse_noc_rule_1d. measurement_vector

The measurement vector, which was tested

time A vector of time elements with the length of the measurement vector
height A vector of height elements with the length of the measurement vector
lat A vector of latitude elements with the length of the measurement vector

1on A vector of longitude elements with the length of the measurement vector

measurement_name

Name of the data, which will be used as an indicator on the plot

directoryname Definition of the directory, where the plot should be stored

basename Basic name of the resulting file plotstyle A list with a qat color scheme

Details

A plot will be produced, which base on the resulting list of qat_analyse_noc_rule_1d. The measurement_name will be used as a title of the plot and the plotstyle list define the colors of the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory. As a filename the basename with additional information will be used (number of test and a label, which indicate which test was performed).

Value

No return value.

Author(s)

Andre Duesterhus

See Also

```
qat_plot_noc_rule_1d
```

Examples

```
vec <- c(1,2,3,4,4,4,5,5,4,3,NaN,3,2,1)
workflowlist_part <- list(max_return_elements=1)
resultlist <- qat_call_noc_rule(vec, workflowlist_part,element=1)
# this example produce a file exampleplot_1_noc.png in the current directory
qat_call_plot_noc_rule(resultlist[[2]], measurement_vector=vec,
measurement_name="Result of Check", basename="exampleplot")</pre>
```

```
qat_call_plot_roc_rule
```

Plot a result of a ROC rule check

Description

A result of qat_analyse_roc_rule_static_1d or qat_analyse_roc_rule_dynamics_1d will be plotted.

qat_call_plot_roc_rule 83

Usage

```
qat_call_plot_roc_rule(resultlist_part, measurement_vector = NULL, time = NULL,
height = NULL, lat = NULL, lon = NULL, measurement_name = "", directoryname = "",
basename = "", plotstyle = NULL)
```

Arguments

resultlist_part

A list with the result, which is directly or indirectly produced by qat_analyse_roc_rule_static_1d or qat_analyse_roc_rule_dynamics_1d.

measurement_vector

The measurement vector, which was tested

time A vector of time elements with the length of the measurement vector

height A vector of height elements with the length of the measurement vector

A vector of latitude elements with the length of the measurement vector

A vector of longitude elements with the length of the measurement vector

measurement_name

Name of the data, which will be used as an indicator in the plot

directoryname Definition of the directory, where the plot should be stored

basename Basic name of the resulting file
plotstyle A list with a qat color scheme

Details

A plot will be produced, which base on the resulting list of qat_analyse_roc_rule_static_1d or qat_analyse_roc_rule_dynamics_1d. The measurement_name will be used as a title of the plot and the plotstyle list define the colors of the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory. As a filename the basename with additional information will be used (number of test and a label, which indicate which test was performed).

Value

No return value.

Author(s)

Andre Duesterhus

See Also

```
qat_plot_roc_rule_dynamic_1d, qat_plot_roc_rule_static_1d
```

Examples

```
vec <- rnorm(100)
downward_vector<-seq(1,2,length.out=100)
upward_vector<-seq(1,2,length.out=100)
workflowlist_part <- list(downward_value=2, upward_value=2,downward_vector="vec1",
upward_vector="vec2",downward_vector_name="downward vector",
upward_vector_name="upward vector")
resultlist <- qat_call_roc_rule(vec, workflowlist_part, element=1, vec1=downward_vector,
vec2=upward_vector)
# this example produce the files exampleplot_1_roc_static.png and
# exampleplot_1_roc_dynamic.png in the current directory
for (ii in 2:3) {
    qat_call_plot_roc_rule(resultlist[[ii]], measurement_vector=vec,
    measurement_name="Result of Check", basename="exampleplot")
}</pre>
```

qat_call_plot_slide_distribution

Plot a result of a slide distribution check

Description

A result of qat_analyse_slide_distribution_1d will be plotted.

Usage

```
qat_call_plot_slide_distribution(resultlist_part, measurement_vector = NULL,
time = NULL, height = NULL, lat = NULL, lon = NULL, measurement_name = "",
directoryname = "", basename = "", plotstyle = NULL)
```

Arguments

resultlist_part

A list with the result, which is directly or indirectly produced by qat_analyse_slide_distribution_1d.

measurement_vector

The measurement vector, which was tested

time A vector of time elements with the length of the measurement vector
height A vector of height elements with the length of the measurement vector
lat A vector of latitude elements with the length of the measurement vector
A vector of longitude elements with the length of the measurement vector

measurement_name

Name of the data, which will be used as an indicator on the plot

directoryname Definition of the directory, where the plot should be stored

basename Basic name of the resulting file plotstyle A list with a qat color scheme

Details

A plot will be produced, which base on the resulting list of qat_analyse_slide_distribution_1d. The measurement_name will be used as a title of the plot and the plotstyle list define the colors of the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory. As a filename the basename with additional information will be used (number of test and a label, which indicate which test was performed).

Value

No return value.

Author(s)

Andre Duesterhus

See Also

```
qat_plot_slide_distribution_1d
```

Examples

```
vec <- rnorm(100)
workflowlist_part <- list(blocksize=10)
resultlist <- qat_call_slide_distribution(vec, workflowlist_part, element=1)
# this example produce the files exampleplot_1_slidedist_1.png, exampleplot_1_slidedist_2.png
# and exampleplot_1_slidedist_3.png in the current directory
qat_call_plot_slide_distribution(resultlist[[2]], measurement_vector=vec,
measurement_name="Result of Check", basename="exampleplot")</pre>
```

```
qat_call_plot_trimmed_distribution
```

Plot a result of a trimmed distribution check

Description

A result of qat_analyse_trimmed_distribution_1d will be plotted.

Usage

```
qat_call_plot_trimmed_distribution(resultlist_part, measurement_vector = NULL,
time = NULL, height = NULL, lat = NULL, lon = NULL, measurement_name = "",
directoryname = "", basename = "", plotstyle = NULL)
```

Arguments

resultlist_part

A list with the result, which is directly or indirectly produced by qat_analyse_trimmed_distribution_1d.

measurement_vector

The measurement vector, which was tested

time A vector of time elements with the length of the measurement vector

A vector of height elements with the length of the measurement vector

A vector of latitude elements with the length of the measurement vector

A vector of longitude elements with the length of the measurement vector

measurement_name

Name of the data, which will be used as an indicator on the plot

directoryname Definition of the directory, where the plot should be stored

basename Basic name of the resulting file plotstyle A list with a qat color scheme

Details

A plot will be produced, which base on the resulting list of qat_analyse_trimmed_distribution_1d. The measurement_name will be used as a title of the plot and the plotstyle list define the colors of the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory. As a filename the basename with additional information will be used (number of test and a label, which indicate which test was performed).

Value

No return value.

Author(s)

Andre Duesterhus

See Also

```
qat_plot_trimmed_distribution_1d
```

Examples

```
vec <- rnorm(1000)
workflowlist_part <- list()
resultlist <- qat_call_trimmed_distribution(vec, workflowlist_part, element=1)
# this example produce a file exampleplot_1_trimmeddist.png in the current directory
qat_call_plot_trimmed_distribution(resultlist[[2]], measurement_vector=vec,
measurement_name="Result of Check", basename="exampleplot")</pre>
```

qat_call_roc_rule 87

qat_call_roc_rule	Perform a ROC Rule Check	

Description

This function calls the described tests, which are defined by the parameters in the workflowlist_part.

The possible called functions are qat_analyse_roc_rule_dynamic_1d and qat_analyse_roc_rule_static_1d.

Usage

```
qat_call_roc_rule(measurement_vector, workflowlist_part, element = -999, time = NULL,
height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL, vec3 = NULL,
vec4 = NULL, resultlist = list(), resultlistcounter = 1)
```

Arguments

measurement_vector

The measurement vector, which should be tested

workflowlist_part

A list with the parameters of the check

element Element-identifier for the result, which will be given back in the resultlist time A vector of time elements with the length of the measurement vector height A vector of height elements with the length of the measurement vector A vector of latitude elements with the length of the measurement vector A vector of longitude elements with the length of the measurement vector

vec1 An additional vector, which is named as vec1
vec2 An additional vector, which is named as vec2
vec3 An additional vector, which is named as vec3
vec4 An additional vector, which is named as vec4

resultlist A list with results of tests

resultlistcounter

Number of elements of the resultlist

Details

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_roc_rule_dynamic_1d and qat_analyse_roc_rule_static_1d. As a result the resultlist will get additional entries, which are defined by the tests, which may called by this function.

Value

The given resultlist will be returned, with included results of the functions which may called in this function.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_roc_rule_static_1d, qat_analyse_roc_rule_dynamic_1d, qat_plot_roc_rule_dynamic_1d,
qat_plot_roc_rule_static_1d
```

Examples

```
vec <- rnorm(100)
downward_vector<-seq(1,2,length.out=1000)
upward_vector<-seq(1,2,length.out=1000)
workflowlist_part <- list(downward_value=2, upward_value=2,downward_vector="vec1",
upward_vector="vec2",downward_vector_name="downward vector", upward_vector_name="upward vector")
result <- qat_call_roc_rule(vec, workflowlist_part,vec1=downward_vector,vec2=upward_vector)</pre>
```

qat_call_save_block_distribution

Produce a savelist-entry for a Block Distribution Test

Description

This function calls qat_save_block_distribution_1d. As a result a part of a savelist is constructed, which can be used to construct a netCDF file.

Usage

```
qat_call_save_block_distribution(resultlist_part, element = -999, dim_mv=1,
time = NULL, height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL,
vec3 = NULL, vec4 = NULL, baseunit = NULL, savelist = list(), savelistcounter = 1)
```

Arguments

element

resultlist_part

Element-identifier for the result, which will be given back in the savelist

dim_mv Dimension of the measurement vector.

A list with the results of the check

time A vector of time elements with the length of the measurement vector
height A vector of height elements with the length of the measurement vector
lat A vector of latitude elements with the length of the measurement vector
lon A vector of longitude elements with the length of the measurement vector

vec1 An additional vector, which is named as vec1 vec2 An additional vector, which is named as vec2 vec3 An additional vector, which is named as vec3 vec4 An additional vector, which is named as vec4 baseunit The unit of the original measurement vector

savelist A list with save elements

savelistcounter

Numbers of elements of the savelist

Details

This function calls the described saving-function, which transform the resultlist elements to a savinglist element. The possible called function is qat_save_block_distribution_1d. As a result the given savelist will get an additional entry.

Value

The given savelist will be returned, with included results of the functions which may be called in this function.

Author(s)

Andre Duesterhus

See Also

```
qat_save_block_distribution_1d, qat_run_workflow_save
```

Examples

```
vec <- rnorm(1000)
workflowlist_part <- list(blocksize=50)
resultlist <- qat_call_block_distribution(vec, workflowlist_part, element=1)
savelist <- qat_call_save_block_distribution(resultlist[[2]])</pre>
```

```
qat_call_save_boot_distribution
```

Produce a savelist-entry for a Boot Distribution Test

Description

This function calls qat\save_boot_distribution_1d. As a result a part of a savelist is constructed, which can be used to construct a netCDF file.

Usage

```
qat_call_save_boot_distribution(resultlist_part, element = -999, dim_mv=1,
time = NULL, height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL,
vec3 = NULL, vec4 = NULL, baseunit = NULL, savelist = list(), savelistcounter = 1)
```

Arguments

resultlist_part

A list with the results of the check

element Element-identifier for the result, which will be given back in the savelist

dim_mv Dimension of the measurement vector.

time A vector of time elements with the length of the measurement vector
height A vector of height elements with the length of the measurement vector
lat A vector of latitude elements with the length of the measurement vector
lon A vector of longitude elements with the length of the measurement vector

vec1 An additional vector, which is named as vec1
vec2 An additional vector, which is named as vec2
vec3 An additional vector, which is named as vec3
vec4 An additional vector, which is named as vec4
baseunit The unit of the original measurement vector

savelist A list with save elements

savelistcounter

Numbers of elements of the savelist

Details

This function calls the described saving-function, which transform the resultlist elements to a savinglist element. The possible called function is qat_save_boot_distribution_1d. As a result the given savelist will get an additional entry.

Value

The given savelist will be returned, with included results of the functions which may be called in this function.

Author(s)

Andre Duesterhus

See Also

```
qat_save_boot_distribution_1d, qat_run_workflow_save
```

Examples

```
vec <- rnorm(1000)
workflowlist_part <- list(bootruns=1000)
resultlist <- qat_call_boot_distribution(vec, workflowlist_part, element=1)
savelist <- qat_call_save_boot_distribution(resultlist[[2]])</pre>
```

```
qat_call_save_distribution
```

Produce a savelist-entry for a Distribution Test

Description

This function calls qat_save_distribution_1d. As a result a part of a savelist is constructed, which can be used to construct a netCDF file.

Usage

```
qat_call_save_distribution(resultlist_part, element = -999, dim_mv=1, time = NULL,
height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL, vec3 = NULL,
vec4 = NULL, baseunit = NULL, savelist = list(), savelistcounter = 1)
```

Element-identifier for the result, which will be given back in the savelist

Arguments

element

resul	+14	c+	nart
resui	נבז	.Sτ_	part

٨	lict	with	the	results	of the	check
Α	HSU	with	ıne	resums	or ine	спеск

dim_mv	Dimension of the measurement vector.
time	A vector of time elements with the length of the measurement vector
height	A vector of height elements with the length of the measurement vector
lat	A vector of latitude elements with the length of the measurement vector
lon	A vector of longitude elements with the length of the measurement vector

vec1 An additional vector, which is named as vec1
vec2 An additional vector, which is named as vec2
vec3 An additional vector, which is named as vec3
vec4 An additional vector, which is named as vec4
baseunit The unit of the original measurement vector

savelist A list with save elements

savelistcounter

Numbers of elements of the savelist

Details

This function calls the described saving-function, which transform the resultlist elements to a savinglist element. The possible called function is qat_save_distribution_1d. As a result the given savelist will get an additional entry.

Value

The given savelist will be returned, with included results of the functions which may be called in this function.

Author(s)

Andre Duesterhus

See Also

```
qat_save_distribution_1d, qat_run_workflow_save
```

Examples

```
vec <- rnorm(1000)
workflowlist_part <- list(numofbars=15)
resultlist <- qat_call_distribution(vec, workflowlist_part, element=1)
qat_call_plot_distribution(resultlist[[2]], measurement_vector=vec,
measurement_name="Result of Check", basename="exampleplot")
savelist <- qat_call_save_distribution(resultlist[[2]])</pre>
```

```
qat_call_save_histogram_test
```

Produce a savelist-entry for a Histogram Test

Description

This function calls qat_save_histogram_test. As a result a part of a savelist is constructed, which can be used to construct a netCDF file.

Usage

```
qat_call_save_histogram_test(resultlist_part, element = -999, dim_mv = 1,
time = NULL, height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL,
vec3 = NULL, vec4 = NULL, baseunit = NULL, savelist = list(), savelistcounter = 1)
```

Arguments

resultlist_part

A list with the results of the check

element Element-identifier for the result, which will be given back in the savelist dim_mv Dimension of the measurement vector.

A vector of time elements with the length of the measurement vector

height A vector of height elements with the length of the measurement vector

A vector of latitude elements with the length of the measurement vector

A vector of longitude elements with the length of the measurement vector

vec1 An additional vector, which is named as vec1 vec2 An additional vector, which is named as vec2 vec3 An additional vector, which is named as vec3 qat_call_save_lim_rule 93

vec4 An additional vector, which is named as vec4 baseunit The unit of the original measurement vector

savelist A list with save elements

savelistcounter

Numbers of elements of the savelist

Details

This function calls the described saving-function, which transform the resultlist elements to a savinglist element. The possible called functions are qat_save_histogram_test. As a result the given savelist will get an additional entry.

Value

The given savelist will be returned, with included results of the functions which may be called in this function.

Author(s)

Andre Duesterhus

See Also

```
qat_save_histogram_test, qat_run_workflow_save
```

Examples

```
vec <- c(rnorm(1000), rnorm(1000)+1)
workflowlist_part <- list(blocksize=50, numofbars=65, metric="emd")
resultlist <- qat_call_histogram_test(vec, workflowlist_part, element=1)
savelist <- qat_call_save_histogram_test(resultlist[[2]])</pre>
```

```
qat_call_save_lim_rule
```

Produce a savelist-entry for a LIM-RULE Test

Description

This function calls qat_save_lim_rule_static_1d, qat_save_lim_rule_sigma_1d or qat_save_lim_rule_dynamic_1d. As a result a part of a savelist is constructed, which can be used to construct a netCDF file.

Usage

```
qat_call_save_lim_rule(resultlist_part, element = -999, dim_mv=1, time = NULL,
height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL, vec3 = NULL,
vec4 = NULL, baseunit = NULL, savelist = list(), savelistcounter = 1)
```

Arguments

resultlist_part

A list with the results of the check

element Element-identifier for the result, which will be given back in the savelist

dim_mv Dimension of the measurement vector.

time A vector of time elements with the length of the measurement vector

A vector of height elements with the length of the measurement vector

A vector of latitude elements with the length of the measurement vector

A vector of longitude elements with the length of the measurement vector

vec1 An additional vector, which is named as vec1
vec2 An additional vector, which is named as vec2
vec3 An additional vector, which is named as vec3
vec4 An additional vector, which is named as vec4
baseunit The unit of the original measurement vector

savelist A list with save elements

savelistcounter

Numbers of elements of the savelist

Details

This function calls the described saving-function, which transform the resultlist elements to a savinglist element. The possible called functions are qat_save_lim_rule_static_1d, qat_save_lim_rule_sigma_1d or qat_save_lim_rule_dynamic_1d. As a result the given savelist will get an additional entry.

Value

The given savelist will be returned, with included results of the functions which may be called in this function.

Author(s)

Andre Duesterhus

See Also

```
qat_save_lim_rule_static_1d, qat_save_lim_rule_sigma_1d, qat_save_lim_rule_dynamic_1d,
qat_run_workflow_save
```

Examples

```
vec <- rnorm(1000)
min_vector<-seq(-1,-2,length.out=1000)
max_vector<-seq(1,2,length.out=1000)
workflowlist_part <- list(minimum_value=-2, maximum_value=2,minimum_vector="vec1",
maximum_vector="vec2",minimum_vector_name="minimum vector",
maximum_vector_name="maximum vector", sigma_factor=2)</pre>
```

qat_call_save_noc_rule 95

```
resultlist <- qat_call_lim_rule(vec, workflowlist_part, element=1, vec1=min_vector,
vec2=max_vector)
savelist <- list()
savelistcounter <- 1
for (ii in 2:4) {
    savelist <- qat_call_save_lim_rule(resultlist[[ii]], savelist=savelist,
    savelistcounter=savelistcounter)
    if (length(which(names(savelist)=="element"))==0) {
        savelistcounter<-length(savelist)
    } else {
        savelistcounter<-1
    }
}</pre>
```

qat_call_save_noc_rule

Produce a savelist-entry for a NOC RULE Test

Description

This function calls qat_save_noc_rule_1d. As a result a part of a savelist is constructed, which can be used to construct a netCDF file.

Usage

```
qat_call_save_noc_rule(resultlist_part, element = -999, dim_mv=1, time = NULL,
height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL, vec3 = NULL,
vec4 = NULL, baseunit = NULL, savelist = list(), savelistcounter = 1)
```

Arguments

resultlist_part A list with the results of the check element Element-identifier for the result, which will be given back in the savelist dim_mv Dimension of the measurement vector. time A vector of time elements with the length of the measurement vector height A vector of height elements with the length of the measurement vector A vector of latitude elements with the length of the measurement vector lat A vector of longitude elements with the length of the measurement vector lon vec1 An additional vector, which is named as vec1 An additional vector, which is named as vec2 vec2 An additional vector, which is named as vec3 vec3 An additional vector, which is named as vec4 vec4 baseunit The unit of the original measurement vector A list with save elements savelist savelistcounter

Numbers of elements of the savelist

Details

This function calls the described saving-function, which transform the resultlist elements to a savinglist element. The possible called function is qat_save_noc_rule_1d. As a result the given savelist will get an additional entry.

Value

The given savelist will be returned, with included results of the functions which may be called in this function.

Author(s)

Andre Duesterhus

See Also

```
qat_save_noc_rule_1d, qat_run_workflow_save
```

Examples

```
vec <- c(1,2,3,4,4,4,5,5,4,3,NaN,3,2,1)
workflowlist_part <- list(max_return_elements=1)
resultlist <- qat_call_noc_rule(vec, workflowlist_part,element=1)
savelist <- qat_call_save_noc_rule(resultlist[[2]])</pre>
```

```
qat_call_save_roc_rule
```

Produce a savelist-entry for a ROC-Rule Test

Description

This function calls qat\save_roc_rule_static_1d or qat_save_roc_rule_dynamic_1d. As a result a part of a savelist is constructed, which can be used to construct a netCDF file.

Usage

```
qat_call_save_roc_rule(resultlist_part, element = -999, dim_mv=1, time = NULL,
height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL, vec3 = NULL,
vec4 = NULL, baseunit = NULL, savelist = list(), savelistcounter = 1)
```

Arguments

resultlist_part

A list with the results of the check

element Element-identifier for the result, which will be given back in the savelist

dim_mv Dimension of the measurement vector.

time A vector of time elements with the length of the measurement vector

qat_call_save_roc_rule 97

height	A vector of height elements with the length of the measurement vector
lat	A vector of latitude elements with the length of the measurement vector
lon	A vector of longitude elements with the length of the measurement vector
vec1	An additional vector, which is named as vec1
vec2	An additional vector, which is named as vec2
vec3	An additional vector, which is named as vec3
vec4	An additional vector, which is named as vec4
baseunit	The unit of the original measurement vector
savelist	A list with save elements
savelistcounter	
	NT 1 C 1 . C 1 . C . 1

Numbers of elements of the savelist

Details

This function calls the described saving-function, which transform the resultlist elements to a savinglist element. The possible called functions are qat_save_roc_rule_static_1d and qat_save_roc_rule_static_1d. As a result the given savelist will get an additional entry.

Value

The given savelist will be returned, with included results of the functions which may be called in this function.

Author(s)

Andre Duesterhus

See Also

```
qat_save_roc_rule_static_1d, qat_save_roc_rule_dynamic_1d, qat_run_workflow_save
```

Examples

```
vec <- rnorm(100)
downward_vector<-seq(1,2,length.out=1000)
upward_vector<-seq(1,2,length.out=1000)
workflowlist_part <- list(downward_value=2, upward_value=2,downward_vector="vec1",
upward_vector="vec2",downward_vector_name="downward vector",
upward_vector_name="upward vector")
resultlist <- qat_call_roc_rule(vec, workflowlist_part, element=1,
vec1=downward_vector, vec2=upward_vector)
savelist <- list()
savelistcounter <- 1
for (ii in 2:3) {
savelist <- qat_call_save_roc_rule(resultlist[[ii]], savelist=savelist,
savelistcounter=savelistcounter)
if (length(which(names(savelist)=="element"))==0) {
savelistcounter<-length(savelist)</pre>
```

```
} else {
savelistcounter<-1
}
}</pre>
```

```
qat_call_save_set_addup
```

Produce a savelist-entry for a set Addup

Description

This function calls qat_save_set_addup_1d. As a result a part of a savelist is constructed, which can be used to construct a netCDF file.

Usage

```
qat_call_save_set_addup(resultlist_part, element = -999, dim_mv=1, time = NULL,
height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL, vec3 = NULL,
vec4 = NULL, baseunit = NULL, savelist = list(), savelistcounter = 1)
```

Arguments

resultlist_part

A list with the results of the check

element Element-identifier for the result, which will be given back in the savelist

dim_mv Dimension of the measurement vector.

time A vector of time elements with the length of the measurement vector

A vector of height elements with the length of the measurement vector

A vector of latitude elements with the length of the measurement vector

A vector of longitude elements with the length of the measurement vector

vec1 An additional vector, which is named as vec1
vec2 An additional vector, which is named as vec2
vec3 An additional vector, which is named as vec3
vec4 An additional vector, which is named as vec4
baseunit The unit of the original measurement vector

savelist A list with save elements

savelistcounter

Numbers of elements of the savelist

Details

This function calls the described saving-function, which transform the resultlist elements to a savinglist element. The possible called function is qat_save_set_addup_1d. As a result the given savelist will get an additional entry.

qat_call_save_set_mean

Value

The given savelist will be returned, with included results of the functions which may be called in this function.

99

Author(s)

Andre Duesterhus

See Also

```
qat_save_set_addup_1d, qat_run_workflow_save
```

Examples

still to come

```
qat_call_save_set_mean
```

Produce a savelist-entry for a Set Mean

Description

This function calls qat_save_set_mean_1d. As a result a part of a savelist is constructed, which can be used to construct a netCDF file.

Usage

```
qat_call_save_set_mean(resultlist_part, element = -999, dim_mv=1, time = NULL,
height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL, vec3 = NULL,
vec4 = NULL, baseunit = NULL, savelist = list(), savelistcounter = 1)
```

Arguments

resultlist_part

A list with the results of the check

element Element-identifier for the result, which will be given back in the savelist dim_mv Dimension of the measurement vector.

time A vector of time elements with the length of the measurement vector height A vector of height elements with the length of the measurement vector

1at A vector of latitude elements with the length of the measurement vector

1on A vector of longitude elements with the length of the measurement vector

vec1 An additional vector, which is named as vec1 vec2 An additional vector, which is named as vec2 vec3 An additional vector, which is named as vec3 100 qat_call_save_set_nans

vec4 An additional vector, which is named as vec4 baseunit The unit of the original measurement vector

savelist A list with save elements

savelistcounter

Numbers of elements of the savelist

Details

This function calls the described saving-function, which transform the resultlist elements to a savinglist element. The possible called function is qat_save_set_mean_1d. As a result the given savelist will get an additional entry.

Value

The given savelist will be returned, with included results of the functions which may be called in this function.

Author(s)

Andre Duesterhus

See Also

```
qat_save_set_mean_1d, qat_run_workflow_save
```

Examples

still to come

```
qat_call_save_set_nans
```

Produce a savelist-entry for a set NAN

Description

This function calls qat_save_set_nans_1d, qat_save_set_nans_above_1d or qat_save_set_nans_below_1d. As a result a part of a savelist is constructed, which can be used to construct a netCDF file.

Usage

```
qat_call_save_set_nans(resultlist_part, element = -999, dim_mv=1, time = NULL,
height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL, vec3 = NULL,
vec4 = NULL, baseunit = NULL, savelist = list(), savelistcounter = 1)
```

qat_call_save_set_nans 101

Arguments

resultlist_part

A list with the results of the check

element Element-identifier for the result, which will be given back in the savelist

dim_mv Dimension of the measurement vector.

time A vector of time elements with the length of the measurement vector

A vector of height elements with the length of the measurement vector

A vector of latitude elements with the length of the measurement vector

A vector of longitude elements with the length of the measurement vector

vec1 An additional vector, which is named as vec1
vec2 An additional vector, which is named as vec2
vec3 An additional vector, which is named as vec3
vec4 An additional vector, which is named as vec4
baseunit The unit of the original measurement vector

savelist A list with save elements

savelistcounter

Numbers of elements of the savelist

Details

This function calls the described saving-function, which transform the resultlist elements to a savinglist element. The possible called functions are qat\save\set_nans_1d, qat_save_set_nans_above_1d or qat_save_set_nans_below_1d. As a result the given savelist will get an additional entry.

Value

The given savelist will be returned, with included results of the functions which may be called in this function.

Author(s)

Andre Duesterhus

See Also

qat_save_set_nans_1d, qat_save_set_nans_above_1d, qat_save_set_nans_below_1d, qat_run_workflow_save

Examples

still to come

```
gat_call_save_slide_distribution
```

Produce a savelist-entry for a Slide Distribution Test

Description

This function calls qat_save_slide_distribution_1d. As a result a part of a savelist is constructed, which can be used to construct a netCDF file.

Usage

```
qat_call_save_slide_distribution(resultlist_part, element = -999, dim_mv=1,
time = NULL, height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL,
vec3 = NULL, vec4 = NULL, baseunit = NULL, savelist = list(),
savelistcounter = 1)
```

Arguments

element

resui	1 + 1	ist	part
ı Cou.	тст	10 L_	.pai t

Α.	lıst	with	the	results	ot	the	check	

dim_mv	Dimension of the measurement vector.
time	A vector of time elements with the length of the measurement vector
height	A vector of height elements with the length of the measurement vector
lat	A vector of latitude elements with the length of the measurement vector
lon	A vector of longitude elements with the length of the measurement vector

Element-identifier for the result, which will be given back in the savelist

vec1 An additional vector, which is named as vec1
vec2 An additional vector, which is named as vec2
vec3 An additional vector, which is named as vec3
vec4 An additional vector, which is named as vec4
baseunit The unit of the original measurement vector

savelist A list with save elements

savelistcounter

Numbers of elements of the savelist

Details

This function calls the described saving-function, which transform the resultlist elements to a savinglist element. The possible called function is qat_save_slide_distribution_1d. As a result the given savelist will get an additional entry.

Value

The given savelist will be returned, with included results of the functions which may be called in this function.

Author(s)

Andre Duesterhus

See Also

```
qat_save_slide_distribution_1d, qat_run_workflow_save
```

Examples

```
vec <- rnorm(100)
workflowlist_part <- list(blocksize=10)
resultlist <- qat_call_slide_distribution(vec, workflowlist_part, element=1)
savelist <- qat_call_save_slide_distribution(resultlist[[2]])</pre>
```

```
qat_call_save_trimmed_distribution
```

Produce a savelist-entry for a Trimmed Distribution Test

Description

This function calls qat\save_trimmed_distribution_1d. As a result a part of a savelist is constructed, which can be used to construct a netCDF file.

Usage

```
qat_call_save_trimmed_distribution(resultlist_part, element = -999, dim_mv=1,
time = NULL, height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL,
vec3 = NULL, vec4 = NULL, baseunit = NULL, savelist = list(),
savelistcounter = 1)
```

Arguments

resultlist_part

· · · · · · · · · · · · · · · · · · ·	
	A list with the results of the check
element	Element-identifier for the result, which will be given back in the savelist
dim_mv	Dimension of the measurement vector.
time	A vector of time elements with the length of the measurement vector
height	A vector of height elements with the length of the measurement vector
lat	A vector of latitude elements with the length of the measurement vector
lon	A vector of longitude elements with the length of the measurement vector
vec1	An additional vector, which is named as vec1
vec2	An additional vector, which is named as vec2
vec3	An additional vector, which is named as vec3
vec4	An additional vector, which is named as vec4

104 qat_call_set_addup

baseunit The unit of the original measurement vector

savelist A list with save elements

savelistcounter

Numbers of elements of the savelist

Details

This function calls the described saving-function, which transform the resultlist elements to a savinglist element. The possible called function is qat_save_trimmed_distribution_1d. As a result the given savelist will get an additional entry.

Value

The given savelist will be returned, with included results of the functions which may be called in this function.

Author(s)

Andre Duesterhus

See Also

```
qat_save_trimmed_distribution_1d, qat_run_workflow_save
```

Examples

```
vec <- rnorm(1000)
workflowlist_part <- list(bootruns=1000)
resultlist <- qat_call_boot_distribution(vec, workflowlist_part, element=1)
savelist <- qat_call_save_boot_distribution(resultlist[[2]])</pre>
```

qat_call_set_addup

Addup values of a vector

Description

This function adds up sucessive values of a given vector

Usage

```
qat_call_set_addup(measurement_vector, workflowlist_part, element = -999,
time = NULL, height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL,
vec3 = NULL, vec4 = NULL, resultlist = list(), resultlistcounter = 1)
```

qat_call_set_addup 105

Arguments

measurement_vector

The measurement vector, which should be tested

workflowlist_part

A list with the parameters of the check

element Element-identifier for the result, which will be given back in the resultlist time A vector of time elements with the length of the measurement vector height A vector of height elements with the length of the measurement vector A vector of latitude elements with the length of the measurement vector A vector of longitude elements with the length of the measurement vector

vec1 An additional vector, which is named as vec1
vec2 An additional vector, which is named as vec2
vec3 An additional vector, which is named as vec3
vec4 An additional vector, which is named as vec4

resultlist A list with results of tests

resultlistcounter

Number of elements of the resultlist

Details

This function calls the described method, which are defined by the parameters in the workflowlist_part. The possible called function is qat_analyse_set_addup_1d. As a result the function will give back a list, which include the corrected measurement vector.

Value

Give back a list, which include the vector with the results of the block.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_set_addup_1d
```

Examples

```
vec <- c(1,2,3,4,5,4,3,2,1)
workflowlist_part <- list(blocksize=3)
result <- qat_call_set_addup(vec, workflowlist_part)</pre>
```

106 qat_call_set_mean

qat_call_set_mean	Mean of values of a vector		
-------------------	----------------------------	--	--

Description

This function make a mean of sucessive values of a given vector.

Usage

```
qat_call_set_mean(measurement_vector, workflowlist_part, element = -999,
time = NULL, height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL,
vec3 = NULL, vec4 = NULL, resultlist = list(), resultlistcounter = 1)
```

Arguments

measurement_vector

The measurement vector, which should be tested

workflowlist_part

A list with the parameters of the check

element Element-identifier for the result, which will be given back in the resultlist time A vector of time elements with the length of the measurement vector height A vector of height elements with the length of the measurement vector 1 A vector of latitude elements with the length of the measurement vector 1 A vector of longitude elements with the length of the measurement vector vec1 An additional vector, which is named as vec1

vec2 An additional vector, which is named as vec2 vec3 An additional vector, which is named as vec3 vec4 An additional vector, which is named as vec4

resultlist A list with results of tests

resultlistcounter

Number of elements of the resultlist

Details

This function calls the described method, which are defined by the parameters in the workflowlist_part. The possible called function is qat_analyse_set_mean_1d. As a result the function will give back a list, which include the corrected measurement vector.

Value

Give back a list, which include the vector with the results of the block.

Author(s)

Andre Duesterhus

qat_call_set_nans 107

See Also

```
qat_analyse_set_mean_1d
```

Examples

```
vec <- c(1,2,3,4,5,4,3,2,1)
workflowlist_part <- list(blocksize=3)
result <- qat_call_set_mean(vec, workflowlist_part)</pre>
```

qat_call_set_nans

Set given values of a vector to NaN

Description

This function set a specified value of a vector to NaN.

Usage

```
qat_call_set_nans(measurement_vector, workflowlist_part, element = -999,
time = NULL, height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL,
vec3 = NULL, vec4 = NULL, resultlist = list(), resultlistcounter = 1)
```

Arguments

measurement_vector

The measurement vector, which should be tested

workflowlist_part

A list with the parameters of the check

element Element-identifier for the result, which will be given back in the resultlist A vector of time elements with the length of the measurement vector time A vector of height elements with the length of the measurement vector height lat A vector of latitude elements with the length of the measurement vector lon A vector of longitude elements with the length of the measurement vector An additional vector, which is named as vec1 vec1 vec2 An additional vector, which is named as vec2 An additional vector, which is named as vec3 vec3 An additional vector, which is named as vec4 vec4

resultlist A list with results of tests

resultlistcounter

Number of elements of the resultlist

Details

This function calls the described method, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_set_nans_1d, qat_analyse_set_nans_above_1d and qat_analyse_set_nans_below_1d. As a result the function will give back a list, which include the corrected measurement vector.

Value

Give back a list, which include the measurement vector with the replaced values.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_set_nans_1d
```

Examples

```
vec <- c(1,2,3,4,5,4,3,2,1)
workflowlist_part <- list(nan_value=4)
result <- qat_call_set_nans(vec, workflowlist_part)</pre>
```

qat_call_slide_distribution

Perform a slide distribution check

Description

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_slide_distribution_1d.

Usage

```
qat_call_slide_distribution(measurement_vector, workflowlist_part, element = -999,
time = NULL, height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL,
vec3 = NULL, vec4 = NULL, resultlist = list(), resultlistcounter = 1)
```

Arguments

```
measurement_vector
```

The measurement vector, which should be tested

workflowlist_part

A list with the parameters of the check

element Element-identifier for the result, which will be given back in the resultlist

time A vector of time elements with the length of the measurement vector

height	A vector of height elements with the length of the measurement vector
lat	A vector of latitude elements with the length of the measurement vector
lon	A vector of longitude elements with the length of the measurement vector
vec1	An additional vector, which is named as vec1
vec2	An additional vector, which is named as vec2
vec3	An additional vector, which is named as vec3
vec4	An additional vector, which is named as vec4
resultlist	A list with results of tests
resultlistcounter	

Number of elements of the resultlist

Details

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_slide_distribution_1d. As a result the resultlist will get additional entries, which are defined by the tests, which may called by this function.

Value

The given resultlist will be returned, with included results of the functions which may called in this function.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_slide_distribution_1d
```

Examples

```
vec <- rnorm(100)
workflowlist_part <- list(blocksize=10)
result <- qat_call_slide_distribution(vec, workflowlist_part)</pre>
```

```
{\tt qat\_call\_trimmed\_distribution}
```

Perform a trimmed distribution check

Description

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_trimmed_distribution_1d.

Usage

```
qat_call_trimmed_distribution(measurement_vector, workflowlist_part, element = -999,
time = NULL, height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL,
vec3 = NULL, vec4 = NULL, resultlist = list(), resultlistcounter = 1)
```

Arguments

measurement_vector

The measurement vector, which should be tested

workflowlist_part

A list with the parameters of the check

element Element-identifier for the result, which will be given back in the resultlist time A vector of time elements with the length of the measurement vector height A vector of height elements with the length of the measurement vector A vector of latitude elements with the length of the measurement vector A vector of longitude elements with the length of the measurement vector

vec1 An additional vector, which is named as vec1 vec2 An additional vector, which is named as vec2 vec3 An additional vector, which is named as vec3 vec4 An additional vector, which is named as vec4

resultlist A list with results of tests

resultlistcounter

Number of elements of the resultlist

Details

This function calls the described tests, which are defined by the parameters in the workflowlist_part. The possible called functions are qat_analyse_trimmed_distribution_1d. As a result the resultlist will get additional entries, which are defined by the tests, which may called by this function.

Value

The given resultlist will be returned, with included results of the functions which may called in this function.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_trimmed_distribution_1d
```

```
vec <- rnorm(1000)
workflowlist_part <- list()
result <- qat_call_trimmed_distribution(vec, workflowlist_part)</pre>
```

```
qat_config_read_workflow
```

Read an XML workflow

Description

This functions read a XML-workflow-file.

Usage

```
qat_config_read_workflow(filename)
```

Arguments

filename

Path and filename of the xml-file, in which the workflow is defined

Details

This functions read a file, which got a XML-workflow in it. This will be transformed to a workflowlist, which may be processed by qat_run_workflow_check.

Value

A workflowlist, which consists of the tests and its parameters, which should be performed.

Author(s)

Andre Duesterhus

See Also

```
qat_run_workflow_check
```

```
library("qat")
# read in workflow from systemfiles
filename_in <- system.file("extdata/workflowexample.xml", package="qat")
workflowlist <- qat_config_read_workflow(filename_in)</pre>
```

Description

A workflowlist will be stored into a XML-file.

Usage

```
qat_config_write_workflow(workflowlist, name = "", description = "",
author = "", date = "", sample_time_start = "", sample_time_stop = "",
sample_place = "", config_filename = "", output_filename = "")
```

Arguments

workflowlist A workflowlist, which may be loaded by qat_config_read_workflow and used

for tests.

name Name of the tests, which were performed with this workflowlist

description Description of the workflowlist

author Author who used the workflowlist for a test.

date Date of the test.

sample_time_start

Start time of the sample, which was tested

sample_time_stop

End time of the sample, which was tested

sample_place Location of the sample, which was tested

config_filename

A filename of the configuration file, which was read in at qat_config_read_workflow.

output_filename

Filename, where the result should be stored.

Details

The workflow will be stored at the location of output_filename. As additional information in the header of this file, the other arguments will be used.

Value

The information, which was stored, will be given back.

Author(s)

Andre Duesterhus

qat_data_close_ncdf 113

See Also

```
qat_config_read_workflow
```

Examples

```
library("qat")
# read in workflow from systemfiles
filename_in <- system.file("extdata/workflowexample.xml", package="qat")
workflowlist <- qat_config_read_workflow(filename_in)
# add some more informations for the workflow
workflowlist <- qat_add_all_descriptions(workflowlist)
workflowlist <- qat_add_all_algorithms(workflowlist)

filename_out <- "myworkflow_result.xml"
# write edited workflow in current directory
qat_config_write_workflow(workflowlist, output_filename=filename_out)</pre>
```

qat_data_close_ncdf

Close an open netCDF-file

Description

An open netCDF file will be closed.

Usage

```
qat_data_close_ncdf(obj)
```

Arguments

obj

An open netCDF object.

Value

None.

Author(s)

Andre Duesterhus

See Also

```
qat_data_read_ncdf, qat_data_nameofvars_ncdf, qat_data_numofvars_ncdf, qat_data_varcontent_ncdf
```

```
#still to come
```

```
qat_data_nameofvars_ncdf
```

Variable names of ncdf object

Description

Give back the names of the variables in a netCDF-object.

Usage

```
qat_data_nameofvars_ncdf(obj)
```

Arguments

obj

A netcdf object, which will be produced by qat_data_read_ncdf.

Details

The names of the variables, which are stored in the ncdf-object will be given back as a list.

Value

List of names.

Author(s)

Andre Duesterhus

See Also

```
\verb| qat_data_read_ncdf|, \verb| qat_data_numofvars_ncdf|, \verb| qat_data_varcontent_ncdf|
```

```
#still to come
```

```
qat_data_numofvars_ncdf
```

Nomber of Variables of ncdf object

Description

Give back the number of the variables in a netCDF-object.

Usage

```
qat_data_numofvars_ncdf(obj)
```

Arguments

obj

A netcdf object, which will be produced by qat_data_read_ncdf.

Details

The number of variables, which are stored in the ncdf-obect will be given back.

Value

Number of variables.

Author(s)

Andre Duesterhus

See Also

```
\verb| qat_data_read_ncdf|, \verb| qat_data_name of vars_ncdf| \verb| qat_data_varcontent_ncdf| \\
```

```
#still to come
```

qat_data_read_ncdf

Read in netCDF-file

Description

A netCDF file will be read in and a ncdf-object will be given back.

Usage

```
qat_data_read_ncdf(filename)
```

Arguments

filename

Path and filename of the netCDF-file, which should be read in.

Value

A ncdf-Object, with the content of the file.

Author(s)

Andre Duesterhus

See Also

```
qat_data_nameofvars_ncdf, qat_data_numofvars_ncdf, qat_data_varcontent_ncdf
```

Examples

#still to come

```
qat_data_varcontent_ncdf
```

Content of a variable

Description

Give back the content of a specified variable of an ncdf-object.

Usage

```
qat_data_varcontent_ncdf(obj, numofvar)
```

Arguments

obj A netcdf object, which will be produced by qat_data_read_ncdf.

numofvar Number of variable, which content should be delivered.

The content of the variable, which is specified by its number in numofvars will be given back.

Value

The content of the variable.

Author(s)

Andre Duesterhus

See Also

```
qat_data_read_ncdf, qat_data_nameofvars_ncdf qat_data_numofvars_ncdf
```

Examples

#still to come

```
qat_measure_histogram_difference
```

Perform a comparison of two datasets by means of its histograms with a given metric

Description

This function compares two datasets by calculating their histograms and compares them by a given metric.

Usage

```
qat_measure_histogram_difference(data1, data2, metric="EMD", breakvector=NULL,
numofbars=65, factorofbar=100)
```

Arguments

data1 The first dataset.
data2 The second dataset.

metric Metric of the comparison. Details see below.

breakvector Breakvector for the histograms. When not given (NULL), an equidistant breakvec-

tor between the minimum and maximum of the two datasets with the given num-

ber of bars will be generated.

numofbars Number of bins of the histogram, when no breakvector is given.

factorofbar Correction factor for non-value bins.

For both datasets the histograms are computed and compared by means of a given metric. As a metric for the comparison one of the following five options are usable: EMD: Earth Mover's Distance (default); KLD: Kullback-Leibler Distance; JSD: Jenson-Shannon Distance; RMS: Root Mean Square; MS: Mean Square. As a result the distance between the two histograms calculated by the metric is given.

Author(s)

Andre Duesterhus

References

Duesterhus, A., Hense, A. (2012) Advanced Information Criterion for Environmental Data Quality Assurance, _Advances in Science and Research_, *8*, 99-104.

See Also

```
qat_analyse_histogram_test_1d, qat_analyse_histogram_test_2d
```

Examples

```
vec1 <- array(rnorm(1000), c(100, 20))
vec2 <- vec1 + 1
result <- qat_measure_histogram_difference(vec1, vec2, metric="EMD", numofbars=65)</pre>
```

```
qat_plot_block_distribution_1d
```

Plot a block distribution check result

Description

A plot of the result of a block distribution check will be produced.

Usage

```
qat_plot_block_distribution_1d(resultlist, filename, blocksize = -1,
measurement_name = "", directoryname = "", plotstyle = NULL)
```

Arguments

resultlist List of results from qat_analyse_block_distribution_1d

filename Name of the file without extension.

blocksize Length of the blocks

measurement_name

Name of the measurement.

directoryname Directory, where the resulted file should be stored.

A plot will be produced, which base on the resulting flagvector of qat_analyse_block_distribution_1d. Additional information on the parameters, which were used while performing the test, will be included into the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_block_distribution_1d
```

Examples

```
vec <- rnorm(1000)
result <- qat_analyse_block_distribution_1d(vec, 50)
# this example produce a file exampleplot_blockdist.png in the current directory
qat_plot_block_distribution_1d(result$stat, "exampleplot_blockdist",
blocksize=result$blocksize, measurement_name="Result of Check")</pre>
```

```
qat_plot_block_distribution_2d
```

Plot a block distribution check result

Description

A plot of the result of a block distribution check will be produced.

Usage

```
qat_plot_block_distribution_2d(resultlist, filename, blocksize = -1,
measurement_name = "", directoryname = "", plotstyle = NULL)
```

Arguments

resultlist List of results from qat_analyse_block_distribution_2d

filename Name of the file without extension.

blocksize Length of the blocks

 $measurement_name$

Name of the measurement.

directoryname Directory, where the resulted file should be stored.

A plot will be produced, which base on the resulting flagvector of qat_analyse_block_distribution_2d. Additional information on the parameters, which were used while performing the test, will be included into the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_block_distribution_1d
```

Examples

```
vec <- array(rnorm(500),c(25,20))
result <- qat_analyse_block_distribution_2d(vec, 5)
# this example produce a file exampleplot_blockdist.png in the current directory
qat_plot_block_distribution_2d(result$stat, "exampleplot_blockdist",
blocksize=result$blocksize, measurement_name="Result of Check")</pre>
```

```
qat_plot_boot_distribution_1d
```

Plot a bootstrapped distribution check result

Description

A plot of the result of a booted distribution check will be produced.

Usage

```
qat_plot_boot_distribution_1d(resultlist_stat, filename, bootruns = -1,
measurement_name = "", directoryname = "", plotstyle = NULL)
```

Arguments

```
resultlist_stat
```

List of results from qat_analyse_boot_distribution_1d

filename Name of the file without extension.

bootruns Number of bootstrap runs used in the test.

```
measurement_name
```

Name of the measurement.

directoryname Directory, where the resulted file should be stored.

plotstyle A list with a qat color scheme.

Details

A plot will be produced, which base on the resulting vectors of qat_analyse_boot_distribution_1d. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_boot_distribution_1d
```

Examples

```
vec <- rnorm(500)
result <- qat_analyse_boot_distribution_1d(vec, 100)
# this example produce a file exampleplot_bootdist.png in the current directory
qat_plot_boot_distribution_1d(result$stat, "exampleplot_bootdist",
bootruns=result$bootruns, measurement_name="Result of Check")</pre>
```

```
qat_plot_distribution_1d
```

Plot a distribution check result

Description

A plot of the result of a distribution check will be produced.

Usage

```
qat_plot_distribution_1d(resultlist_hist, filename, resultlist_stat,
numofbars = -1, measurement_name = "", directoryname = "", plotstyle = NULL)
```

Arguments

resultlist_hist

Result of a hist function.

filename Name of the file without extension.

resultlist_stat

List of statistical parameters.

numofbars Numbers of bars of the histogram plot.

measurement_name

Name of the measurement.

directoryname Directory, where the resulted file should be stored.

plotstyle A list with a qat color scheme.

Details

A plot will be produced, which base on the resulting flagvector of qat_analyse_distribution_1d. Additional information on the parameters, which were used while performing the test, will be included into the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_distribution_1d
```

```
vec <- rnorm(1000)
result <- qat_analyse_distribution_1d(vec, 15)
# this example produce a file exampleplot_dist.png in the current directory
qat_plot_distribution_1d(result$hist, "exampleplot_dist", result$stat,
numofbars=result$numofbars, measurement_name="Result of Check")</pre>
```

```
qat_plot_histogram_test
```

Plot a histogram test result

Description

A plot of the result of a histogram test will be produced.

Usage

```
qat_plot_histogram_test(resultfield, filename, blocksize = -1, numofbars = -1,
factorofbar = -1, metric = NULL, runs = NULL, measurement_name = "",
directoryname = "", plotstyle = NULL)
```

Arguments

resultfield The resulting matrix of qat_analyse_histogram_test_xxx_xd

filename Name of the file without extension.

blocksize Length of a block.

numofbars Number of bins of the histograms.
factorofbar Correction factor for non-value bins.

metric Metric used for the comparison of the histograms.

runs Number of used blocks.

measurement_name

Name of the measurement.

directoryname Directory, where the resulted file should be stored.

plotstyle A list with a gat color scheme.

Details

A plot will be produced, which base on the resulting field of qat_analyse_histogram_test_xxx_xd. With additional information on the parameters, which were used while performing the test, this function will produce a more detailed plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

Examples

```
vec <- c(rnorm(1000), rnorm(1000)+1)
result <- qat_analyse_histogram_test_emd_1d(vec, 50, 65)
qat_plot_histogram_test(result$field, "test_emd_1d", result$blocksize,
result$numofbars, "emd", result$runs)</pre>
```

qat_plot_lim_rule_dynamic_1d

Plot a dynamic LIM rule result

Description

A plot of the result of a dynamic LIM rule check will be produced.

Usage

```
qat_plot_lim_rule_dynamic_1d(flagvector, filename, measurement_vector = NULL,
min_vector = NULL, max_vector = NULL, min_vector_name = NULL, max_vector_name = NULL,
measurement_name = "", directoryname = "", plotstyle = NULL)
```

Arguments

flagvector The resulting flagvector of qat_analyse_lim_rule_dynamic_1d

filename Name of the file without extension.

measurement_vector

The measurement vector, which should be plotted

min_vector The vector with the minimum values.

max_vector The vector with the maximum values.

min_vector_name

Name of the vector of the minimum values.

max_vector_name

Name of the vector of the minimal values.

measurement_name

Name of the measurement.

directoryname Directory, where the resulted file should be stored.

plotstyle A list with a qat color scheme.

Details

A plot will be produced, which base on the resulting flagvector of qat_analyse_lim_rule_dynamic_1d. With additional information on the parameters, which were used while performing the test, this function will produce a more detailed plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_lim_rule_dynamic_1d,qat_plot_lim_rule_static_1d,qat_plot_lim_rule_sigma_1d
```

Examples

```
vec <- rnorm(1000)
min_vector<-seq(-1,-2,length.out=1000)
max_vector<-seq(1,2,length.out=1000)
result <- qat_analyse_lim_rule_dynamic_1d(vec, min_vector, max_vector,
min_vector_name="minimum vector", max_vector_name="maximum vector")
# this example produce a file exampleplot_lim_dyn.png in the current directory
qat_plot_lim_rule_dynamic_1d(result$flagvector, "exampleplot_lim_dyn",
measurement_vector=vec, min_vector=result$min_vector, max_vector=result$max_vector,
min_vector_name=result$min_vector_name, max_vector_name=result$max_vector_name,
measurement_name="Result of Check")</pre>
```

```
qat_plot_lim_rule_dynamic_2d
```

Plot a dynamic LIM rule result

Description

A plot of the result of a dynamic LIM rule check will be produced.

Usage

```
qat_plot_lim_rule_dynamic_2d(flagvector, filename, measurement_vector = NULL,
min_vector = NULL, max_vector = NULL, min_vector_name = NULL, max_vector_name = NULL,
measurement_name = "", directoryname = "", plotstyle = NULL)
```

Arguments

flagvector The resulting flagvector of qat_analyse_lim_rule_dynamic_2d

filename Name of the file without extension.

measurement_vector

The measurement vector, which should be plotted

min_vector The vector (2d array) with the minimum values.

max_vector The vector (2d array) with the maximum values.

A list with a gat color scheme.

Details

plotstyle

A plot will be produced, which base on the resulting flagvector of qat_analyse_lim_rule_dynamic_2d. Additional information on the parameters, which were used while performing the test, will be added to the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

```
qat_plot_lim_rule_dynamic_1d, qat_analyse_lim_rule_dynamic_2d, qat_plot_lim_rule_static_2d,
qat_plot_lim_rule_sigma_2d
```

```
vec <- array(rnorm(500),c(25,20))
min_vector <- array(rnorm(500)-2, c(25,20))
max_vector <- array(rnorm(500)+2, c(25,20))
result <- qat_analyse_lim_rule_dynamic_2d(vec, min_vector, max_vector,
min_vector_name="minimum vector", max_vector_name="maximum vector")
# this example produce a file exampleplot_lim_dyn.png in the current directory
qat_plot_lim_rule_dynamic_2d(result$flagvector, "exampleplot_lim_dyn",
measurement_vector=vec, min_vector=result$min_vector, max_vector=result$max_vector,
min_vector_name=result$min_vector_name, max_vector_name=result$max_vector_name,
measurement_name="Result of Check")</pre>
```

qat_plot_lim_rule_sigma_1d

Plot a sigma LIM rule result

Description

A plot of the result of a dynamic lim rule check will be produced.

Usage

```
qat_plot_lim_rule_sigma_1d(flagvector, filename, measurement_vector = NULL,
sigma_factor = NULL, meanofvector = NaN, sdofvector = NULL, measurement_name = "",
directoryname = "", plotstyle = NULL)
```

Arguments

flagvector The resulting flagvector of qat_analyse_lim_rule_sigma_1d

filename Name of the file without extension.

measurement_vector

The measurement vector, which should be plotted

sigma_factor The sigma factor, which was used, when the test were performed.

meanofvector The mean of the measurement vector

sdofvector The standard deviation of the measurement vector

measurement_name

Name of the measurement.

directoryname Directory, where the resulted file should be stored.

plotstyle A list with a qat color scheme.

Details

A plot will be produced, which base on the resulting flagvector of qat_analyse_lim_rule_sigma_1d. With additional information on the parameters, which were used while performing the test, this function will produce a more detailed plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value

Author(s)

Andre Duesterhus

See Also

qat_analyse_lim_rule_static_1d,qat_plot_lim_rule_dynamic_1d, qat_plot_lim_rule_sigma_1d

Examples

```
vec <- rnorm(1000)
result <- qat_analyse_lim_rule_sigma_1d(vec, 2)
# this example produce a file exampleplot_lim_sig.png in the current directory
qat_plot_lim_rule_sigma_1d(result$flagvector, "exampleplot_lim_sig", measurement_vector=vec,
sigma_factor=result$sigma_factor, meanofvector=result$meanofvector, sdofvector=result$sdofvector,
measurement_name="Result of Check")</pre>
```

Description

A plot of the result of a dynamic lim rule check will be produced.

Usage

```
qat_plot_lim_rule_sigma_2d(flagvector, filename, measurement_vector = NULL,
sigma_factor = NULL, meanofvector = NaN, sdofvector = NULL, measurement_name = "",
directoryname = "", plotstyle = NULL)
```

Arguments

 $\label{lim_rule_sigma} flag vector \ of \ qat\analyse\lim\rule\sigma\2d \\ file name \qquad Name \ of \ the \ file \ without \ extension. \\ measurement_vector$

The measurement vector, which should be plotted

meanofvector The mean of the measurement vector

sdofvector The standard deviation of the measurement vector

measurement_name

Name of the measurement.

directoryname Directory, where the resulted file should be stored.

plotstyle A list with a qat color scheme.

Details

A plot will be produced, which base on the resulting flagvector of qat_analyse_lim_rule_sigma_1d. Additional information on the parameters, which were used while performing the test, will be added to the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value

Author(s)

Andre Duesterhus

See Also

```
qat_plot_lim_rule_static_1d, qat_analyse_lim_rule_static_2d, qat_plot_lim_rule_dynamic_2d,
qat_plot_lim_rule_sigma_2d
```

Examples

```
vec <- array(rnorm(500), c(25,20))
result <- qat_analyse_lim_rule_sigma_2d(vec, 2)
# this example produce a file exampleplot_lim_sig.png in the current directory
qat_plot_lim_rule_sigma_2d(result$flagvector, "exampleplot_lim_sig",
measurement_vector=vec, sigma_factor=result$sigma_factor,
meanofvector=result$meanofvector, sdofvector=result$sdofvector,
measurement_name="Result of Check")</pre>
```

```
qat_plot_lim_rule_static_1d
```

Plot a static lim rule result

Description

A plot of the result of a dynamic LIM rule check will be produced.

Usage

```
qat_plot_lim_rule_static_1d(flagvector, filename, measurement_vector = NULL,
min_value = NULL, max_value = NULL, measurement_name = "", directoryname = "",
plotstyle = NULL)
```

Arguments

flagvector The resulting flagvector of qat_analyse_lim_rule_static_1d

filename Name of the file without extension.

measurement_vector

The measurement vector, which should be plotted

min_value The used minimum value of the test.

max_value The used maximum value of the test.

measurement_name

Name of the measurement.

directoryname Directory, where the resulted file should be stored.

A plot will be produced, which base on the resulting flagvector of qat_analyse_lim_rule_static_1d. With additional information on the parameters, which were used while performing the test, this function will produce a more detailed plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_lim_rule_static_1d,qat_plot_lim_rule_dynamic_1d,qat_plot_lim_rule_sigma_1d
```

Examples

```
vec <- rnorm(1000)
result <- qat_analyse_lim_rule_static_1d(vec, -2,2)
# this example produce a file exampleplot_lim_sta.png in the current directory
qat_plot_lim_rule_static_1d(result$flagvector, "exampleplot_lim_sta",
measurement_vector=vec, min_value=result$min_value, max_value=result$max_value,
measurement_name="Testresult")</pre>
```

```
qat_plot_lim_rule_static_2d
```

Plot a static lim rule result

Description

A plot of the result of a dynamic LIM rule check will be produced.

Usage

```
qat_plot_lim_rule_static_2d(flagvector, filename, measurement_vector = NULL,
min_value = NULL, max_value = NULL, measurement_name = "", directoryname = "",
plotstyle = NULL)
```

Arguments

flagvector The resulting flagvector of qat_analyse_lim_rule_static_2d

filename Name of the file without extension.

measurement_vector

The measurement vector, which should be plotted

min_value The used minimum value of the test.

max value The used maximum value of the test.

measurement_name

Name of the measurement.

directoryname Directory, where the resulted file should be stored.

plotstyle A list with a qat color scheme.

Details

A plot will be produced, which base on the resulting flagvector of qat_analyse_lim_rule_static_2d. Additional information on the parameters, which were used while performing the test, will be added to the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

```
qat_plot_lim_rule_static_1d, qat_analyse_lim_rule_static_2d, qat_plot_lim_rule_dynamic_2d,
qat_plot_lim_rule_sigma_2d
```

```
vec <- array(rnorm(500),c(25,20))
result <- qat_analyse_lim_rule_static_2d(vec, -2, 2)
# this example produce a file exampleplot_lim_sta.png in the current directory
qat_plot_lim_rule_static_2d(result$flagvector, "exampleplot_lim_sta",
measurement_vector=vec, min_value=result$min_value, max_value=result$max_value,
measurement_name="Testresult")</pre>
```

132 qat_plot_noc_rule_1d

Description

A plot of the result of a NOC rule check will be produced.

Usage

```
qat_plot_noc_rule_1d(flagvector, filename, measurement_vector = NULL,
max_return_elements = 0, measurement_name = "", directoryname = "",
plotstyle = NULL)
```

Arguments

flagvector The resulting flagvector of qat_analyse_noc_rule_1d

filename Name of the file without extension.

measurement_vector

The measurement vector, which should be plotted

 ${\tt max_return_elements}$

The number of maximum reruning elements, which was used in the test.

measurement_name

Name of the measurement.

directoryname Directory, where the resulted file should be stored.

plotstyle A list with a qat color scheme.

Details

A plot will be produced, which base on the resulting flagvector of qat_analyse_noc_rule_1d. With additional information on the parameters, which were used while performing the test, this function will produce a more detailed plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_noc_rule_1d
```

qat_plot_noc_rule_2d 133

Examples

```
vec <- c(1,2,3,4,4,4,5,5,4,3,NaN,3,2,1)
result <- qat_analyse_noc_rule_1d(vec, 1)
# this example produce a file exampleplot_noc.png in the current directory
qat_plot_noc_rule_1d(result$flagvector, "exampleplot_noc", measurement_vector=vec,
max_return_elements=result$max_return_elements, measurement_name="Result of Check")</pre>
```

```
qat_plot_noc_rule_2d Plot a NOC rule result
```

Description

A plot of the result of a NOC rule check will be produced.

Usage

```
qat_plot_noc_rule_2d(flagvector, filename, measurement_vector = NULL,
max_return_elements = 0, measurement_name = "", directoryname = "",
plotstyle = NULL)
```

Arguments

flagvector The resulting flagvector of qat_analyse_noc_rule_2d

filename Name of the file without extension.

measurement_vector

The measurement vector, which should be plotted

max_return_elements

The number of maximum reruning elements, which was used in the test.

measurement_name

Name of the measurement.

directoryname Directory, where the resulted file should be stored.

plotstyle A list with a qat color scheme.

Details

A plot will be produced, which base on the resulting flagvector of qat_analyse_noc_rule_2d. Additional information on the parameters, which were used while performing the test, will be added to the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

```
qat_plot_noc_rule_1d, qat_analyse_noc_rule_2d
```

Examples

```
vec <- array(c(1,1,1,2,2), c(25,20))
result <- qat_analyse_noc_rule_2d(vec, 1)
# this example produce a file exampleplot_noc.png in the current directory
qat_plot_noc_rule_2d(result$flagvector, "exampleplot_noc", measurement_vector=vec,
max_return_elements=result$max_return_elements, measurement_name="Result of Check")</pre>
```

```
qat_plot_roc_rule_dynamic_1d
```

Plot a dynamic ROC rule result

Description

A plot of the result of a dynamic ROC rule check will be produced.

Usage

```
qat_plot_roc_rule_dynamic_1d(flagvector, filename, measurement_vector = NULL,
max_upward_vector = NULL, max_downward_vector = NULL, upward_vector_name = NULL,
downward_vector_name = NULL, measurement_name = "", directoryname = "",
plotstyle = NULL)
```

Arguments

```
flagvector The resulting flagvector of qat\_analyse\_roc\_rule\_dynamic\_1d

filename Name of the file without extension.

measurement_vector

The measurement vector, which should be plotted

max_upward_vector

The vector with the upward values.

max_downward_vector

The vector with the downward values.
```

ame

upward_vector_name

Name of the vector of the upward values.

downward_vector_name

Name of the vector of the downward values.

measurement_name

Name of the measurement.

directoryname Directory, where the resulted file should be stored.

A plot will be produced, which base on the resulting flagvector of qat_analyse_roc_rule_dynamic_1d. With additional information on the parameters, which were used while performing the test, this function will produce a more detailed plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_roc_rule_dynamic_1d,qat_plot_roc_rule_static_1d
```

Examples

```
vec <- rnorm(100)
min_vector<-seq(1,2,length.out=100)
max_vector<-seq(1,2,length.out=100)
result <- qat_analyse_roc_rule_dynamic_1d(vec, min_vector, max_vector,
upward_vector_name="upward vector", downward_vector_name="downward vector")
# this example produce a file exampleplot_roc_dyn.png in the current directory
qat_plot_roc_rule_dynamic_1d(result$flagvector, "exampleplot_roc_dyn",
measurement_vector=vec, max_upward_vector=result$max_upward_vector,
max_downward_vector=result$max_downward_vector_name=result$upward_vector_name,
downward_vector_name=result$downward_vector_name, measurement_name="Result of Check")</pre>
```

```
qat_plot_roc_rule_dynamic_2d

Plot a dynamic ROC rule result
```

Description

A plot of the result of a dynamic ROC rule check will be produced.

Usage

```
qat_plot_roc_rule_dynamic_2d(flagvector, filename, measurement_vector = NULL,
max_upward_vector = NULL, max_downward_vector = NULL, upward_vector_name = NULL,
downward_vector_name = NULL, measurement_name = "", directoryname = "",
plotstyle = NULL)
```

Arguments

flagvector The resulting flagvector of qat_analyse_roc_rule_dynamic_2d

filename Name of the file without extension.

measurement_vector

The measurement vector, which should be plotted

max_upward_vector

The vector (2d array) with the upward values.

max_downward_vector

The vector (2d array) with the downward values.

upward_vector_name

Name of the vector of the upward values.

downward_vector_name

Name of the vector of the downward values.

measurement_name

Name of the measurement.

directoryname Directory, where the resulted file should be stored.

plotstyle A list with a gat color scheme.

Details

A plot will be produced, which base on the resulting flagvector of qat_analyse_roc_rule_dynamic_2d. Additional information on the parameters, which were used while performing the test, will be added to the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

```
qat_plot_roc_rule_dynamic_1d, qat_analyse_roc_rule_dynamic_2d, qat_plot_roc_rule_static_2d
```

```
vec <- array(rnorm(500), c(25,20))
min_vector <- array(rnorm(500)+2, c(25,20))
max_vector <- array(rnorm(500)+2, c(25,20))
result <- qat_analyse_roc_rule_dynamic_2d(vec, min_vector, max_vector,
upward_vector_name="upward vector", downward_vector_name="downward vector")
# this example produce a file exampleplot_roc_dyn.png in the current directory
qat_plot_roc_rule_dynamic_2d(result$flagvector, "exampleplot_roc_dyn",
measurement_vector=vec, max_upward_vector=result$max_upward_vector,</pre>
```

max_downward_vector=result\$max_downward_vector, upward_vector_name=result\$upward_vector_name,
downward_vector_name=result\$downward_vector_name, measurement_name="Result of Check")

```
qat_plot_roc_rule_static_1d
```

Plot a static ROC rule result

Description

A plot of the result of a static ROC rule check will be produced.

Usage

```
qat_plot_roc_rule_static_1d(flagvector, filename, measurement_vector = NULL,
max_upward_value = 0, max_downward_value = 0, measurement_name = "",
directoryname = "", plotstyle = NULL)
```

Arguments

flagvector The resulting flagvector of qat_analyse_roc_rule_static_1d

filename Name of the file without extension.

measurement_vector

The measurement vector, which should be plotted

max_upward_value

The used maximum upward value.

max_downward_value

The used maximum downward value.

measurement_name

Name of the measurement.

directoryname Directory, where the resulted file should be stored.

plotstyle A list with a qat color scheme.

Details

A plot will be produced, which base on the resulting flagvector of qat_analyse_roc_rule_static_1d. With additional information on the parameters, which were used while performing the test, this function will produce a more detailed plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_roc_rule_static_1d,qat_plot_roc_rule_dynamic_1d
```

Examples

```
vec <- rnorm(100)
result <- qat_analyse_roc_rule_static_1d(vec, 2,2)
# this example produce a file exampleplot_roc_sta.png in the current directory
qat_plot_roc_rule_static_1d(result$flagvector, "exampleplot_roc_sta",
measurement_vector=vec, max_upward_value=result$max_upward_value,
max_downward_value=result$max_downward_value, measurement_name="Result of Check")</pre>
```

```
qat_plot_roc_rule_static_2d
```

Plot a static ROC rule result

Description

A plot of the result of a static ROC rule check will be produced.

Usage

```
qat_plot_roc_rule_static_2d(flagvector, filename, measurement_vector = NULL,
max_upward_value = 0, max_downward_value = 0, measurement_name = "",
directoryname = "", plotstyle = NULL)
```

Arguments

 $flag vector \qquad \qquad The \ resulting \ flag vector \ of \ qat \ analyse \ roc \ rule \ static \ 2d$

filename Name of the file without extension.

measurement_vector

The measurement vector, which should be plotted

max_upward_value

The used maximum upward value.

max_downward_value

The used maximum downward value.

measurement_name

Name of the measurement.

directoryname Directory, where the resulted file should be stored.

plotstyle A list with a gat color scheme.

Details

A plot will be produced, which base on the resulting flagvector of qat_analyse_roc_rule_static_2d. Additional information on the parameters, which were used while performing the test, will be added to the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

```
qat_plot_roc_rule_static_1d, qat_analyse_roc_rule_static_2d, qat_plot_roc_rule_dynamic_2d
```

Examples

```
vec <- array(rnorm(500), c(25,20))
result <- qat_analyse_roc_rule_static_2d(vec, 2,2)
# this example produce a file exampleplot_roc_sta.png in the current directory
qat_plot_roc_rule_static_2d(result$flagvector, "exampleplot_roc_sta",
measurement_vector=vec, max_upward_value=result$max_upward_value,
max_downward_value=result$max_downward_value, measurement_name="Result of Check")</pre>
```

```
qat_plot_slide_distribution_1d
```

Plot a slide distribution check result

Description

A plot of the result of a slide distribution check will be produced.

Usage

```
qat_plot_slide_distribution_1d(resultlist, filename, blocksize = -1,
measurement_name = "", directoryname = "", plotstyle = NULL)
```

Arguments

resultlist List of results from qat_analyse_slide_distribution_1d

filename Name of the file without extension.

blocksize Length of the blocks

measurement_name

Name of the measurement.

directoryname Directory, where the resulted file should be stored.

A plot will be produced, which base on the resulting flagvector of qat_analyse_slide_distribution_1d. Additional information on the parameters, which were used while performing the test, will be included into the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_slide_distribution_1d
```

Examples

```
vec <- rnorm(100)
result <- qat_analyse_slide_distribution_1d(vec, 10)
# this example produce a file exampleplot_slidedist.png in the current directory
qat_plot_slide_distribution_1d(result$stat, "exampleplot_slidedist",
blocksize=result$blocksize, measurement_name="Result of Check")</pre>
```

```
qat_plot_slide_distribution_2d
```

Plot a slide distribution check result

Description

A plot of the result of a slide distribution check will be produced.

Usage

```
qat_plot_slide_distribution_2d(resultlist, filename, blocksize = -1,
measurement_name = "", directoryname = "", plotstyle = NULL)
```

Arguments

resultlist List of results from qat_analyse_slide_distribution_2d

filename Name of the file without extension.

blocksize Length of the blocks

measurement_name

Name of the measurement.

directoryname Directory, where the resulted file should be stored.

A plot will be produced, which base on the resulting flagvector of qat_analyse_slide_distribution_2d. Additional information on the parameters, which were used while performing the test, will be included into the plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_slide_distribution_1d
```

Examples

```
vec <- array(rnorm(100),c(25,20))
result <- qat_analyse_slide_distribution_2d(vec, 5)
# this example produce a file exampleplot_slidedist.png in the current directory
qat_plot_slide_distribution_2d(result$stat, "exampleplot_slidedist",
blocksize=result$blocksize, measurement_name="Result of Check")</pre>
```

```
gat_plot_trimmed_distribution_1d
```

Plot a trimmed distribution check result

Description

A plot of the result of a trimmed distribution check will be produced.

Usage

```
qat_plot_trimmed_distribution_1d(resultlist, filename, measurement_name = "",
directoryname = "", plotstyle = NULL)
```

Arguments

resultlist List of results from qat_analyse_trimmed_distribution_1d

filename Name of the file without extension.

measurement_name

Name of the measurement.

directoryname Directory, where the resulted file should be stored.

A plot will be produced, which base on the resulting flagvector of qat_analyse_trimmed_distribution_1d. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_trimmed_distribution_1d
```

Examples

```
vec <- rnorm(1000)
result <- qat_analyse_trimmed_distribution_1d(vec)
# this example produce a file exampleplot_trimmeddist.png in the current directory
qat_plot_trimmed_distribution_1d(result$stat, "exampleplot_trimmeddist",
measurement_name="Result of Check")</pre>
```

```
qat_plot_trimmed_distribution_2d
```

Plot a trimmed distribution check result

Description

A plot of the result of a trimmed distribution check will be produced.

Usage

```
qat_plot_trimmed_distribution_2d(resultlist, filename, measurement_name = "",
directoryname = "", plotstyle = NULL)
```

Arguments

resultlist List of results from qat_analyse_trimmed_distribution_2d

filename Name of the file without extension.

measurement_name

Name of the measurement.

directoryname Directory, where the resulted file should be stored.

qat_read_parameter 143

Details

A plot will be produced, which base on the resulting flagvector of qat_analyse_trimmed_distribution_2d. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

```
qat_analyse_trimmed_distribution_2d
```

Examples

```
vec <- array(rnorm(100),c(25,20))
result <- qat_analyse_trimmed_distribution_2d(vec)
# this example produce a file exampleplot_trimmeddist.png in the current directory
qat_plot_trimmed_distribution_2d(result$stat, "exampleplot_trimmeddist",
measurement_name="Result of Check")</pre>
```

qat_read_parameter

Informations on a method

Description

This functions delivers informations of methods, which are stored under the given filename.

Usage

```
qat_read_parameter(filename, methodname)
```

Arguments

filename Filename of the file with the descriptions of the methods methodname Name of the method, where informations are required.

Details

This functions delivers informations of methods, which are stored under the given filename. For this the methodname will be used as a search parameter. The informations will be given back as a list.

Value

A list with the following elements:

name Name of the method, may be corrected to standard name.

analysis_function

Name of the analysis function, which should be called for this method

 $\verb|plot_function| \quad Name of the plot function, which should be called for this method$

manipulation_function

Name of the manipulation function, which should be called for this method

description Description of the method algorithm Algorithm of the method

Author(s)

Andre Duesterhus

Examples

```
#still to come
```

```
qat_run_workflow_check
```

Perform a workflow of checks

Description

This function performs a workflow of checks by a given workflowlist on a given vector.

Usage

```
qat_run_workflow_check(measurement_vector, workflowlist, time = NULL, height = NULL,
lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL, vec3 = NULL, vec4 = NULL)
```

Arguments

time

lon

height lat

measurement_vector

workflowlist

The workflowlist, which should be performed.

A time vector of the measurment_vector

A height vector of the measurment_vector

A latitude vector of the measurment_vector

A longitude vector of the measurment_vector

The measurement vector, which should be tested

vec1 A potential additional vector vec2 A potential additional vector vec3 A potential additional vector vec4 A potential additional vector

Details

This function performs a workflow of checks by a given workflowlist on a given measurement vector. Additional vectors can be used in the tests.

Value

A resultlist, with the results of the performed tests will be given back.

Author(s)

Andre Duesterhus

See Also

```
qat_config_read_workflow, qat_run_workflow_plot
```

Examples

```
library("qat")
# define testvector
testvector<-rnorm(500)
# read in workflow from systemfiles
filename_in <- system.file("extdata/workflowexample.xml", package="qat")</pre>
workflowlist <- qat_config_read_workflow(filename_in)</pre>
# define some additional vectors
maxlim <- seq(3,1,length.out=500)</pre>
minlim <- seq(-1,-3,length.out=500)
uproc <- seq(1,3,length.out=500)</pre>
downroc <- seq(3,1,length.out=500)</pre>
# run the workflow on the testvector
rlist <- qat_run_workflow_check(testvector,workflowlist,vec1=maxlim, vec2=minlim,
vec3=uproc, vec4=downroc)
# produce some plots of the result in teh current directory
qat_run_workflow_plot(rlist, measurement_name="Test", basename="test")
# add some more informations for the workflow
workflowlist <- qat_add_all_descriptions(workflowlist)</pre>
workflowlist <- qat_add_all_algorithms(workflowlist)</pre>
workflowlist <- gat_add_comment(workflowlist, 1, "No problems")</pre>
filename_out <- "myworkflow_result.xml"</pre>
# write edited workflow in current directory
qat_config_write_workflow(workflowlist, output_filename=filename_out)
```

```
qat_run_workflow_plot Produce plots of a workflow
```

Description

This function produces plots of the results, which were produced by a workflow.

Usage

```
qat_run_workflow_plot(resultlist, measurement_name = "", directoryname = "",
basename = "", plotstyle = NULL)
```

Arguments

The measurement vector, which is used at the tests

directoryname Directory, where the resulting plots should be stored

basename Basic name of the filename
plotstyle A list with a gat color scheme.

Details

The resultlist contains the parameters and results of the tests. From this the plots will be constructed and stored in the given directory. As filename the basename is used, with further extensions to indicate the tests. When no plotstyle is defined the standard-colorscheme will be used.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

```
qat_run_workflow_check
```

```
library("qat")
# define testvector
testvector<-rnorm(500)
# read in workflow from systemfiles
filename_in <- system.file("extdata/workflowexample.xml", package="qat")</pre>
workflowlist <- qat_config_read_workflow(filename_in)</pre>
# define some additional vectors
maxlim <- seq(3,1,length.out=500)</pre>
minlim <- seq(-1,-3,length.out=500)</pre>
uproc <- seq(1,3,length.out=500)</pre>
downroc <- seq(3,1,length.out=500)</pre>
# run the workflow on the testvector
rlist <- qat_run_workflow_check(testvector,workflowlist,vec1=maxlim, vec2=minlim,</pre>
vec3=uproc, vec4=downroc)
# produce some plots of the result in teh current directory
qat_run_workflow_plot(rlist, measurement_name="Test", basename="test")
# add some more informations for the workflow
```

qat_run_workflow_save 147

```
workflowlist <- qat_add_all_descriptions(workflowlist)
workflowlist <- qat_add_all_algorithms(workflowlist)
workflowlist <- qat_add_comment(workflowlist, 1, "No problems")

filename_out <- "myworkflow_result.xml"
# write edited workflow in current directory
qat_config_write_workflow(workflowlist, output_filename=filename_out)</pre>
```

Description

This function performs a workflow of constructing a savelist by a given resultlist.

Usage

```
qat_run_workflow_save(resultlist, baseunit = "", time = NULL, height = NULL,
lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL, vec3 = NULL, vec4 = NULL)
```

Arguments

resultlist	Resultlist with results of checks
baseunit	Unit of the original measurement vector
time	A time vector of the measurment_vector
height	A height vector of the measurment_vector
lat	A latitude vector of the measurment_vector
lon	A longitude vector of the measurment_vector
vec1	A potential additional vector
vec2	A potential additional vector
vec3	A potential additional vector
vec4	A potential additional vector

Details

This function performs a workflow of constructing a savelist by a given resultlist. This can be used to build netCDF-files by the function qat_save_result_ncdf.

Value

A savelist, with the results of the performed tests will be given back.

Author(s)

Andre Duesterhus

See Also

qat_config_read_workflow, qat_run_workflow_check, qat_run_workflow_plot

Examples

```
library("qat")
# define testvector
testvector<-rnorm(500)
# read in workflow from systemfiles
filename_in <- system.file("extdata/workflowexample.xml", package="qat")</pre>
workflowlist <- qat_config_read_workflow(filename_in)</pre>
# define some additional vectors
maxlim <- seq(3,1,length.out=500)</pre>
minlim \leftarrow seq(-1,-3,length.out=500)
uproc <- seq(1,3,length.out=500)</pre>
downroc <- seq(3,1,length.out=500)</pre>
# run the workflow on the testvector
rlist <- qat_run_workflow_check(testvector,workflowlist,vec1=maxlim, vec2=minlim,</pre>
vec3=uproc, vec4=downroc)
# produce the savelist
savelist <- qat_run_workflow_save(rlist)</pre>
filename_out <- "myresults"</pre>
# write netCDF-file of the results in current directory
## Not run:
qat_save_result_ncdf(testvector, savelist=savelist, filename_out,
workflowlist=workflowlist ,vec1=maxlim, vec2=minlim, vec3=uproc, vec4=downroc)
## End(Not run)
```

```
qat_save_block_distribution_1d
```

Produce a savelist from a resultlist for a Block Distribution Test

Description

This function takes the results, produced by qat_analyse_block_distribution_1d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_block_distribution_1d(resultlist_part, baseunit = "")
```

Arguments

```
resultlist_part
```

A list with the results of the check

baseunit The unit of the original measurement vector

Details

This function takes the results list and transfer the content to a newly organized list. The also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

```
qat_call_save_block_distribution, qat_run_workflow_save
```

Examples

```
vec <- rnorm(1000)
result <- list(result=qat_analyse_block_distribution_1d(vec, 50))
savelist <- qat_save_block_distribution_1d(result)</pre>
```

```
gat_save_block_distribution_2d
```

Produce a savelist from a resultlist for a Block Distribution Test

Description

This function takes the results, produced by qat_analyse_block_distribution_2d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_block_distribution_2d(resultlist_part, baseunit = "")
```

Arguments

```
resultlist_part
```

A list with the results of the check

baseunit The unit of the original measurement vector

Details

This function takes the results list and transfer the content to a newly organized list. The also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

```
qat_call_save_block_distribution, qat_run_workflow_save
```

Examples

```
vec <- array(rnorm(1000), c(10, 100))
result <- list(result=qat_analyse_block_distribution_2d(vec, 5))
savelist <- qat_save_block_distribution_2d(result)</pre>
```

```
qat_save_boot_distribution_1d
```

Produce a savelist from a resultlist for a Boot Distribution Test

Description

This function takes the results, produced by qat_analyse_boot_distribution_1d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_boot_distribution_1d(resultlist_part, baseunit = "")
```

Arguments

```
resultlist_part
```

A list with the results of the check

baseunit The unit of the original measurement vector

Details

This function takes the results list and transfer the content to a newly organized list. The also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

```
qat_call_save_boot_distribution, qat_run_workflow_save
```

Examples

```
vec <- rnorm(1000)
result <- list(result=qat_analyse_boot_distribution_1d(vec, 1000))
savelist <- qat_save_boot_distribution_1d(result)</pre>
```

```
qat_save_boot_distribution_2d
```

Produce a savelist from a resultlist for a Boot Distribution Test

Description

This function takes the results, produced by qat_analyse_boot_distribution_1d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_boot_distribution_2d(resultlist_part, baseunit = "")
```

Arguments

resultlist_part

A list with the results of the check

baseunit The unit of the original measurement vector

Details

This function takes the results list and transfer the content to a newly organized list. The also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

```
qat_call_save_boot_distribution, qat_run_workflow_save
```

```
vec <- array(rnorm(1000), c(10, 100))
result <- list(result=qat_analyse_boot_distribution_2d(vec, 10))
savelist <- qat_save_boot_distribution_2d(result)</pre>
```

```
qat_save_distribution_1d
```

Produce a savelist from a resultlist for a Distribution Test

Description

This function takes the results, produced by qat_analyse_distribution_1d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_distribution_1d(resultlist_part, baseunit = "")
```

Arguments

```
resultlist_part
```

A list with the results of the check

baseunit

The unit of the original measurement vector

Details

This function takes the results list and transfer the content to a newly organized list. The also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

```
qat_call_save_distribution, qat_run_workflow_save
```

```
vec <- rnorm(1000)
result <- list(result=qat_analyse_distribution_1d(vec, 15))
savelist <- qat_save_distribution_1d(result)</pre>
```

```
qat_save_histogram_test
```

Produce a savelist from a resultlist for a Histogram Test

Description

This function takes the results, produced by qat_analyse_histogram_test_xxx_xd and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_histogram_test(resultlist_part, baseunit = "")
```

Arguments

```
resultlist_part
```

A list with the results of the check

baseunit

The unit of the original measurement vector

Details

This function takes the results list and transfer the content to a newly organized list. This also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

```
qat_call_save_histogram_test, qat_run_workflow_save
```

```
vec <- c(rnorm(1000), rnorm(1000)+1)
workflowlist_part <- list(blocksize=50, numofbars=65, metric="emd")
resultlist <- qat_call_histogram_test(vec, workflowlist_part, element=1)
savelist <- qat_save_histogram_test(resultlist[[2]])</pre>
```

```
qat_save_lim_rule_dynamic_1d
```

Produce a savelist from a resultlist for a LIM Rule Dynamic Test

Description

This function takes the results, produced by qat_analyse_lim_rule_dynamic_1d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_lim_rule_dynamic_1d(resultlist_part, baseunit = "")
```

Arguments

```
resultlist_part
```

A list with the results of the check

baseunit

The unit of the original measurement vector

Details

This function takes the results list and transfer the content to a newly organized list. The also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

```
qat_call_save_lim_rule, qat_run_workflow_save
```

```
vec <- rnorm(1000)
min_vector<-seq(-1,-2,length.out=1000)
max_vector<-seq(1,2,length.out=1000)
result <- list(result=qat_analyse_lim_rule_dynamic_1d(vec, min_vector,
max_vector, min_vector_name="minimum vector", max_vector_name="maximum vector"))
savelist <- qat_save_lim_rule_dynamic_1d(result)</pre>
```

```
qat_save_lim_rule_dynamic_2d
```

Produce a savelist from a resultlist for a LIM Rule Dynamic Test

Description

This function takes the results, produced by qat_analyse_lim_rule_dynamic_2d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_lim_rule_dynamic_2d(resultlist_part, baseunit = "")
```

Arguments

```
resultlist_part
```

A list with the results of the check

baseunit

The unit of the original measurement vector

Details

This function takes the resultlist and transfer the content to a newly organized list. This also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

```
qat_call_save_lim_rule, qat_run_workflow_save
```

```
vec <- array(rnorm(1000), c(10, 100))
min_vector<-array(seq(-1,-2,length.out=1000), c(10, 100))
max_vector<-array(seq(1,2,length.out=1000), c(10, 100))
result <- list(result=qat_analyse_lim_rule_dynamic_2d(vec, min_vector,
max_vector, min_vector_name="minimum vector", max_vector_name="maximum vector"))
savelist <- qat_save_lim_rule_dynamic_2d(result)</pre>
```

```
qat_save_lim_rule_sigma_1d
```

Produce a savelist from a resultlist for a LIM Rule Sigma Test

Description

This function takes the results, produced by qat_analyse_lim_rule_sigma_1d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_lim_rule_sigma_1d(resultlist_part, baseunit = "")
```

Arguments

```
resultlist_part
```

A list with the results of the check

baseunit

The unit of the original measurement vector

Details

This function takes the results list and transfer the content to a newly organized list. The also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

```
qat_call_save_lim_rule, qat_run_workflow_save
```

```
vec <- rnorm(1000)
result <- list(result=qat_analyse_lim_rule_sigma_1d(vec, 2))
savelist <- qat_save_lim_rule_sigma_1d(result)</pre>
```

```
qat_save_lim_rule_sigma_2d
```

Produce a savelist from a resultlist for a LIM Rule Sigma Test

Description

This function takes the results, produced by qat_analyse_lim_rule_sigma_2d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_lim_rule_sigma_2d(resultlist_part, baseunit = "")
```

Arguments

```
resultlist_part
```

A list with the results of the check

baseunit

The unit of the original measurement vector

Details

This function takes the resultlist and transfer the content to a newly organized list. This also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

```
qat_call_save_lim_rule, qat_run_workflow_save
```

```
vec <- array(rnorm(1000), c(10, 100))
result <- list(result=qat_analyse_lim_rule_sigma_2d(vec, 2))
savelist <- qat_save_lim_rule_sigma_2d(result)</pre>
```

```
qat_save_lim_rule_static_1d
```

Produce a savelist from a resultlist for a LIM Rule Static Test

Description

This function takes the results, produced by qat_analyse_lim_rule_static_1d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_lim_rule_static_1d(resultlist_part, baseunit = "")
```

Arguments

```
resultlist_part
```

A list with the results of the check

baseunit

The unit of the original measurement vector

Details

This function takes the results list and transfer the content to a newly organized list. The also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

```
qat_call_save_lim_rule, qat_run_workflow_save
```

```
vec <- rnorm(1000)
result <- list(result=qat_analyse_lim_rule_static_1d(vec, -2,2))
savelist <- qat_save_lim_rule_static_1d(result)</pre>
```

```
qat_save_lim_rule_static_2d
```

Produce a savelist from a resultlist for a LIM Rule Static Test

Description

This function takes the results, produced by qat_analyse_lim_rule_static_2d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_lim_rule_static_2d(resultlist_part, baseunit = "")
```

Arguments

```
resultlist_part
```

A list with the results of the check

baseunit

The unit of the original measurement vector

Details

This function takes the resultlist and transfer the content to a newly organized list. This also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

```
qat_call_save_lim_rule, qat_run_workflow_save
```

```
vec <- array(rnorm(1000), c(10, 100))
result <- list(result=qat_analyse_lim_rule_static_2d(vec, -2,2))
savelist <- qat_save_lim_rule_static_2d(result)</pre>
```

160 qat_save_noc_rule_1d

```
qat_save_noc_rule_1d Produce a savelist from a resultlist for a NOC Rule Test
```

Description

This function takes the results, produced by qat_analyse_noc_rule_1d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_noc_rule_1d(resultlist_part, baseunit = "")
```

Arguments

```
resultlist_part
```

A list with the results of the check

baseunit

The unit of the original measurement vector

Details

This function takes the results list and transfer the content to a newly organized list. The also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

```
qat_call_save_noc_rule, qat_run_workflow_save
```

```
vec <- c(1,2,3,4,4,4,5,5,4,3,NaN,3,2,1)
result <- list(result=qat_analyse_noc_rule_1d(vec, 1))
savelist <- qat_save_noc_rule_1d(result)</pre>
```

qat_save_noc_rule_2d 161

```
qat_save_noc_rule_2d Produce a savelist from a resultlist for a NOC Rule Test
```

Description

This function takes the results, produced by qat_analyse_noc_rule_2d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_noc_rule_2d(resultlist_part, baseunit = "")
```

Arguments

```
resultlist_part
```

A list with the results of the check

baseunit T

The unit of the original measurement vector

Details

This function takes the results list and transfer the content to a newly organized list. The also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

```
qat_call_save_noc_rule, qat_run_workflow_save
```

```
\label{eq:vec_vec} $\operatorname{vec} \leftarrow \operatorname{array}(c(1,2,3,4,4,4,5,5,4,3,\operatorname{NaN},3,2,11),\ c(5,3))$$ $\operatorname{result} \leftarrow \operatorname{list}(\operatorname{result=qat\_analyse\_noc\_rule\_2d}(\operatorname{vec},\ 1))$$ $\operatorname{savelist} \leftarrow \operatorname{qat\_save\_noc\_rule\_2d}(\operatorname{result})$$
```

```
qat_save_result_ncdf Writing a savelist to a netCDF-file
```

Description

A savelist, which is constructed by the function qat_run_workflow_save will be written to a given filename in netCDF format. Additional needed informations are the workflowlist, which constructed the savelist.

Usage

```
qat_save_result_ncdf(measurement_vector, savelist, filename, workflowlist = NULL,
time = NULL, height = NULL, lat = NULL, lon = NULL, vec1 = NULL, vec2 = NULL,
vec3 = NULL, vec4 = NULL, store_mes_vec = TRUE, baseunit = "unitless",
addunits = c("minutes", "metres", "degrees", "degrees", "unitless",
"unitless", "unitless", "unitless"), directoryname = "", nan_value = -999,
variable_name = "", transformationonvariable = "", authorname = "",
original_filename = "", data_level = "", workflow_filename = "")
```

Arguments

measurement_vector

The measurement vector, which was tested

savelist The resulted savelist

filename The name of the file, which should be written

workflowlist The used workflowlist for the tests

time A vector of time elements with the length of the measurement vector
height A vector of height elements with the length of the measurement vector
lat A vector of latitude elements with the length of the measurement vector
A vector of longitude elements with the length of the measurement vector

vec1 An additional vector, which is named as vec1
vec2 An additional vector, which is named as vec2
vec3 An additional vector, which is named as vec3
vec4 An additional vector, which is named as vec4

store_mes_vec A bolean variable if the measurement vector should also be stored

baseunit Unit of the measurement vector addunits Vector of units for the other vectors

directoryname Directory, where the resulting file should be stored

nan_value Fill value for NaN in vectors variable_name Name of the original variable

transformationonvariable

Information on transformation of the original variable

qat_save_result_ncdf 163

```
authorname Name of the author who performed the tests original_filename
Filename, where the original data was stored data_level Data level of the original variable workflow_filename
Filename of the workflow
```

Details

The savelist, which is a result of the function qat_run_workflow_save, which transformed the resultlist of qat_run_workflow_check to a here usable formate, delivers all necessary information to construct a netCDF-file. The workflowlist is needed, because further informations, like algorithms, descriptions and comments on results are simpler to edit in this list. This can be also saved by qat_config_write_workflow to a XML-format. The netCDF-format used here is the QAD-convention. This allows to store the modifications of a tests and also the results into one file.

Value

No return value.

Author(s)

Andre Duesterhus

See Also

```
qat_run_workflow_save
```

```
library("qat")
# define testvector
testvector<-rnorm(500)
# read in workflow from systemfiles
filename_in <- system.file("extdata/workflowexample.xml", package="qat")</pre>
workflowlist <- qat_config_read_workflow(filename_in)</pre>
# define some additional vectors
maxlim <- seq(3,1,length.out=500)
minlim \leftarrow seq(-1,-3,length.out=500)
uproc <- seq(1,3,length.out=500)</pre>
downroc <- seq(3,1,length.out=500)</pre>
# run the workflow on the testvector
rlist <- qat_run_workflow_check(testvector,workflowlist,vec1=maxlim, vec2=minlim,</pre>
vec3=uproc, vec4=downroc)
# produce the savelist
savelist <- qat_run_workflow_save(rlist)</pre>
filename_out <- "myresults"
# write netCDF-file of the results in current directory
## Not run:
qat_save_result_ncdf(testvector, savelist=savelist, filename_out,
workflowlist=workflowlist,vec1=maxlim, vec2=minlim, vec3=uproc, vec4=downroc)
```

```
## End(Not run)
```

```
qat_save_roc_rule_dynamic_1d
```

Produce a savelist from a resultlist for a ROC Rule Dynamic Test

Description

This function takes the results, produced by qat_analyse_roc_rule_dynamic_1d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_roc_rule_dynamic_1d(resultlist_part, baseunit = "")
```

Arguments

```
resultlist_part
```

A list with the results of the check

baseunit

The unit of the original measurement vector

Details

This function takes the results list and transfer the content to a newly organized list. The also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

```
qat_call_save_roc_rule, qat_run_workflow_save
```

```
vec <- rnorm(100)
min_vector<-seq(1,2,length.out=1000)
max_vector<-seq(1,2,length.out=1000)
result <- list(result=qat_analyse_roc_rule_dynamic_1d(vec, min_vector, max_vector, upward_vector_name="upward vector",
downward_vector_name="downward vector"))
savelist <- qat_save_roc_rule_dynamic_1d(result)</pre>
```

```
qat_save_roc_rule_dynamic_2d
```

Produce a savelist from a resultlist for a ROC Rule Dynamic Test

Description

This function takes the results, produced by qat_analyse_roc_rule_dynamic_2d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_roc_rule_dynamic_2d(resultlist_part, baseunit = "")
```

Arguments

```
resultlist_part
```

A list with the results of the check

baseunit

The unit of the original measurement vector

Details

This function takes the results list and transfer the content to a newly organized list. This also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

```
qat_call_save_roc_rule, qat_run_workflow_save
```

```
vec <- array(rnorm(1000), c(10, 100))
min_vector<-array(seq(-1,-2,length.out=1000), c(10, 100))
max_vector<-array(seq(1,2,length.out=1000), c(10, 100))
result <- list(result=qat_analyse_roc_rule_dynamic_2d(vec, min_vector,
max_vector, upward_vector_name="upward vector", downward_vector_name="downward vector"))
savelist <- qat_save_roc_rule_dynamic_2d(result)</pre>
```

```
qat_save_roc_rule_static_1d
```

Produce a savelist from a resultlist for a ROC Rule Static Test

Description

This function takes the results, produced by qat_analyse_roc_rule_static_1d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_roc_rule_static_1d(resultlist_part, baseunit = "")
```

Arguments

```
resultlist_part
```

A list with the results of the check

baseunit

The unit of the original measurement vector

Details

This function takes the results list and transfer the content to a newly organized list. The also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

```
qat_call_save_roc_rule, qat_run_workflow_save
```

```
vec <- rnorm(100)
result <- list(result=qat_analyse_roc_rule_static_1d(vec, 2,2))
savelist <- qat_save_roc_rule_static_1d(result)</pre>
```

```
qat_save_roc_rule_static_2d
```

Produce a savelist from a resultlist for a ROC Rule Static Test

Description

This function takes the results, produced by qat_analyse_roc_rule_static_2d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_roc_rule_static_2d(resultlist_part, baseunit = "")
```

Arguments

```
resultlist_part
```

A list with the results of the check

baseunit

The unit of the original measurement vector

Details

This function takes the resultlist and transfer the content to a newly organized list. This also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

```
qat_call_save_roc_rule, qat_run_workflow_save
```

```
vec <- array(rnorm(1000), c(10, 100))
result <- list(result=qat_analyse_roc_rule_static_2d(vec, 2,2))
savelist <- qat_save_roc_rule_static_2d(result)</pre>
```

qat_save_set_addup_1d Produce a savelist from a resultlist for a Set Addup

Description

This function takes the results, produced by qat_analyse_set_addup_1d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_set_addup_1d(resultlist_part, baseunit = "")
```

Arguments

```
resultlist_part
```

A list with the results of the check

baseunit

The unit of the original measurement vector

Details

This function takes the resultlist and transfer the content to a newly organized list. This consists mainly of a text, which is use in the parameter description for a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

```
qat_call_save_set_addup
```

```
## still to come
```

qat_save_set_mean_1d 169

```
qat_save_set_mean_1d Produce a savelist from a resultlist for a Set Mean
```

Description

This function takes the results, produced by qat_analyse_set_mean_1d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_set_mean_1d(resultlist_part, baseunit = "")
```

Arguments

```
resultlist_part
```

A list with the results of the check

baseunit

The unit of the original measurement vector

Details

This function takes the resultlist and transfer the content to a newly organized list. This consists mainly of a text, which is use in the parameter description for a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

```
qat_call_save_set_mean
```

```
## still to come
```

170 qat_save_set_nans_1d

```
qat_save_set_nans_1d Produce a savelist from a resultlist for a Set NAN
```

Description

This function takes the results, produced by qat_analyse_set_nan_1d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_set_nans_1d(resultlist_part, baseunit = "")
```

Arguments

```
resultlist_part
```

A list with the results of the check

baseunit

The unit of the original measurement vector

Details

This function takes the resultlist and transfer the content to a newly organized list. This consists mainly of a text, which is use in the parameter description for a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

```
qat_call_save_set_nans
```

```
## still to come
```

```
qat_save_set_nans_above_1d
```

Produce a savelist from a resultlist for a Set NAN above

Description

This function takes the results, produced by $qat\analyse\set\nan\analyse\label{lem:produce} 1d$ and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_set_nans_above_1d(resultlist_part, baseunit = "")
```

Arguments

```
resultlist_part
```

A list with the results of the check

baseunit

The unit of the original measurement vector

Details

This function takes the resultlist and transfer the content to a newly organized list. This consists mainly of a text, which is use in the parameter description for a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

```
qat_call_save_set_nans
```

```
## still to come
```

```
qat_save_set_nans_below_1d
```

Produce a savelist from a resultlist for a Set NAN below

Description

This function takes the results, produced by $qat\analyse\set\nan\below\1d$ and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_set_nans_below_1d(resultlist_part, baseunit = "")
```

Arguments

```
resultlist_part
```

A list with the results of the check

baseunit

The unit of the original measurement vector

Details

This function takes the resultlist and transfer the content to a newly organized list. This consists mainly of a text, which is use in the parameter description for a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

```
qat_call_save_set_nans
```

```
## still to come
```

```
qat_save_slide_distribution_1d
```

Produce a savelist from a resultlist for a Slide Distribution Test

Description

This function takes the results, produced by qat_analyse_slide_distribution_1d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_slide_distribution_1d(resultlist_part, baseunit = "")
```

Arguments

```
resultlist_part
```

A list with the results of the check

baseunit

The unit of the original measurement vector

Details

This function takes the results list and transfer the content to a newly organized list. The also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

```
qat_call_save_slide_distribution, qat_run_workflow_save
```

```
vec <- rnorm(100)
result <- list(result=qat_analyse_slide_distribution_1d(vec, 10))
savelist <- qat_save_slide_distribution_1d(result)</pre>
```

```
qat_save_slide_distribution_2d
```

Produce a savelist from a resultlist for a Slide Distribution Test

Description

This function takes the results, produced by qat_analyse_slide_distribution_2d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_slide_distribution_2d(resultlist_part, baseunit = "")
```

Arguments

```
resultlist_part
```

A list with the results of the check

baseunit

The unit of the original measurement vector

Details

This function takes the results list and transfer the content to a newly organized list. This also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

```
qat_call_save_slide_distribution, qat_run_workflow_save
```

```
vec <- array(rnorm(1000), c(10, 100))
result <- list(result=qat_analyse_slide_distribution_2d(vec, 5))
savelist <- qat_save_slide_distribution_2d(result)</pre>
```

```
qat_save_trimmed_distribution_1d
```

Produce a savelist from a resultlist for a Trimmed Distribution Test

Description

This function takes the results, produced by qat_analyse_trimmed_distribution_1d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_trimmed_distribution_1d(resultlist_part, baseunit = "")
```

Arguments

```
resultlist_part
```

A list with the results of the check

baseunit

The unit of the original measurement vector

Details

This function takes the results list and transfer the content to a newly organized list. The also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

```
qat_call_save_trimmed_distribution, qat_run_workflow_save
```

```
vec <- rnorm(1000)
result <- list(result=qat_analyse_trimmed_distribution_1d(vec))
savelist <- qat_save_trimmed_distribution_1d(result)</pre>
```

```
qat_save_trimmed_distribution_2d
```

Produce a savelist from a resultlist for a Trimmed Distribution Test

Description

This function takes the results, produced by qat_analyse_trimmed_distribution_2d and construct a savelist, which may be used to produce a netCDF output.

Usage

```
qat_save_trimmed_distribution_2d(resultlist_part, baseunit = "")
```

Arguments

```
resultlist_part
```

A list with the results of the check

baseunit

The unit of the original measurement vector

Details

This function takes the results list and transfer the content to a newly organized list. The also consists of more information, which help to generate an output like a netCDF-file.

Value

Returning a savelist with the content of the resultlist.

Author(s)

Andre Duesterhus

See Also

```
qat_call_save_trimmed_distribution, qat_run_workflow_save
```

```
vec <- array(rnorm(1000), c(10, 100))
result <- list(result=qat_analyse_trimmed_distribution_2d(vec))
savelist <- qat_save_trimmed_distribution_2d(result)</pre>
```

qat_style_plot 177

qat_style_plot

Produce a plotstylelist

Description

Loads a plotstyle, when a filename is given. When not a standard plotstyle will be given back

Usage

```
qat_style_plot(filename = "")
```

Arguments

filename

Filename of a plotstyle-XML

Details

A plotstyle is a possibility to include a colorsheme in every plot, which is produced by the qatpackage. With given filename a certain plotstyle will be loaded. Without a standard sheme will be used.

Value

A list with the inforantion of the colorsheme.

Author(s)

Andre Duesterhus

See Also

```
qat_run_workflow_plot
```

```
library("qat")
# define testvector
testvector<-rnorm(500)
# read in workflow from systemfiles
filename_in <- system.file("extdata/workflowexample.xml", package="qat")
workflowlist <- qat_config_read_workflow(filename_in)
# define some additional vectors
maxlim <- seq(3,1,length.out=500)
minlim <- seq(-1,-3,length.out=500)
uproc <- seq(1,3,length.out=500)
downroc <- seq(3,1,length.out=500)
# load plotstyle
filename_ps <- system.file("extdata/plotstyle1.xml", package="qat")
ps<-qat_style_plot(filename_ps)</pre>
```

178 qat_style_plot

```
# run the workflow on the testvector
rlist <- qat_run_workflow_check(testvector,workflowlist,vec1=maxlim, vec2=minlim,
vec3=uproc, vec4=downroc)
# produce some plots of the result in teh current directory with new plotstyle
qat_run_workflow_plot(rlist, measurement_name="Test", basename="test", plotstyle=ps)
# add some more informations for the workflow
workflowlist <- qat_add_all_descriptions(workflowlist)
workflowlist <- qat_add_all_algorithms(workflowlist)
workflowlist <- qat_add_comment(workflowlist, 1, "No problems")</pre>
```

Index

* IO		<pre>qat_analyse_histogram_test_1d, 20</pre>	
	<pre>qat_config_read_workflow, 111</pre>	<pre>qat_analyse_histogram_test_2d, 21</pre>	
	<pre>qat_config_write_workflow, 112</pre>	<pre>qat_analyse_histogram_test_emd_1d,</pre>	
	<pre>qat_data_close_ncdf, 113</pre>	23	
	<pre>qat_data_read_ncdf, 116</pre>	<pre>qat_analyse_histogram_test_emd_2d,</pre>	
	<pre>qat_read_parameter, 143</pre>	24	
	qat_style_plot, 177	<pre>qat_analyse_histogram_test_jsd_1d,</pre>	
* ip	lot	25	
	qat_style_plot, 177	<pre>qat_analyse_histogram_test_jsd_2d,</pre>	
* m	anip	26	
	qat_add_algorithm,6	<pre>qat_analyse_histogram_test_kld_1d,</pre>	
	<pre>qat_add_all_algorithms, 7</pre>	28	
	<pre>qat_add_all_descriptions, 8</pre>	<pre>qat_analyse_histogram_test_kld_2d,</pre>	
	<pre>qat_add_comment, 9</pre>	29	
	<pre>qat_add_description, 10</pre>	<pre>qat_analyse_histogram_test_ms_1d,</pre>	
	<pre>qat_add_resultfile, 11</pre>	30	
	qat_analyse_set_addup_1d,52	qat_analyse_histogram_test_ms_2d,	
	qat_analyse_set_addup_2d,53	32	
	qat_analyse_set_mean_1d,54	qat_analyse_histogram_test_rms_1d,	
	<pre>qat_analyse_set_mean_2d, 55</pre>	33	
	qat_analyse_set_nans_1d, 56	qat_analyse_histogram_test_rms_2d,	
	qat_analyse_set_nans_2d, 57	34	
	qat_analyse_set_nans_above_1d, 58	<pre>qat_analyse_lim_rule_dynamic_1d,</pre>	
	<pre>qat_analyse_set_nans_above_2d, 59</pre>	35	
	qat_analyse_set_nans_below_1d, 60	qat_analyse_lim_rule_dynamic_2d,	
	<pre>qat_analyse_set_nans_below_2d, 61</pre>	37	
* package		qat_analyse_lim_rule_sigma_1d, 39	
	qat-package, 4	qat_analyse_lim_rule_sigma_2d, 40	
* ts		qat_analyse_lim_rule_static_1d, 41	
	<pre>qat_analyse_block_distribution_1d,</pre>	qat_analyse_lim_rule_static_2d, 42	
	12	qat_analyse_noc_rule_1d, 44	
	<pre>qat_analyse_block_distribution_2d,</pre>	qat_analyse_noc_rule_2d, 45	
	13	<pre>qat_analyse_roc_rule_dynamic_1d,</pre>	
	<pre>qat_analyse_boot_distribution_1d,</pre>	46	
	15	<pre>qat_analyse_roc_rule_dynamic_2d,</pre>	
	<pre>qat_analyse_boot_distribution_2d,</pre>	48	
	16	qat_analyse_roc_rule_static_1d, 49	
	qat_analyse_distribution_1d, 17	qat_analyse_roc_rule_static_2d, 51	
	<pre>gat_analyse_distribution_2d, 18</pre>	gat analyse set addup 1d.52	

qat_analyse_set_addup_2d, 53	* utilities
qat_analyse_set_mean_1d, 54	$qat_call_block_distribution, 67$
<pre>qat_analyse_set_mean_2d, 55</pre>	<pre>qat_call_boot_distribution, 68</pre>
qat_analyse_set_nans_1d, 56	qat_call_distribution, 69
qat_analyse_set_nans_2d, 57	<pre>qat_call_histogram_test, 70</pre>
qat_analyse_set_nans_above_1d, 58	<pre>qat_call_lim_rule, 72</pre>
qat_analyse_set_nans_above_2d, 59	<pre>qat_call_noc_rule, 73</pre>
qat_analyse_set_nans_below_1d, 60	<pre>qat_call_plot_block_distribution,</pre>
<pre>qat_analyse_set_nans_below_2d, 61</pre>	74
<pre>qat_analyse_slide_distribution_1d,</pre>	<pre>qat_call_plot_boot_distribution,</pre>
62	76
<pre>qat_analyse_slide_distribution_2d,</pre>	<pre>qat_call_plot_distribution, 77</pre>
63	<pre>qat_call_plot_histogram_test, 78</pre>
<pre>qat_analyse_trimmed_distribution_1d,</pre>	<pre>qat_call_plot_lim_rule, 80</pre>
64	<pre>qat_call_plot_noc_rule, 81</pre>
<pre>qat_analyse_trimmed_distribution_2d,</pre>	<pre>qat_call_plot_roc_rule, 82</pre>
65	<pre>qat_call_plot_slide_distribution,</pre>
<pre>qat_call_set_addup, 104</pre>	84
qat_call_set_mean, 106	<pre>qat_call_plot_trimmed_distribution</pre>
<pre>qat_measure_histogram_difference,</pre>	85
117	<pre>qat_call_roc_rule, 87</pre>
<pre>qat_plot_block_distribution_1d,</pre>	<pre>qat_call_save_block_distribution,</pre>
118	88
<pre>qat_plot_block_distribution_2d,</pre>	<pre>qat_call_save_boot_distribution,</pre>
119	89
qat_plot_boot_distribution_1d, 120	$qat_call_save_distribution, 91$
qat_plot_distribution_1d, 121	<pre>qat_call_save_histogram_test, 92</pre>
qat_plot_histogram_test, 123	<pre>qat_call_save_lim_rule, 93</pre>
qat_plot_lim_rule_dynamic_1d, 124	<pre>qat_call_save_noc_rule, 95</pre>
<pre>qat_plot_lim_rule_dynamic_2d, 125</pre>	qat_call_save_roc_rule, 96
qat_plot_lim_rule_sigma_1d, 127	<pre>qat_call_save_set_addup, 98</pre>
<pre>qat_plot_lim_rule_sigma_2d, 128</pre>	qat_call_save_set_mean, 99
<pre>qat_plot_lim_rule_static_1d, 129</pre>	<pre>qat_call_save_set_nans, 100</pre>
<pre>qat_plot_lim_rule_static_2d, 130</pre>	<pre>qat_call_save_slide_distribution,</pre>
<pre>qat_plot_noc_rule_1d, 132</pre>	102
qat_plot_noc_rule_2d, 133	<pre>qat_call_save_trimmed_distribution</pre>
qat_plot_roc_rule_dynamic_1d, 134	103
qat_plot_roc_rule_dynamic_2d, 135	qat_call_set_nans, 107
<pre>qat_plot_roc_rule_static_1d, 137</pre>	qat_call_slide_distribution, 108
qat_plot_roc_rule_static_2d, 138	qat_call_trimmed_distribution, 109
<pre>qat_plot_slide_distribution_1d,</pre>	qat_data_nameofvars_ncdf, 114
139	qat_data_numofvars_ncdf, 115
<pre>qat_plot_slide_distribution_2d,</pre>	qat_data_varcontent_ncdf, 116
140	qat_read_parameter, 143
<pre>qat_plot_trimmed_distribution_1d,</pre>	qat_run_workflow_check, 144
141	qat_run_workflow_plot, 145
<pre>qat_plot_trimmed_distribution_2d,</pre>	qat_run_workflow_save, 147
142	gat save block distribution 1d.

<pre>148 qat_save_block_distribution_2d,</pre>	qat_analyse_distribution_1d, 17, 19, 70,
149	qat_analyse_distribution_2d, 18
<pre>qat_save_boot_distribution_1d, 150</pre>	qat_analyse_histogram_test_1d, 20, 22,
qat_save_boot_distribution_1d, 150	
	118
qat_save_distribution_1d, 152	qat_analyse_histogram_test_2d, 21, 21,
qat_save_histogram_test, 153	118
qat_save_lim_rule_dynamic_1d, 154	qat_analyse_histogram_test_emd_1d, 23,
qat_save_lim_rule_dynamic_2d, 155	25, 26, 29, 31, 34, 71
qat_save_lim_rule_sigma_1d, 156	qat_analyse_histogram_test_emd_2d, 24,
qat_save_lim_rule_sigma_2d, 157	24, 27, 30, 33, 35, 71
qat_save_lim_rule_static_1d, 158	qat_analyse_histogram_test_jsd_1d, 24,
qat_save_lim_rule_static_2d, 159	25, 27, 29, 31, 34, 71
qat_save_noc_rule_1d, 160	qat_analyse_histogram_test_jsd_2d, 25,
qat_save_noc_rule_2d, 161	26, 26, 30, 33, 35, 71
<pre>qat_save_result_ncdf, 162</pre>	qat_analyse_histogram_test_kld_1d, 24,
<pre>qat_save_roc_rule_dynamic_1d, 164</pre>	26, 28, 30, 31, 34, 71
<pre>qat_save_roc_rule_dynamic_2d, 165</pre>	<pre>qat_analyse_histogram_test_kld_2d, 25,</pre>
<pre>qat_save_roc_rule_static_1d, 166</pre>	27, 29, 29, 33, 35, 71
<pre>qat_save_roc_rule_static_2d, 167</pre>	<pre>qat_analyse_histogram_test_ms_1d, 24,</pre>
<pre>qat_save_set_addup_1d, 168</pre>	26, 29, 30, 33, 34, 71
<pre>qat_save_set_mean_1d, 169</pre>	<pre>qat_analyse_histogram_test_ms_2d, 25,</pre>
qat_save_set_nans_1d, 170	27, 30, 31, 32, 35, 71
<pre>qat_save_set_nans_above_1d, 171</pre>	qat_analyse_histogram_test_rms_1d, 24,
<pre>qat_save_set_nans_below_1d, 172</pre>	26, 29, 31, 33, 35, 71
<pre>qat_save_slide_distribution_1d,</pre>	<pre>qat_analyse_histogram_test_rms_2d, 25,</pre>
173	27, 30, 33, 34, 34, 71
<pre>qat_save_slide_distribution_2d,</pre>	<pre>qat_analyse_lim_rule_dynamic</pre>
174	<pre>(qat_analyse_lim_rule_dynamic_1d),</pre>
<pre>qat_save_trimmed_distribution_1d,</pre>	35
175	<pre>qat_analyse_lim_rule_dynamic_1d, 35, 38,</pre>
<pre>qat_save_trimmed_distribution_2d,</pre>	40, 42, 73, 125
176	<pre>qat_analyse_lim_rule_dynamic_2d, 37, 41,</pre>
qat (qat-package), 4	qat_analyse_lim_rule_sigma_1d, 37, 39,
qat-package, 4	41, 42, 73
qat_add_algorithm, 6	qat_analyse_lim_rule_sigma_2d, 38, 40,
<pre>qat_add_all_algorithms, 7</pre>	43
qat_add_all_descriptions, 8	<pre>qat_analyse_lim_rule_static_1d, 37, 40,</pre>
qat_add_comment, 9	41, 43, 73, 127, 130
<pre>qat_add_description, 10</pre>	<pre>qat_analyse_lim_rule_static_2d, 38, 41,</pre>
<pre>qat_add_resultfile, 11</pre>	42, 129, 131
<pre>qat_analyse_block_distribution_1d, 12,</pre>	qat_analyse_noc_rule_1d, 44, 132
14, 119, 120	qat_analyse_noc_rule_2d, 45, 134
<pre>qat_analyse_block_distribution_2d, 13</pre>	qat_analyse_roc_rule_dynamic_1d, 46, 49,
<pre>qat_analyse_boot_distribution_1d, 15,</pre>	50, 88, 135
17, 69, 121	<pre>qat_analyse_roc_rule_dynamic_2d, 48, 52,</pre>
<pre>qat_analyse_boot_distribution_2d, 16</pre>	136

qat_analyse_roc_rule_static_1d, 47, 49,	qat_call_save_noc_rule, 95, 160, 161
52, 88, 138	qat_call_save_roc_rule, 96, 164–167
<pre>qat_analyse_roc_rule_static_2d, 49, 51,</pre>	<pre>qat_call_save_set_addup, 98, 168</pre>
139	qat_call_save_set_mean, 99, 169
qat_analyse_set_addup_1d, 52, 56, 58, 60,	qat_call_save_set_nans, 100, 170-172
105	<pre>qat_call_save_slide_distribution, 102,</pre>
qat_analyse_set_addup_2d, 53, 57, 59, 61	173, 174
qat_analyse_set_mean_1d, <i>53</i> , <i>54</i> , <i>56</i> , <i>58</i> ,	<pre>qat_call_save_trimmed_distribution,</pre>
60, 107	103, <i>175</i> , <i>176</i>
qat_analyse_set_mean_2d, <i>53</i> , <i>55</i> , <i>57</i> , <i>59</i> ,	<pre>qat_call_set_addup, 104</pre>
61	qat_call_set_mean, 106
qat_analyse_set_nans_1d, 53, 56, 58, 60,	<pre>qat_call_set_nans, 107</pre>
108	qat_call_slide_distribution, 108
qat_analyse_set_nans_2d, <i>53</i> , <i>57</i> , <i>59</i> , <i>61</i>	$qat_call_trimmed_distribution, 109$
qat_analyse_set_nans_above_1d, $58,60$	qat_config_read_workflow, 7-12, 111, 113,
qat_analyse_set_nans_above_2d, 59, 61	145, 148
qat_analyse_set_nans_below_1d, 58, 60	<pre>qat_config_write_workflow, 112</pre>
qat_analyse_set_nans_below_2d, 59, 61	<pre>qat_data_close_ncdf, 113</pre>
<pre>qat_analyse_slide_distribution_1d, 62,</pre>	qat_data_nameofvars_ncdf, 113, 114,
64, 68, 109, 140, 141	115–117
<pre>qat_analyse_slide_distribution_2d, 63</pre>	qat_data_numofvars_ncdf, 113, 114, 115,
<pre>qat_analyse_trimmed_distribution_1d,</pre>	116, 117
64, 66, 110, 142	qat_data_read_ncdf, <i>113-115</i> , 116, <i>117</i>
<pre>qat_analyse_trimmed_distribution_2d,</pre>	qat_data_varcontent_ncdf, 113-116, 116
65, 143	<pre>qat_measure_histogram_difference, 117</pre>
<pre>qat_call_block_distribution, 67</pre>	<pre>qat_plot_block_distribution_1d, 13, 75,</pre>
qat_call_boot_distribution,68	118
qat_call_distribution, 69	qat_plot_block_distribution_2d, <i>14</i> , 119
qat_call_histogram_test, 70	<pre>qat_plot_boot_distribution_1d, 16, 17,</pre>
qat_call_lim_rule, 37, 38, 40-43, 72	77, 120
qat_call_noc_rule, 44, 46, 73	qat_plot_distribution_1d, <i>18</i> , <i>19</i> , <i>78</i> , 121
<pre>qat_call_plot_block_distribution, 74</pre>	<pre>qat_plot_histogram_test, 123</pre>
<pre>qat_call_plot_boot_distribution, 76</pre>	qat_plot_lim_rule_dynamic_1d, 37, 73, 81,
qat_call_plot_distribution,77	124, <i>126</i> , <i>127</i> , <i>130</i>
<pre>qat_call_plot_histogram_test, 78</pre>	<pre>qat_plot_lim_rule_dynamic_2d, 38, 125,</pre>
qat_call_plot_lim_rule, 80	129, 131
<pre>qat_call_plot_noc_rule, 81</pre>	qat_plot_lim_rule_sigma_1d, 40, 73, 81,
qat_call_plot_roc_rule, 82	125, 127, 127, 130
<pre>qat_call_plot_slide_distribution, 84</pre>	qat_plot_lim_rule_sigma_2d, <i>41</i> , <i>126</i> , 128,
<pre>qat_call_plot_trimmed_distribution, 85</pre>	129, 131
qat_call_roc_rule, 47, 49, 50, 52, 87	qat_plot_lim_rule_static_1d, 42, 73, 81,
<pre>qat_call_save_block_distribution, 88,</pre>	<i>125, 129, 129, 131</i>
149, 150	<pre>qat_plot_lim_rule_static_2d, 43, 126,</pre>
<pre>qat_call_save_boot_distribution, 89,</pre>	130
151	qat_plot_noc_rule_1d, 44, 46, 74, 82, 132,
qat_call_save_distribution, 91, 152	134
qat_call_save_histogram_test, 92, 153	qat_plot_noc_rule_2d, 133
gat call save lim rule, 93, 154–159	gat plot roc rule dynamic 1d. 47, 83, 88,

134, <i>136</i> , <i>138</i>
<pre>qat_plot_roc_rule_dynamic_2d, 49, 135,</pre>
<pre>qat_plot_roc_rule_static_1d, 50, 83, 88,</pre>
<pre>qat_plot_roc_rule_static_2d, 52, 136,</pre>
<pre>qat_plot_slide_distribution_1d, 63, 85,</pre>
qat_plot_slide_distribution_2d, 64, 140
<pre>qat_plot_trimmed_distribution_1d, 65,</pre>
<pre>qat_plot_trimmed_distribution_2d, 66,</pre>
<pre>qat_read_parameter, 143</pre>
<pre>qat_run_workflow_check, 111, 144, 146,</pre>
qat_run_workflow_plot, 145, 145, 148, 177
qat_run_workflow_save, 89, 90, 92-94, 96,
97, 99–101, 103, 104, 147, 149–161,
163–167, 173–176
qat_save_block_distribution_1d, 89, 148
<pre>qat_save_block_distribution_2d, 149</pre>
qat_save_boot_distribution_1d, 90, 150
<pre>qat_save_boot_distribution_2d, 151</pre>
qat_save_distribution_1d, 92, 152
qat_save_histogram_test, 93, 153
qat_save_lim_rule_dynamic_1d, 94, 154
<pre>qat_save_lim_rule_dynamic_2d, 155</pre>
qat_save_lim_rule_sigma_1d, 94, 156
<pre>qat_save_lim_rule_sigma_2d, 157</pre>
qat_save_lim_rule_static_1d, 94, 158
<pre>qat_save_lim_rule_static_2d, 159</pre>
qat_save_noc_rule_1d, <i>96</i> , 160
qat_save_noc_rule_2d, 161
<pre>qat_save_result_ncdf, 162</pre>
<pre>qat_save_roc_rule_dynamic_1d, 97, 164</pre>
<pre>qat_save_roc_rule_dynamic_2d, 165</pre>
qat_save_roc_rule_static_1d, 97, 166
<pre>qat_save_roc_rule_static_2d, 167</pre>
qat_save_set_addup_1d, 99, 168
qat_save_set_mean_1d, <i>100</i> , 169
qat_save_set_nans_1d, <i>101</i> , 170
qat_save_set_nans_above_1d, <i>101</i> , 171
qat_save_set_nans_below_1d, 101, 172
qat_save_slide_distribution_1d, 103,
173
qat_save_slide_distribution_2d, 174

 $\begin{tabular}{ll} $\tt qat_save_trimmed_distribution_1d, 104, \\ 175 \\ \tt qat_save_trimmed_distribution_2d, 176 \\ \tt qat_style_plot, 177 \\ \end{tabular}$