Processing math: 0%

Addition by Fourier transform

Carsten Urbach

This corresponds to problem 5.6 in Nielsen & Chuang. The original paper is (Draper 2000). Which quantum circuit can be used to perform the computation |x\rangle\quad\to\quad |x + y \mod 2^n\rangle with 0\leq x < 2^n and a constant integer y.

We exploit the general idea x+y = \log\left(\mathrm{e}^x\mathrm{e}^y\right) where the exponentiation is de facto performed by a Fourier trafo and the logarithm by the inverse trafo.

Fourier transforming the state |x\rangle with n bits, leads to the following product representation |x\rangle\ = |x_n x_{n-1} \ldots x_1\rangle\ \to\ \frac{1}{2^n}(|0\rangle + e^{2\pi i 0.x_1}|1\rangle)(|0\rangle + e^{2\pi i 0.x_2x_1}|1\rangle)\cdots (|0\rangle + e^{2\pi i 0.x_n\ldots x_1}|1\rangle) where we use the notation x = x_1 2^0 + x_2 2^1 + \ldots + x_n 2^{n-1} and 0.x_l \ldots x_1\ \equiv\ \frac{x_l}{2} + \frac{x_{l-1}}{2^{2}} + \ldots + \frac{x_1}{2^{l}}\,. Now, we apply a phase shift R_\theta(\theta) to each qubit R_z\ \equiv\ \begin{pmatrix} 1 & 0\\ 0 & \exp(i\theta)\\ \end{pmatrix}\,. We apply R_\theta with \theta_j = 2\pi y/2^{n-(j-1)} to qubit j where 1\leq j\leq n. For y we can also write y\ =\ y_1 2^0 + y_2 2^1 + \ldots + y_n 2^{n-1}\,. Thus, \exp(2\pi i y/2^{n-j+1}) = \prod_{k=0}^{n-1} \exp(2\pi i y_{k+1} 2^{j-1-n+k})\,. Since \exp(2\pi i y_k l) = 1 for positive integer l, this reduces to (recall y_k\in\{0,1\}) \exp(2\pi i y/2^{n-j+1}) = \prod_{k=0}^{n-j} \exp(2\pi i y_{k+1} 2^{j-1-n+k})\,. The nth qubit gets multiplied with \exp(i\theta_n) with \theta_n = 2\pi y /2^{1}. Thus, we need to compute \exp(2\pi i x_1/2)\cdot \exp(2\pi i y_1/2) = \exp(2\pi i (x_1 + y_1) /2)\,. Similarly, for the jth qubit one gets \exp(2\pi i (x_1/2^{n-j+1} + x_2/2^{n-j} + ...))\cdot \exp(2\pi i (y_1/2^{n-j+1} + y_2/2^{n-j} + ...)) = \exp(2\pi i ((x_1 + y_1) /2^{n-j+1} + (x_2 + y_2)/2^{n-j} + ...)) which implements the addition \mod n operation in this binary fraction.

Now apply the inverse Fourier trafo and it is easy to see that this transforms back to the state |x+y\mod n\rangle.

For the practical implementation we first need the phase shift operators, which is up to a phase identical to R_z:

Rtheta <- function(bit, theta=0.) {
  return(methods::new("sqgate", bit=as.integer(bit),
                      M=array(as.complex(c(1, 0, 0, exp(1i*theta))),
                              dim=c(2,2)), type="Rt"))
}

With this one can write the desired function on state x.

addbyqft <- function(x, y) {
  n <- x@nbits
  z <- qsimulatR::qft(x)
  for(j in c(1:n)) {
    z  <- Rtheta(bit=j, theta = 2*pi*y/2^(n-j+1)) * z
  }
  z <- qft(z, inverse=TRUE)
  return(invisible(z))
}

Examples

x <- qstate(5, basis=as.character(seq(0, 2^5-1)))
x
   ( 1 )    * 0 
z <- addbyqft(x, 3)
z
   ( 1 )    * 3 
z <- addbyqft(z, 5)
z
   ( 1 )    * 8 
z <- addbyqft(z, 30)
z
   ( 1 )    * 6 

References

Draper, Thomas G. 2000. “Addition on a Quantum Computer.” arXiv Preprint Quant-Ph/0008033.