R package for multivariate polynomials with rational coefficients.
This package is strongly inspired by Robin Hankin’s spray package. The C++ implementations are very similar.
library(qspray)
The easiest way to define a multivariate polynomial with
qspray is to start by introducing the generating
variables with the help of the qlone
function and then to
combine them with arithmetic operations:
<- qlone(1); y <- qlone(2); z <- qlone(3)
x <- 4*x^2 + "1/2"*y - 5*x*y*z
pol
pol## -5*x^(1, 1, 1) + 4*x^(2) + 1/2*x^(0, 1)
Or maybe you prefer to define the polynomial by giving it as a string:
qsprayMaker(string = "4 x^(2) + 1/2 x^(0, 1) - 5 x^(1, 1, 1)")
## -5*x^(1, 1, 1) + 1/2*x^(0, 1) + 4*x^(2)
As you want, but this method is not highly robust.
Some arithmetic on this polynomial:
-pol
## -5*x^(1, 1, 1) + 4*x^(2) + 1/2*x^(0, 1)
2 * pol
## -10*x^(1, 1, 1) + 8*x^(2) + x^(0, 1)
/ 2
pol ## -5/2*x^(1, 1, 1) + 2*x^(2) + 1/4*x^(0, 1)
"5/3" * pol
## -25/3*x^(1, 1, 1) + 20/3*x^(2) + 5/6*x^(0, 1)
+ 5
pol ## 1/2*x^(0, 1) + 5*x^() + 4*x^(2) - 5*x^(1, 1, 1)
- "2/5"
pol ## 1/2*x^(0, 1) - 2/5*x^() + 4*x^(2) - 5*x^(1, 1, 1)
^2
pol## 25*x^(2, 2, 2) + 16*x^(4) - 40*x^(3, 1, 1) + 1/4*x^(0, 2) + 4*x^(2, 1) - 5*x^(1, 2, 1)
Two polynomials can be added and multiplied:
<- pol
pol1 <- pol
pol2 + pol2
pol1 ## x^(0, 1) + 8*x^(2) - 10*x^(1, 1, 1)
- pol2
pol1 ## 0
* pol2
pol1 ## 25*x^(2, 2, 2) - 40*x^(3, 1, 1) + 16*x^(4) - 5*x^(1, 2, 1) + 4*x^(2, 1) + 1/4*x^(0, 2)
Use evalQspray
to evaluate a polynomial for some values
of the variables:
evalQspray(pol, c("1", "2", "3/2"))
## Big Rational ('bigq') :
## [1] -10
Alternatively, you can convert the polynomial to a function:
<- as.function(pol)
f f("1", "2", "3/2")
## [1] "-10"
You can pass the strings you want as the arguments of this functions:
f("x", "y", "z")
## [1] "(8*x^2-10*x*y*z+y)/2"
The package also provides a function which returns the exact value of the integral of a polynomial with rational coefficients over a simplex with rational vertices:
# variables
<- qlone(1); y <- qlone(2); z <- qlone(3)
x # polynomial
<- x^4 + y + 2*x*y^2 - 3*z
P # simplex (tetrahedron) vertices
<- c(1, 1, 1)
v1 <- c(2, 2, 3)
v2 <- c(3, 4, 5)
v3 <- c(3, 2, 1)
v4 # simplex
<- rbind(v1, v2, v3, v4)
S # integral
integratePolynomialOnSimplex(P, S)
## Big Rational ('bigq') :
## [1] 1387/42