
Package ‘quest’
October 13, 2022

Type Package

Title Prepare Questionnaire Data for Analysis

Version 0.1.0

Description Offers a suite of functions to prepare questionnaire data for analysis (per-
haps other types of data as well). By data preparation, I mean data ana-
lytic tasks to get your raw data ready for statistical modeling (e.g., regression). There are func-
tions to investigate missing data, reshape data, validate responses, recode variables, score ques-
tionnaires, center variables, aggregate by groups, shift scores (i.e., leads or lags), etc. It pro-
vides functions for both single level and multilevel (i.e., grouped) data. With a few excep-
tions (e.g., ncases()), functions without an ``s'' at the end of their primary word (e.g., cen-
ter_by()) act on atomic vectors, while functions with an ``s'' at the end of their pri-
mary word (e.g., centers_by()) act on multiple columns of a data.frame.

Depends R (>= 4.0.0), datasets, stats, utils, methods

Imports str2str, plyr, car, psych, psychTools

License GPL (>= 2)

Encoding UTF-8

RoxygenNote 7.1.1

NeedsCompilation no

Author David Disabato [aut, cre] (<https://orcid.org/0000-0001-7094-4996>)

Maintainer David Disabato <ddisab01@gmail.com>

Repository CRAN

Date/Publication 2021-09-10 11:20:02 UTC

R topics documented:
agg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
aggs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
agg_dfm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
ave_dfm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
by2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1

https://orcid.org/0000-0001-7094-4996


2 R topics documented:

centers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
centers_by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
center_by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
changes_by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
change_by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
colMeans_if . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
colNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
colSums_if . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
decompose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
decomposes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
dum2nom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
freq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
freqs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
freqs_by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
freq_by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
long2wide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
make.dummy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
make.dumNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
make.fun_if . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
make.product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
mean_if . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
mode2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
ncases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
nom2dum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
partial.cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
pomp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
pomps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
quest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
recode2other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
recodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
renames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
reorders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
revalid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
revalids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
reverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
reverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
rowMeans_if . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
rowNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
rowsNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
rowSums_if . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
shifts_by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
shift_by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



agg 3

sum_if . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
tapply2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
valids_test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
valid_test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
vecNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
wide2long . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
winsor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
winsors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Index 84

agg Aggregate an Atomic Vector by Group

Description

agg evaluates a function separately for each group and combines the results back together into an
atomic vector of data.frame that is returned. Depending on the argument rep, the results of fun
are repeated for each element of x in the group (TRUE) or only once for each group (FALSE).
Depending on the argument rtn.grp, the return object is a data.frame and the groups within grp
are included in the data.frame as columns (TRUE) or the return object is an atomic vector and the
groups are the names (FALSE).

Usage

agg(x, grp, rep = TRUE, rtn.grp = !rep, sep = "_", fun, ...)

Arguments

x atomic vector.

grp atomic vector or list of atomic vectors (e.g., data.frame) specifying the groups.
The atomic vector(s) must be the length of x or else an error is returned.

rep logical vector of length 1 specifying whether the result of fun should be re-
peated for every instance of the group in x (TRUE) or only once for each group
(FALSE).

rtn.grp logical vector of length 1 specifying whether the groups (i.e., grp) should be
included in the return object as columns. The default is the opposite of rep
as traditionally it is most important to return the group columns when rep =
FALSE.

sep character vector of length 1 specifying what string should separate different
group values when naming the return object. This argument is only used if grp
is a list of atomic vectors (e.g., data.frame) AND rep = FALSE AND rtn.grp
= FALSE.

fun function to use for aggregation. This function is expected to return an atomic
vector of length 1.

... additional named arguments to fun.



4 agg

Details

If rep = TRUE, then agg calls ave; if rep = FALSE, then agg calls aggregate.

Value

result of fun applied to x for each group within grp. The structure of the return object depends
on the arguments rep and rtn.grp.

then the return object is a data.frame with nrow = nrow(data) where the first columns are grp
and the last column is the result of fun. If grp is not a list with names, then its colnames will
be "Group.1", "Group.2", "Group.3" etc. similar to aggregate’s return object. The colname
for the result of fun will be "x".

If rep = TRUE and rtn.grp = TRUE:If rep = TRUE and rtn.grp = FALSE: then the return object
is an atomic vector with length = length(x) where the values are the result of fun and the
names = names(x).

If rep = FALSE and rtn.grp = TRUE: then the return object is a data.frame with nrow = length(levels(interaction(grp)))
where the first columns are the unique group combinations in grp and the last column is the
result of fun. If grp is not a list with names, then its colnames will be "Group.1", "Group.2",
"Group.3" etc. similar to aggregate’s return object. The colname for the result of fun will be
"x".

If rep = FALSE and codertn.grp = FALSE: then the return object is an atomic vector with length
length(levels(interaction(grp))) where the values are the result of fun and the names
are each group value pasted together by sep if there are multiple grouping variables within
grp (i.e., is.list(grp) && length(grp) > 2).

See Also

aggs agg_dfm ave aggregate

Examples

# one grouping variable
agg(x = airquality$"Solar.R", grp = airquality$"Month", fun = mean)
agg(x = airquality$"Solar.R", grp = airquality$"Month", fun = mean,

na.rm = TRUE) # ignoring missing values
agg(x = setNames(airquality$"Solar.R", nm = row.names(airquality)), grp = airquality$"Month",

fun = mean, na.rm = TRUE) # keeps the names in the return object
agg(x = airquality$"Solar.R", grp = airquality$"Month", rep = FALSE,

fun = mean, na.rm = TRUE) # do NOT repeat aggregated values
agg(x = airquality$"Solar.R", grp = airquality$"Month", rep = FALSE, rtn.grp = FALSE,

fun = mean, na.rm = TRUE) # groups are the names of the returned atomic vector

# two grouping variables
tmp_nm <- c("vs","am") # Roxygen2 doesn't like a c() within a []
agg(x = mtcars$"mpg", grp = mtcars[tmp_nm], rep = TRUE, fun = sd)
agg(x = mtcars$"mpg", grp = mtcars[tmp_nm], rep = FALSE,

fun = sd) # do NOT repeat aggregated values
agg(x = mtcars$"mpg", grp = mtcars[tmp_nm], rep = FALSE, rtn.grp = FALSE,

fun = sd) # groups are the names of the returned atomic vector



aggs 5

agg(x = mtcars$"mpg", grp = mtcars[tmp_nm], rep = FALSE, rtn.grp = FALSE,
sep = ".", fun = sd) # change the separater for naming

# error messages
## Not run:

agg(x = airquality$"Solar.R", grp = mtcars[tmp_nm]) # error returned
# b/c atomic vectors within \code{grp} not having the same length as \code{x}

## End(Not run)

aggs Aggregate Data by Group

Description

aggs evaluates a function separately for each group and combines the results back together into a
data.frame that is returned. Depending on rep, the results of fun are repeated for each element of
data[vrb.nm] in the group (TRUE) or only once for each group (FALSE). Note, aggs evaluates
fun separately for each variable vrb.nm within data. If instead, you want to evaluate fun for
variables as a set data[vrb.nm], then use agg_dfm.

Usage

aggs(
data,
vrb.nm,
grp.nm,
rep = TRUE,
rtn.grp = !rep,
sep = "_",
suffix = "_a",
fun,
...

)

Arguments

data data.frame of data.
vrb.nm character vector of colnames from data specifying the variables.
grp.nm character vector of colnames from data specifying the groups.
rep logical vector of length 1 specifying whether the result of fun should be repeated

for every instance of the group in data[vrb.nm] (TRUE) or only once for each
group (FALSE).

rtn.grp logical vector of length 1 specifying whether the group columns (i.e., data[grp.nm])
should be included in the return object as columns. The default is the opposite
of rep as traditionally it is most important to return the group columns when
rep = FALSE.



6 agg_dfm

sep character vector of length 1 specifying what string should separate different
group values when naming the return object. This argument is only used if
grp.nm has length > 1 AND rep = FALSE AND rtn.grp = FALSE.

suffix character vector of length 1 specifying the string to append to the end of the
colnames in the return object.

fun function to use for aggregation. This function is expected to return an atomic
vector of length 1.

... additional named arguments to fun.

Details

If rep = TRUE, then agg calls ave; if rep = FALSE, then agg calls aggregate.

Value

data.frame of aggregated values. If rep is TRUE, then nrow = nrow(data). If rep = FALSE, then
nrow = length(levels(interaction(data[grp.nm]))). The names are specified by paste0(vrb.nm,
suffix). If rtn.grp = TRUE, then the group columns are appended to the begining of the
data.frame.

See Also

agg agg_dfm ave aggregate

Examples

aggs(data = airquality, vrb.nm = c("Ozone","Solar.R"), grp.nm = "Month",
fun = mean, na.rm = TRUE)

aggs(data = airquality, vrb.nm = c("Ozone","Solar.R"), grp.nm = "Month",
rtn.grp = TRUE, fun = mean, na.rm = TRUE) # include the group columns

aggs(data = airquality, vrb.nm = c("Ozone","Solar.R"), grp.nm = "Month",
rep = FALSE, fun = mean, na.rm = TRUE) # do NOT repeat aggregated values

aggs(data = mtcars, vrb.nm = c("mpg","cyl","disp"), grp.nm = c("vs","am"),
rep = FALSE, fun = mean, na.rm = TRUE) # with multiple group columns

aggs(data = mtcars, vrb.nm = c("mpg","cyl","disp"), grp.nm = c("vs","am"),
rep = FALSE, rtn.grp = FALSE, fun = mean, na.rm = TRUE) # without returning groups

agg_dfm Data Information by Group

Description

agg_dfm evaluates a function on a set of variables in a data.frame separately for each group and
combines the results back together. The rep and rtn.grp arguments determine exactly how the
results are combined together. If rep = TRUE, then the result of fun is repeated for every row of
the group in data[grp.nm]; If rep = FALSE, then the result of fun for each unique combination of
data[grp.nm] is returned once. If rtn.grp = TRUE, then the results are returned in a data.frame



agg_dfm 7

where the first columns are the groups from data[grp.nm]; If rtn.grp = FALSE, then the results
are returned in an atomic vector. Note, agg_dfm evaluates fun on all the variables in data[vrb.nm]
as a whole, If instead, you want to evaluate fun separately for variable vrb.nm in data, then use
Agg.

Usage

agg_dfm(
data,
vrb.nm,
grp.nm,
rep = FALSE,
rtn.grp = !rep,
sep = ".",
rtn.result.nm = "result",
fun,
...

)

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the set of variables to evalu-
ate fun on.

grp.nm character vector of colnames from data specifying the groups.

rep logical vector of length 1 specifying whether the result of fun should be repeated
for every instance of the group in data[vrb.nm] (TRUE) or only once for each
group (FALSE).

rtn.grp logical vector of length 1 specifying whether the group columns (i.e., data[grp.nm])
should be included in the return object as columns. The default is the opposite
of rep as traditionally it is most important to return the group columns when
rep = FALSE.

sep character vector of length 1 specifying the string to paste the group values to-
gether with when there are multiple grouping variables (i.e., length(grp.nm) >
1). Only used if rep = FALSE and rtn.grp = FALSE.

rtn.result.nm character vector of length 1 specifying the name for the column of results in the
return object. Only used if rtn.grp = TRUE.

fun function to evaluate each grouping of data[vrb.nm] by. This function must re-
turn an atomic vector of length 1. If not, then consider using by2 or plyr::dlply.

... additional named arguments to fun.

Details

If rep = TRUE, then agg_dfm calls ave_dfm; if rep = FALSE, then agg_dfm calls by. When rep =
FALSE and rtn.grp = TRUE, agg_dfm is very similar to plyr::ddply; when rep = FALSE and
rtn.grp = FALSE, then agg_dfm is very similar to plyr::daply.



8 agg_dfm

Value

result of fun applied to each grouping of data[vrb.nm]. The structure of the return object
depends on the arguments rep and rtn.grp.

then the return object is a data.frame with nrow = nrow(data) where the first columns are
data[grp.nm] and the last column is the result of fun with colname = rtn.result.nm.

If rep = TRUE and rtn.grp = TRUE:If rep = TRUE and rtn.grp = FALSE: then the return object
is an atomic vector with length = nrow(data) where the values are the result of fun and the
names = row.names(data).

If rep = FALSE and codertn.grp = TRUE: then the return object is a data.frame with nrow =
length(levels(interaction(data[grp.nm]))) where the first columns are the unique
group combinations in data[grp.nm] and the last column is the result of fun with colname =
rtn.result.nm.

If rep = FALSE and codertn.grp = FALSE: then the return object is an atomic vector with length
length(levels(interaction(data[grp.nm]))) where the values are the result of fun and
the names are each group value pasted together by sep if there are multiple grouping variables
(i.e., length(grp.nm) > 2).

See Also

agg aggs by2 ddply daply

Examples

### one grouping variable

## by in base R
by(data = airquality[c("Ozone","Solar.R")], INDICES = airquality["Month"],

simplify = FALSE, FUN = function(dat) cor(dat, use = "complete")[1,2])

## rep = TRUE

# rtn.group = TRUE
agg_dfm(data = airquality, vrb.nm = c("Ozone","Solar.R"), grp.nm = "Month",

rep = TRUE, rtn.grp = TRUE, fun = function(dat) cor(dat, use = "complete")[1,2])

# rtn.group = FALSE
agg_dfm(data = airquality, vrb.nm = c("Ozone","Solar.R"), grp.nm = "Month",

rep = TRUE, rtn.grp = FALSE, fun = function(dat) cor(dat, use = "complete")[1,2])

## rep = FALSE

# rtn.group = TRUE
agg_dfm(data = airquality, vrb.nm = c("Ozone","Solar.R"), grp.nm = "Month",

rep = FALSE, rtn.grp = TRUE, fun = function(dat) cor(dat, use = "complete")[1,2])
suppressWarnings(plyr::ddply(.data = airquality[c("Ozone","Solar.R","Month")],

.variables = "Month", .fun = function(dat) cor(dat, use = "complete")[1,2]))

# rtn.group = FALSE
agg_dfm(data = airquality, vrb.nm = c("Ozone","Solar.R"), grp.nm = "Month",



ave_dfm 9

rep = FALSE, rtn.grp = FALSE, fun = function(dat) cor(dat, use = "complete")[1,2])
suppressWarnings(plyr::daply(.data = airquality[c("Ozone","Solar.R","Month")],

.variables = "Month", .fun = function(dat) cor(dat, use = "complete")[1,2]))

### two grouping variables

## by in base R
by(data = mtcars[c("mpg","cyl","disp")], INDICES = mtcars[c("vs","am")],

FUN = nrow, simplify = FALSE) # with multiple group columns

## rep = TRUE

# rtn.grp = TRUE
agg_dfm(data = mtcars, vrb.nm = c("mpg","cyl","disp"), grp.nm = c("vs","am"),

rep = TRUE, rtn.grp = TRUE, fun = nrow)

# rtn.grp = FALSE
agg_dfm(data = mtcars, vrb.nm = c("mpg","cyl","disp"), grp.nm = c("vs","am"),

rep = TRUE, rtn.grp = FALSE, fun = nrow)

## rep = FALSE

# rtn.grp = TRUE
agg_dfm(data = mtcars, vrb.nm = c("mpg","cyl","disp"), grp.nm = c("vs","am"),

rep = FALSE, rtn.grp = TRUE, fun = nrow)
agg_dfm(data = mtcars, vrb.nm = c("mpg","cyl","disp"), grp.nm = c("vs","am"),

rep = FALSE, rtn.grp = TRUE, rtn.result.nm = "value", fun = nrow)

# rtn.grp = FALSE
agg_dfm(data = mtcars, vrb.nm = c("mpg","cyl","disp"), grp.nm = c("vs","am"),

rep = FALSE, rtn.grp = FALSE, fun = nrow)
agg_dfm(data = mtcars, vrb.nm = c("mpg","cyl","disp"), grp.nm = c("vs","am"),

rep = FALSE, rtn.grp = FALSE, sep = "_", fun = nrow)

ave_dfm Repeated Group Statistics for a Data-Frame

Description

ave_dfm evaluates a function on a set of variables vrb.nm separately for each group within grp.nm.
The results are combined back together in line with the rows of data similar to ave. ave_dfm is
different than ave or agg because it operates on a data.frame, not an atomic vector.

Usage

ave_dfm(data, vrb.nm, grp.nm, fun, ...)



10 by2

Arguments

data data.frame of data.

vrb.nm character vector of colnames in data specifying the variables to use for the
aggregation function fun.

grp.nm character vector of colnames in data specifying the grouping variables.

fun function that returns an atomic vector of length 1. Probably makes sense to
ensure the function always returns the same typeof as well.

... additional named arguments to fun.

Value

atomic vector of length = nrow(data) providing the result of the function fun for the subset of data
with that group value (i.e., data[levels(interaction(data[grp.nm]))[i], vrb.nm]) for that
row.

See Also

ave for the same functionality with atomic vector inputs agg_dfm for similar functionality with
data.frames, but can return the result for each group once rather than repeating the result for each
group value in the data.frame

Examples

# one grouping variables
ave_dfm(data = airquality, vrb.nm = c("Ozone","Solar.R"), grp.nm = "Month",

fun = function(dat) cor(dat, use = "complete")[1,2])

# two grouping variables
ave_dfm(data = mtcars, vrb.nm = c("mpg","cyl","disp"), grp.nm = c("vs","am"),

fun = nrow) # with multiple group columns

by2 Apply a Function to Data by Group

Description

by2 applies a function to data by group and is an alternative to the base R function by. The function
is apart of the split-apply-combine type of function discussed in the plyr R package and is very
similar to dlply. It splits up one data.frame .data[.vrb.nm]into a data.frame for each group
in .data[.grp.nm], applies a function .fun to each data.frame, and then returns the results as a
list with names equal to the group values unique(interaction(.data[.grp.nm], sep = .sep)).
by2 is simply split.data.frame + lapply. Similar to dlply, The arguments all start with . so
that they do not conflict with arguments from the function .fun. If you want to apply a function a
(atomic) vector rather than data.frame, then use tapply2.



by2 11

Usage

by2(.data, .vrb.nm, .grp.nm, .sep = ".", .fun, ...)

Arguments

.data data.frame of data.

.vrb.nm character vector specifying the colnames of .data to select the set of variables
to apply .fun to.

.grp.nm character vector specifying the colnames of .data to select the grouping vari-
ables.

.sep character vector of length 1 specifying the string to combine the group values
together with. .sep is only used if there are multiple grouping variables (i.e.,
length(.grp.nm) > 1).

.fun function to apply to the set of variables .data[.vrb.nm] for each group.

... additional named arguments to pass to .fun.

Value

list of objects containing the return object of .fun for each group. The names are the unique com-
binations of the grouping variables (i.e., unique(interaction(.data[.grp.nm], sep = .sep))).

See Also

by tapply2 dlply

Examples

# one grouping variable
by2(mtcars, .vrb.nm = c("mpg","cyl","disp"), .grp.nm = "vs",

.fun = cov, use = "complete.obs")

# two grouping variables
x <- by2(mtcars, .vrb.nm = c("mpg","cyl","disp"), .grp.nm = c("vs","am"),

.fun = cov, use = "complete.obs")
print(x)
str(x)

# compare to by
vrb_nm <- c("mpg","cyl","disp") # Roxygen runs the whole script if I put a c() in a []
grp_nm <- c("vs","am") # Roxygen runs the whole script if I put a c() in a []
y <- by(mtcars[vrb_nm], INDICES = mtcars[grp_nm],

FUN = cov, use = "complete.obs", simplify = FALSE)
str(y) # has dimnames rather than names



12 center

center Centering and/or Standardizing a Numeric Vector

Description

center centers and/or standardized a numeric vector. It is an alternative to scale.default that
returns a numeric vector rather than a numeric matrix.

Usage

center(x, center = TRUE, scale = FALSE)

Arguments

x numeric vector.

center logical vector with length 1 specifying whether grand-mean centering should be
done.

scale logical vector with length 1 specifying whether grand-SD scaling should be
done.

Details

center first coerces x to a matrix in preparation for the call to scale.default. If the coercion
results in a non-numeric matrix (e.g., x is a character vector or factor), then an error is returned.

Value

numeric vector of x centered and/or standardized with the same names as x.

See Also

centers center_by centers_by scale.default

Examples

center(x = mtcars$"disp")
center(x = mtcars$"disp", scale = TRUE)
center(x = mtcars$"disp", center = FALSE, scale = TRUE)
center(x = setNames(mtcars$"disp", nm = row.names(mtcars)))



centers 13

centers Centering and/or Standardizing Numeric Data

Description

centers centers and/or standardized data. It is an alternative to scale.default that returns a
data.frame rather than a numeric matrix.

Usage

centers(data, vrb.nm, center = TRUE, scale = FALSE, suffix)

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables.

center logical vector with length 1 specifying whether grand-mean centering should be
done.

scale logical vector with length 1 specifying whether grand-SD scaling should be
done.

suffix character vector with a single element specifying the string to append to the
end of the colnames of the return object. The default depends on the center
and scale arguments: 1)if center = TRUE and scale = FALSE, then suffix
= "_c", 2) if center = FALSE and scale = TRUE, then suffix = "_s", 3) if
center = TRUE and scale = TRUE, then suffix = "_z", 4) if center = FALSE
and scale = FALSE, then suffix = "".

Details

centers first coerces data[vrb.nm] to a matrix in preparation for the call to scale.default. If
the coercion results in a non-numeric matrix (e.g., any columns in data[vrb.nm] are character
vectors or factors), then an error is returned.

Value

data.frame of centered and/or standardized variables with colnames specified by paste0(vrb.nm,
suffix).

See Also

center centers_by center_by scale.default



14 centers_by

Examples

centers(data = mtcars, vrb.nm = c("disp","hp","drat","wt","qsec"))
centers(data = mtcars, vrb.nm = c("disp","hp","drat","wt","qsec"),

scale = TRUE)
centers(data = mtcars, vrb.nm = c("disp","hp","drat","wt","qsec"),

center = FALSE, scale = TRUE)
centers(data = mtcars, vrb.nm = c("disp","hp","drat","wt","qsec"),

scale = TRUE, suffix = "_std")

centers_by Centering and/or Standardizing Numeric Data by Group

Description

centers_by centers and/or standardized data by group. This is sometimes called group-mean cen-
tering and/or group-SD standardizing. The groups can be specified by multiple columns in data
(e.g., grp.nm with length > 1), and interaction will be implicitly called to create the groups.

Usage

centers_by(data, vrb.nm, grp.nm, center = TRUE, scale = FALSE, suffix)

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables.

grp.nm character vector of colnames from data specifying the groups.

center logical vector with length 1 specifying whether group-mean centering should be
done.

scale logical vector with length 1 specifying whether group-SD scaling should be
done.

suffix character vector with a single element specifying the string to append to the end
of the colnames of the return object. The default depends on the center and
scale arguments: 1)if center = TRUE and scale = FALSE, then suffix =
"_cw", 2) if center = FALSE and scale = TRUE, then suffix = "_sw", 3)
if center = TRUE and scale = TRUE, then suffix = "_zw", 4) if center =
FALSE and scale = FALSE, then suffix = "".

Details

centers_by first coerces data[vrb.nm] to a matrix in preparation for the core of the function,
which is essentially lapply(X = split(x = data[vrb.nm], f = data[grp.nm]), FUN = scale.default)
If the coercion results in a non-numeric matrix (e.g., any columns in data[vrb.nm] are character
vectors or factors), then an error is returned.



center_by 15

Value

data.frame of centered and/or standardized variables by group with colnames specified by paste0(vrb.nm,
suffix).

See Also

center_by centers center scale.default

Examples

ChickWeight2 <- as.data.frame(ChickWeight) # because the "groupedData" class calls
# `[.groupedData`, which is different than `[.data.frame`

row.names(ChickWeight2) <- as.numeric(row.names(ChickWeight)) / 1000
centers_by(data = ChickWeight2, vrb.nm = c("weight","Time"), grp.nm = "Chick")
centers_by(data = ChickWeight2, vrb.nm = c("weight","Time"), grp.nm = "Chick",

scale = TRUE, suffix = "_within")
centers_by(data = as.data.frame(CO2), vrb.nm = c("conc","uptake"),

grp.nm = c("Type","Treatment"), scale = TRUE) # multiple grouping columns

center_by Centering and/or Standardizing a Numeric Vector by Group

Description

center_by centers and/or standardized a numeric vector by group. This is sometimes called group-
mean centering and/or group-SD standardizing.

Usage

center_by(x, grp, center = TRUE, scale = FALSE)

Arguments

x numeric vector.

grp list of atomic vector(s) and/or factor(s) (e.g., data.frame) containing the groups.
They should each have same length as x. It can also be an atomic vector or
factor, which will then be made the first element of a list internally.

center logical vector with length 1 specifying whether group-mean centering should be
done.

scale logical vector with length 1 specifying whether group-SD scaling should be
done.

Details

center_by first coerces x to a matrix in preparation for the core of the function, which is essen-
tially: lapply(X = split(x = x, f = grp), FUN = scale.default). If the coercion results in a
non-numeric matrix (e.g., x is a character vector or factor), then an error is returned. An error is
also returned if x and the elements of grp do not have the same length.



16 change

Value

numeric vector of x centered and/or standardized by group with the same names as x.

See Also

centers_by center centers scale.default

Examples

chick_data <- as.data.frame(ChickWeight) # because the "groupedData" class calls
# `[.groupedData`, which is different than `[.data.frame`

center_by(x = ChickWeight[["weight"]], grp = ChickWeight[["Chick"]])
center_by(x = setNames(obj = ChickWeight[["weight"]], nm = row.names(ChickWeight)),

grp = ChickWeight[["Chick"]]) # with names
tmp_nm <- c("Type","Treatment") # b/c Roxygen2 doesn't like a c() within a []
center_by(x = as.data.frame(CO2)[["uptake"]], grp = as.data.frame(CO2)[tmp_nm],

scale = TRUE) # multiple grouping vectors

change Change Score from a Numeric Vector

Description

change creates a change score (aka difference score) from a numeric vector. It is assumed that the
vector is already sorted by time such that the first element is earliest in time and the last element is
the latest in time.

Usage

change(x, n, undefined = NA)

Arguments

x numeric vector.
n integer vector with length 1. Specifies how the change score is calculated. If n is

positive, then the change score is calculated from lead - original; if n is negative,
then the change score is calculated from original - lag. The magnitude of n de-
termines how many elements are shifted for the lead/lag within the calculation.
If n is zero, then change simply returns a vector or zeros. See details of shift.

undefined atomic vector with length 1 (probably makes sense to be the same typeof as x).
Specifies what to insert for undefined values after the shifting takes place. See
details of shift.

Details

It is recommended to use L when specifying n to prevent problems with floating point numbers.
shift tries to circumvent this issue by a call to round within shift if n is not an integer; however
that is not a complete fail safe. The problem is that as.integer(n) implicit in shift truncates
rather than rounds. See details of shift.



changes 17

Value

an atomic vector of the same length as x that is the change score. If x and undefined are differ-
ent typeofs, then the return will be coerced to the most complex typeof (i.e., complex to simple:
character, double, integer, logical).

See Also

changes change_by changes_by shift

Examples

change(x = attitude[[1]], n = -1L) # use L to prevent problems with floating point numbers
change(x = attitude[[1]], n = -2L) # can specify any integer up to the length of `x`
change(x = attitude[[1]], n = +1L) # can specify negative or positive integers
change(x = attitude[[1]], n = +2L, undefined = -999) # user-specified indefined value
change(x = attitude[[1]], n = -2L, undefined = -999) # user-specified indefined value
change(x = attitude[[1]], n = 0L) # returns a vector of zeros
## Not run:
change(x = setNames(object = letters, nm = LETTERS), n = 3L) # character vector returns an error

## End(Not run)

changes Change Scores from Numeric Data

Description

changes creates change scores (aka difference scores) from numeric data. It is assumed that the
data is already sorted by time such that the first row is earliest in time and the last row is the latest
in time. changes is a multivariate version of change that operates on multiple variabes rather than
just one.

Usage

changes(data, vrb.nm, n, undefined = NA, suffix)

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables.

n integer vector with length 1. Specifies how the change score is calculated. If n is
positive, then the change score is calculated from lead - original; if n is negative,
then the change score is calculated from original - lag. The magnitude of n
determines how many rows are shifted for the lead/lag within the calculation.
See details of shifts.

undefined atomic vector with length 1 (probably makes sense to be the same typeof as x).
Specifies what to insert for undefined values after the shifting takes place. See
details of shifts.



18 changes_by

suffix character vector of length 1 specifying the string to append to the end of the
colnames of the return object. The default depends on the n argument: 1) if n < 0,
then suffix = paste0("_hg", -n), 2) if n > 0, then suffix = paste0("_hd",
+n), 3) if n = 0, then suffix = "".

Details

It is recommended to use L when specifying n to prevent problems with floating point numbers.
shifts tries to circumvent this issue by a call to round within shifts if n is not an integer; however
that is not a complete fail safe. The problem is that as.integer(n) implicit in shifts truncates
rather than rounds. See details of shifts.

Value

data.frame of change scores with colnames specified by paste0(vrb.nm, suffix).

See Also

change changes_by change_by shifts

Examples

changes(attitude, vrb.nm = names(attitude),
n = -1L) # use L to prevent problems with floating point numbers

changes(attitude, vrb.nm = names(attitude),
n = -2L) # can specify any integer up to the length of `x`

changes(attitude, vrb.nm = names(attitude),
n = +1L) # can specify negative or positive integers

changes(attitude, vrb.nm = names(attitude),
n = +2L, undefined = -999) # user-specified indefined value

changes(attitude, vrb.nm = names(attitude),
n = -2L, undefined = -999) # user-specified indefined value

## Not run:
changes(str2str::d2d(InsectSprays), names(InsectSprays),
n = 3L) # character vector returns an error

## End(Not run)

changes_by Change Scores from Numeric Data by Group

Description

changes_by creates change scores (aka difference scores) from numeric data separately for each
group. It is assumed that the data is already sorted within each group by time such that the first row
for that group is earliest in time and the last row for that group is the latest in time.

Usage

changes_by(data, vrb.nm, grp.nm, n, undefined = NA, suffix)



changes_by 19

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables.

grp.nm character vector of colnames from data specifying the groups.

n integer vector with length 1. Specifies how the change score is calculated. If n is
positive, then the change score is calculated from lead - original; if n is negative,
then the change score is calculated from original - lag. The magnitude of n
determines how many rows are shifted for the lead/lag within the calculation.
See details of shifts_by.

undefined atomic vector with length 1 (probably makes sense to be the same typeof as x).
Specifies what to insert for undefined values after the shifting takes place. See
details of shifts_by.

suffix character vector of length 1 specifying the string to append to the end of the
colnames of the return object. The default depends on the n argument: 1)
if n < 0, then suffix = paste0("_hgw", -n), 2) if n > 0, then suffix =
paste0("_hdw", +n), 3) if n = 0, then suffix = "".

Details

It is recommended to use L when specifying n to prevent problems with floating point numbers.
shifts_by tries to circumvent this issue by a call to round within shifts_by if n is not an integer;
however that is not a complete fail safe. The problem is that as.integer(n) implicit in shifts_by
truncates rather than rounds. See details of shifts_by.

Value

data.frame of change scores by group with colnames specified by paste0(vrb.nm, suffix).

See Also

change_by changes change shifts_by

Examples

changes_by(data = ChickWeight, vrb.nm = c("weight","Time"), grp.nm = "Chick", n = -1L)
changes_by(data = mtcars, vrb.nm = c("disp","mpg"), grp.nm = c("vs","am"), n = 1L)
changes_by(data = as.data.frame(CO2), vrb.nm = c("conc","uptake"),

grp.nm = c("Type","Treatment"), n = 2L) # multiple grouping columns



20 change_by

change_by Change Scores from a Numeric Vector by Group

Description

change_by creates a change score (aka difference score) from a numeric vector separately for each
group. It is assumed that the vector is already sorted within each group by time such that the first
element for that group is earliest in time and the last element for that group is the latest in time.

Usage

change_by(x, grp, n, undefined = NA)

Arguments

x numeric vector.

grp list of atomic vector(s) and/or factor(s) (e.g., data.frame), which each have same
length as x. It can also be an atomic vector or factor, which will then be made
the first element of a list internally.

n integer vector with length 1. Specifies how the change score is calculated. If n is
positive, then the change score is calculated from lead - original; if n is negative,
then the change score is calculated from original - lag. The magnitude of n
determines how many rows are shifted for the lead/lag within the calculation.
See details of shift_by.

undefined atomic vector with length 1 (probably makes sense to be the same typeof as x).
Specifies what to insert for undefined values after the shifting takes place. See
details of shift_by.

Details

It is recommended to use L when specifying n to prevent problems with floating point numbers.
shift_by tries to circumvent this issue by a call to round within shift_by if n is not an integer;
however that is not a complete fail safe. The problem is that as.integer(n) implicit in shift_by
truncates rather than rounds. See details of shift_by.

Value

an atomic vector of the same length as x that is the change score by group. If x and undefined
are different typeofs, then the return will be coerced to the more complex typoof (i.e., complex to
simple: character, double, integer, logical).

See Also

changes_by change changes shift_by



colMeans_if 21

Examples

change_by(x = ChickWeight[["Time"]], grp = ChickWeight[["Chick"]], n = -1L)
tmp_nm <- c("vs","am") # multiple grouping vectors
change_by(x = mtcars[["disp"]], grp = mtcars[tmp_nm], n = +1L)
tmp_nm <- c("Type","Treatment") # multiple grouping vectors
change_by(x = as.data.frame(CO2)[["uptake"]], grp = as.data.frame(CO2)[tmp_nm], n = 2L)

colMeans_if Column Means Conditional on Frequency of Observed Values

Description

colMeans_if calculates the mean of every column in a numeric or logical matrix conditional on
the frequency of observed data. If the frequency of observed values in that column is less than (or
equal to) that specified by ov.min, then NA is returned for that row.

Usage

colMeans_if(x, ov.min = 1, prop = TRUE, inclusive = TRUE)

Arguments

x numeric or logical matrix. If not a matrix, it will be coerced to one.

ov.min minimum frequency of observed values required per column. If prop = TRUE,
then this is a decimal between 0 and 1. If prop = FALSE, then this is a integer
between 0 and nrow(x).

prop logical vector of length 1 specifying whether ov.min should refer to the propor-
tion of observed values (TRUE) or the count of observed values (FALSE).

inclusive logical vector of length 1 specifying whether the mean should be calculated if
the frequency of observed values in a column is exactly equal to ov.min.

Details

Conceptually this function does: apply(X = x, MARGIN = 2, FUN = mean_if, ov.min = ov.min, prop
= prop, inclusive = inclusive). But for computational efficiency purposes it does not because
then the missing values conditioning would not be vectorized. Instead, it uses colMeans and then
inserts NAs for columns that have too few observed values.

Value

numeric vector of length = ncol(x) with names = colnames(x) providing the mean of each column
or NA depending on the frequency of observed values.

See Also

colSums_if rowMeans_if rowSums_if colMeans



22 colNA

Examples

colMeans_if(airquality)
colMeans_if(x = airquality, ov.min = 150, prop = FALSE)

colNA Frequency of Missing Values by Column

Description

rowNA compute the frequency of missing values in a matrix by column. This function essentially
does apply(X = x, MARGIN = 2, FUN = vecNA). It is also used by other functions in the quest pack-
age related to missing values (e.g., colMeans_if).

Usage

colNA(x, prop = FALSE, ov = FALSE)

Arguments

x matrix with any typeof. If not a matrix, it will be coerced to a matrix via
as.matrix. The function allows for colnames to carry over for non-matrix ob-
jects (e.g., data.frames).

prop logical vector of length 1 specifying whether the frequency of missing values
should be returned as a proportion (TRUE) or a count (FALSE).

ov logical vector of length 1 specifying whether the frequency of observed val-
ues (TRUE) should be returned rather than the frequency of missing values
(FALSE).

Value

numeric vector of length = ncol(x), and names = colnames(x) providing the frequency of missing
values (or observed values if ov = TRUE) per column. If prop = TRUE, the values will range from
0 to 1. If prop = FALSE, the values will range from 1 to nrow(x).

See Also

is.na vecNA rowNA rowsNA

Examples

colNA(as.matrix(airquality)) # count of missing values
colNA(as.matrix(airquality), prop = TRUE) # proportion of missing values
colNA(as.matrix(airquality), ov = TRUE) # count of observed values
colNA(as.data.frame(airquality), prop = TRUE, ov = TRUE) # proportion of observed values



colSums_if 23

colSums_if Column Sums Conditional on Frequency of Observed Values

Description

colSums_if calculates the sum of every column in a numeric or logical matrix conditional on the
frequency of observed data. If the frequency of observed values in that column is less than (or equal
to) that specified by ov.min, then NA is returned for that column. It also has the option to return
a value other than 0 (e.g., NA) when all columns are NA, which differs from colSums(x, na.rm =
TRUE).

Usage

colSums_if(
x,
ov.min = 1,
prop = TRUE,
inclusive = TRUE,
impute = TRUE,
allNA = NA_real_

)

Arguments

x numeric or logical matrix. If not a matrix, it will be coerced to one.
ov.min minimum frequency of observed values required per column. If prop = TRUE,

then this is a decimal between 0 and 1. If prop = FALSE, then this is a integer
between 0 and nrow(x).

prop logical vector of length 1 specifying whether ov.min should refer to the propor-
tion of observed values (TRUE) or the count of observed values (FALSE).

inclusive logical vector of length 1 specifying whether the sum should be calculated if the
frequency of observed values in a column is exactly equal to ov.min.

impute logical vector of length 1 specifying if missing values should be imputed with
the mean of observed values of x[, i]. If TRUE (default), this will make sums
over the same rows with different amounts of observed data comparable.

allNA numeric vector of length 1 specifying what value should be returned for columns
that are all NA. This is most applicable when ov.min = 0 and inclusive =
TRUE. The default is NA, which differs from colSums with na.rm = TRUE where
0 is returned. Note, the value is overwritten by NA if the frequency of observed
values in that column is less than (or equal to) that specified by ov.min.

Details

Conceptually this function does: apply(X = x, MARGIN = 2, FUN = sum_if,ov.min = ov.min, prop
= prop, inclusive = inclusive). But for computational efficiency purposes it does not because
then the observed values conditioning would not be vectorized. Instead, it uses colSums and then
inserts NAs for columns that have too few observed values.



24 decompose

Value

numeric vector of length = ncol(x) with names = colnames(x) providing the sum of each column
or NA depending on the frequency of observed values.

See Also

colMeans_if rowSums_if rowMeans_if colSums

Examples

colSums_if(airquality)
colSums_if(x = airquality, ov.min = 150, prop = FALSE)
x <- data.frame("x" = c(1, 2, NA), "y" = c(1, NA, NA), "z" = c(NA, NA, NA))
colSums_if(x)
colSums_if(x, ov.min = 0)
colSums_if(x, ov.min = 0, allNA = 0)
identical(x = colSums(x, na.rm = TRUE),

y = colSums_if(x, impute = FALSE, ov.min = 0, allNA = 0)) # identical to
# colSums(x, na.rm = TRUE)

decompose Decompose a Numeric Vector by Group

Description

decompose decomposes a numeric vector into within-group and between-group components via
within-group centering and group-mean aggregation. There is an option to create a grand-mean
centered version of the between-person component as well as lead/lag versions of the original vector
and the within-group component.

Usage

decompose(x, grp, grand = TRUE, n.shift = NULL, undefined = NA)

Arguments

x numeric vector.

grp list of atomic vector(s) and/or factor(s) (e.g., data.frame), which each have same
length as x. It can also be an atomic vector or factor, which will then be made
the first element of a list internally.

grand logical vector of length 1 specifying whether a grand-mean centered version of
the the between-group component should be computed.

n.shift integer vector specifying the direction and magnitude of the shifts. For example
a one-lead is +1 and a two-lag is -2. See shift details.

undefined atomic vector with length 1 (probably makes sense to be the same typeof as x).
Specifies what to insert for undefined values after the shifting takes place. See
shift details.



decomposes 25

Value

data.frame with nrow = length(x) and row.names = names(x). The first two columns correspond
to the within-group component (i.e., "wth") and the between-group component (i.e., "btw"). If grand
= TRUE, then the third column corresponds to the grand-mean centered between-group component
(i.e., "btw_c"). If shift != NULL, then the last columns are the shifts indicated by n.shift, where the
shifts of x are first (i.e., "tot") and then the shifts of the within-group component are second (i.e.,
"wth"). The naming of the shifted columns is based on the default behavior of Shift_by. See the
details of Shift_by. If you don’t like the default naming, then call Decompose instead and use the
different suffix arguments.

See Also

decomposes center_by agg shift_by

Examples

# single grouping variable
chick_data <- as.data.frame(ChickWeight) # because the "groupedData" class

# calls `[.groupedData`, which is different than `[.data.frame`
decompose(x = ChickWeight[["weight"]], grp = ChickWeight[["Chick"]])
decompose(x = ChickWeight[["weight"]], grp = ChickWeight[["Chick"]],

grand = FALSE) # no grand-mean centering
decompose(x = setNames(obj = ChickWeight[["weight"]],

nm = paste0(row.names(ChickWeight),"_row")), grp = ChickWeight[["Chick"]]) # with names

# multiple grouping variables
tmp_nm <- c("Type","Treatment") # b/c Roxygen2 doesn't like c() in a []
decompose(x = as.data.frame(CO2)[["uptake"]], grp = as.data.frame(CO2)[tmp_nm])
decompose(x = as.data.frame(CO2)[["uptake"]], grp = as.data.frame(CO2)[tmp_nm],

n.shift = 1)
decompose(x = as.data.frame(CO2)[["uptake"]], grp = as.data.frame(CO2)[tmp_nm],

n.shift = c(+2, +1, -1, -2))

decomposes Decompose Numeric Data by Group

Description

decomposes decomposes numeric data by group into within-group and between- group components
via within-group centering and group-mean aggregation. There is an option to create a grand-mean
centered version of the between-group components.

Usage

decomposes(
data,
vrb.nm,



26 decomposes

grp.nm,
grand = TRUE,
n.shift = NULL,
undefined = NA,
suffix.wth = "_w",
suffix.btw = "_b",
suffix.grand = "c",
suffix.lead = "_dw",
suffix.lag = "_gw"

)

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables.

grp.nm character vector of colnames from data specifying the groups.

grand logical vector of length 1 specifying whether grand-mean centered versions of
the the between-group components should be computed.

n.shift integer vector specifying the direction and magnitude of the shifts. For example
a one-lead is +1 and a two-lag is -2. See Shift_by details.

undefined atomic vector of length 1 (probably makes sense to be the same typeof as the
vectors in data[vrb.nm]). Specifies what to insert for undefined values after
the shifting takes place. See details of Shift_by.

suffix.wth character vector with a single element specifying the string to append to the end
of the within-group component colnames of the return object.

suffix.btw character vector with a single element specifying the string to append to the end
of the between-group component colnames of the return object.

suffix.grand character vector with a single element specifying the string to append to the end
of the grand-mean centered version of the between-group component colnames
of the return object. Note, this is a string that is appended after suffix.btw has
already been appended.

suffix.lead character vector with a single element specifying the string to append to the end
of the positive shift colnames of the return object. Note, decomposes will add
abs(n.shift) to the end of suffix.lead.

suffix.lag character vector with a single element specifying the string to append to the end
of the negative shift colnames of the return object. Note, decomposes will add
abs(n.shift) to the end of suffix.lag.

Value

data.frame with nrow = nrow(data and rownames = row.names(data). The first set of columns
correspond to the within-group components, followed by the between-group components. If grand
= TRUE, then the next set of columns correspond to the grand-mean centered between-group com-
ponents. If shift != NULL, then the last columns are the shifts by group indicated by n.shift, where
the shifts of data[vrb.nm] are first and then the shifts of the within-group components are second.



dum2nom 27

See Also

decompose centers_by aggs shifts_by

Examples

ChickWeight2 <- as.data.frame(ChickWeight)
row.names(ChickWeight2) <- as.numeric(row.names(ChickWeight)) / 1000
decomposes(data = ChickWeight2, vrb.nm = c("weight","Time"), grp.nm = "Chick")
decomposes(data = ChickWeight2, vrb.nm = c("weight","Time"), grp.nm = "Chick",

suffix.wth = ".wth", suffix.btw = ".btw", suffix.grand = ".grand")
decomposes(data = as.data.frame(CO2), vrb.nm = c("conc","uptake"),

grp.nm = c("Type","Treatment")) # multiple grouping columns
decomposes(data = as.data.frame(CO2), vrb.nm = c("conc","uptake"),

grp.nm = c("Type","Treatment"), n.shift = 1) # with lead
decomposes(data = as.data.frame(CO2), vrb.nm = c("conc","uptake"), grp.nm = c("Type","Treatment"),

n.shift = c(+2, +1, -1, -2)) # with multiple lead/lags

dum2nom Dummy Variables to a Nominal Variable

Description

dum2nom converts dummy variables to a nominal variable. The information from the dummy
columns in a data.frame are combined into a character vector (or factor if rtn.fct = TRUE) repre-
senting a nominal variable. The unique values of the nominal variable will be the dummy colnames
(i.e., dum.nm). Note, *all* the dummy variables associated with a nominal variable are required for
this function to work properly. In regression-like models, data analysts will exclude one dummy
variable for the category that is the reference group. If d = number of categories in the nominal
variable, then that leads to d - 1 dummy variables in the model. dum2nom requires all d dummy
variables.

Usage

dum2nom(data, dum.nm, yes = 1L, rtn.fct = FALSE)

Arguments

data data.frame of data.

dum.nm character vector of colnames from data specifying the dummy variables.

yes atomic vector of length 1 specifying the unique value of the category in each
dummy column. This must be the same value for all the dummy variables.

rtn.fct logical vector of length 1 specifying whether the return object should be a factor
(TRUE) or a character vector (FALSE).



28 freq

Details

dum2nom tests to ensure that data[dum.nm] are indeed a set of dummy columns. First, the dummy
columns are expected to have the same mode such that there is one yes unique value across the
dummy columns. Second, each row in data[dum.nm] is expected to have either 0 or 1 instance
of yes. If there is more than one instance of yes in a row, then an error is returned. If there is 0
instances of yes in a row (e.g., all missing values), NA is returned for that row. Note, any value
other than yes will be treated as a no.

Value

character vector (or factor if rtn.fct = TRUE) containing the unique values of dum.nm - one for
each dummy variable.

See Also

nom2dum

Examples

dum <- data.frame(
"Quebec_nonchilled" = ifelse(CO2$"Type" == "Quebec" & CO2$"Treatment" == "nonchilled",

yes = 1L, no = 0L),
"Quebec_chilled" = ifelse(CO2$"Type" == "Quebec" & CO2$"Treatment" == "chilled",

yes = 1L, no = 0L),
"Mississippi_nonchilled" = ifelse(CO2$"Type" == "Mississippi" & CO2$"Treatment" == "nonchilled",

yes = 1L, no = 0L),
"Mississippi_chilled" = ifelse(CO2$"Type" == "Mississippi" & CO2$"Treatment" == "chilled",

yes = 1L, no = 0L)
)
dum2nom(data = dum, dum.nm = names(dum)) # default
dum2nom(data = dum, dum.nm = names(dum), rtn.fct = TRUE) # return as a factor
## Not run:
dum2nom(data = npk, dum.nm = c("N","P","K")) # error due to overlapping dummy columns
dum2nom(data = mtcars, dum.nm = c("vs","am"))# error due to overlapping dummy columns

## End(Not run)

freq Univariate Frequency Table

Description

freq creates univariate frequency tables similar to table. It differs from table by allowing for
custom sorting by something other than the alphanumerics of the unique values as well as returning
an atomic vector rather than a 1D-array.



freq 29

Usage

freq(
x,
exclude = if (useNA == "no") c(NA, NaN),
useNA = "always",
prop = FALSE,
sort = "frequency",
decreasing = TRUE,
na.last = TRUE

)

Arguments

x atomic vector

exclude unique values of x to exclude from the returned table. If NULL, then missing
values are always included in the returned table. See table for documentation
on the same argument.

useNA character vector of length 1 specifying how to handle missing values (i.e., whether
to include NA as an element in the returned table). There are three options: 1)
"no" = don’t include missing values in the table, 2) "ifany" = include missing
values if there are any, 3) "always" = include missing values in the table, regard-
less of whether there are any or not. See table for documentation on the same
argument.

prop logical vector of length 1 specifying whether the returned table should include
counts (FALSE) or proportions (TRUE). If NAs are excluded (e.g., useNA =
"no" or exclude = c(NA, NaN)), then the proportions will be based on the num-
ber of observed elements.

sort character vector of length 1 specifying how the returned table will be sorted.
There are three options: 1) "frequency" = the frequency of the unique values
in x, 2) "position" = the position when each unique value first appears in x, 3)
"alphanum" = alphanumeric ordering of the unique values in x (the sorting used
by table). When "frequency" is specified and there are ties, then the ties are
sorted alphanumerically.

decreasing logical vector of length 1 specifying whether the table should be sorted in de-
creasing (TRUE) or increasing (FALSE) order.

na.last logical vector of length 1 specifying whether the table should have NAs last or
in whatever position they end up at. This argument is only relevant if NAs exist
in x and are included in the table (e.g., useNA = "always" or exclude = NULL).

Details

The name for the table element giving the frequency of missing values is "(NA)". This is different
from table where the name is NA_character_. This change allows for the sorting of tables that
include missing values, as subsetting in R is not possible with NA_character_ names. In future
versions of the package, this might change as it should be possible to avoid this issue by subetting
with a logical vector or integer indices instead of names. However, it is convenient to be able to
subset the return object fully by names.



30 freqs

Value

numeric vector of frequencies as either counts (if prop = FALSE) or proportions (if prop = TRUE)
with the unique values of x as names (missing values have name = "(NA)"). Note, this is different
from table, which returns a 1D-array and has class "table".

See Also

freqs freq_by freqs_by table

Examples

freq(c(mtcars$"carb", NA, NA, mtcars$"gear"), prop = FALSE,
sort = "frequency", decreasing = TRUE, na.last = TRUE)

freq(c(mtcars$"carb", NA, NA, mtcars$"gear"), prop = FALSE,
sort = "frequency", decreasing = TRUE, na.last = FALSE)

freq(c(mtcars$"carb", NA, NA, mtcars$"gear"), prop = TRUE,
sort = "frequency", decreasing = FALSE, na.last = TRUE)

freq(c(mtcars$"carb", NA, NA, mtcars$"gear"), prop = TRUE,
sort = "frequency", decreasing = FALSE, na.last = FALSE)

freq(c(mtcars$"carb", NA, NA, mtcars$"gear"), prop = FALSE,
sort = "position", decreasing = TRUE, na.last = TRUE)

freq(c(mtcars$"carb", NA, NA, mtcars$"gear"), prop = FALSE,
sort = "position", decreasing = TRUE, na.last = FALSE)

freq(c(mtcars$"carb", NA, NA, mtcars$"gear"), prop = TRUE,
sort = "position", decreasing = FALSE, na.last = TRUE)

freq(c(mtcars$"carb", NA, NA, mtcars$"gear"), prop = TRUE,
sort = "position", decreasing = FALSE, na.last = FALSE)

freq(c(mtcars$"carb", NA, NA, mtcars$"gear"), prop = FALSE,
sort = "alphanum", decreasing = TRUE, na.last = TRUE)

freq(c(mtcars$"carb", NA, NA, mtcars$"gear"), prop = FALSE,
sort = "alphanum", decreasing = TRUE, na.last = FALSE)

freq(c(mtcars$"carb", NA, NA, mtcars$"gear"), prop = TRUE,
sort = "alphanum", decreasing = FALSE, na.last = TRUE)

freq(c(mtcars$"carb", NA, NA, mtcars$"gear"), prop = TRUE,
sort = "alphanum", decreasing = FALSE, na.last = FALSE)

freqs Multiple Univariate Frequency Tables

Description

freqs creates a frequency table for a set of variables in a data.frame. Depending on total, frequen-
cies for all the variables together can be returned. The function probably makes the most sense for
sets of variables with similar unique values (e.g., items from a questionnaire with similar response
options).

Usage

freqs(data, vrb.nm, prop = FALSE, useNA = "always", total = "no")



freqs 31

Arguments

data data.fame of data.

vrb.nm character vector of colnames from data specifying the variables.

prop logical vector of length 1 specifying whether the frequencies should be counts
(FALSE) or proportions (TRUE). Note, whether the proportions include missing
values depends on the useNA argument.

useNA character vector of length 1 specifying how missing values should be handled.
The three options are 1) "no" = do not include NA frequencies in the return
object, 2) "ifany" = only NA frequencies if there are any missing values (in
any variable from data[vrb.nm]), or 3) "always" = do include NA frequencies
regardless of whether there are missing values or not.

total character vector of length 1 specifying whether the frequencies for the set of
variables as a whole should be returned. The name "total" refers to tabulating
the frequencies for the variables from data[vrb.nm] together as a set. The
three options are 1) "no" = do not include a row for the total frequencies in the
return object, 2) "yes" = do include the total frequencies as the first row in the
return object, or 3) "only" = only include the total frequencies as a single row
in the return object and do not include rows for each of the individual column
frequencies in data[vrb.nm].

Details

freqs uses plyr::rbind.fill to combine the results from table applied to each variable into a
single data.frame. If a variable from data[vrb.nm] does not have values present in other variables
from data[vrb.nm], then the frequencies in the return object will be 0.

The name for the table element giving the frequency of missing values is "(NA)". This is different
from table where the name is NA_character_. This change allows for the sorting of tables that
include missing values, as subsetting in R is not possible with NA_character_ names. In future
versions of the package, this might change as it should be possible to avoid this issue by subetting
with a logical vector or integer indices instead of names. However, it is convenient to be able to
subset the return object fully by names.

Value

data.frame of frequencies for the variables in data[vrb.nm]. Depending on prop, the frequen-
cies are either counts (FALSE) or proportions (TRUE). Depending on total, the nrow is either
1) length(vrb.nm) (if total = "no"), 1 + length(vrb.nm) (if total = "yes"), or 3) 1 (if total
= "only"). The rownames are vrb.nm for each variable in data[vrb.nm] and "_total_" for the
total row (if present). The colnames are the unique values present in data[vrb.nm], potentially
including "(NA)" depending on useNA.

See Also

freq freqs_by freq_by table



32 freqs_by

Examples

vrb_nm <- str2str::inbtw(names(psych::bfi), "A1","O5")
freqs(data = psych::bfi, vrb.nm = vrb_nm) # default
freqs(data = psych::bfi, vrb.nm = vrb_nm, prop = TRUE) # proportions by row
freqs(data = psych::bfi, vrb.nm = vrb_nm, useNA = "no") # without NA counts
freqs(data = psych::bfi, vrb.nm = vrb_nm, total = "yes") # include total counts

freqs_by Multiple Univariate Frequency Tables

Description

freqs_by creates a frequency table for a set of variables in a data.frame by group. Depending on
total, frequencies for all the variables together can be returned by group. The function probably
makes the most sense for sets of variables with similar unique values (e.g., items from a question-
naire with similar response options).

Usage

freqs_by(
data,
vrb.nm,
grp.nm,
prop = FALSE,
useNA = "always",
total = "no",
sep = "."

)

Arguments

data data.fame of data.

vrb.nm character vector of colnames from data specifying the variables.

grp.nm character vector of colnames from data specifying the groups.

prop logical vector of length 1 specifying whether the frequencies should be counts
(FALSE) or proportions (TRUE). Note, whether the proportions include missing
values depends on the useNA argument.

useNA character vector of length 1 specifying how missing values should be handled.
The three options are 1) "no" = do not include NA frequencies in the return
object, 2) "ifany" = only NA frequencies if there are any missing values (in
any variable from data[vrb.nm]), or 3) "always" = do include NA frequencies
regardless of whether there are missing values or not.

total character vector of length 1 specifying whether the frequencies for the set of
variables as a whole should be returned. The name "total" refers to tabulating
the frequencies for the variables from data[vrb.nm] together as a set. The



freqs_by 33

three options are 1) "no" = do not include a row for the total frequencies in the
return object, 2) "yes" = do include the total frequencies as the first row in the
return object, or 3) "only" = only include the total frequencies as a single row
in the return object and do not include rows for each of the individual column
frequencies in data[vrb.nm].

sep character vector of length 1 specifying the string to combine the group values
together with. sep is only used if there are multiple grouping variables (i.e.,
length(grp.nm) > 1).

Details

freqs_by uses plyr::rbind.fill to combine the results from table applied to each variable into
a single data.frame for each group. If a variable from data[vrb.nm] for each group does not have
values present in other variables from data[vrb.nm] for that group, then the frequencies in the
return object will be 0.

The name for the table element giving the frequency of missing values is "(NA)". This is different
from table where the name is NA_character_. This change allows for the sorting of tables that
include missing values, as subsetting in R is not possible with NA_character_ names. In future
versions of the package, this might change as it should be possible to avoid this issue by subetting
with a logical vector or integer indices instead of names. However, it is convenient to be able to
subset the return object fully by names.

Value

list of data.frames containing the frequencies for the variables in data[vrb.nm] by group. The
number of list elements are the groups specified by unique(interaction(data[grp.nm], sep =
sep)). Depending on prop, the frequencies are either counts (FALSE) or proportions (TRUE) by
group. Depending on total, the nrow for each data.frame is either 1) length(vrb.nm) (if total
= "no"), 1 + length(vrb.nm) (if total = "yes"), or 3) 1 (if total = "only"). The rownames are
vrb.nm for each variable in data[vrb.nm] and "_total_" for the total row (if present). The colnames
for each data.frame are the unique values present in data[vrb.nm], potentially including "(NA)"
depending on useNA.

See Also

freqs freq_by freqs_by table

Examples

vrb_nm <- str2str::inbtw(names(psych::bfi), "A1","O5")
freqs_by(data = psych::bfi, vrb.nm = vrb_nm, grp.nm = "gender") # default
freqs_by(data = psych::bfi, vrb.nm = vrb_nm, grp.nm = "gender",

prop = TRUE) # proportions by row
freqs_by(data = psych::bfi, vrb.nm = vrb_nm, grp.nm = "gender",

useNA = "no") # without NA counts
freqs_by(data = psych::bfi, vrb.nm = vrb_nm, grp.nm = "gender",

total = "yes") # include total counts
freqs_by(data = psych::bfi, vrb.nm = vrb_nm,

grp.nm = c("gender","education")) # multiple grouping variables



34 freq_by

freq_by Univariate Frequency Table By Group

Description

tables_by creates a frequency table for a set of variables in a data.frame by group. Depending on
total, frequencies for all the variables together can be returned by group. The function probably
makes the most sense for sets of variables with similar unique values (e.g., items from a question-
naire with similar response options).

Usage

freq_by(
x,
grp,
exclude = if (useNA == "no") c(NA, NaN),
useNA = "always",
prop = FALSE,
sort = "frequency",
decreasing = TRUE,
na.last = TRUE

)

Arguments

x atomic vector.

grp atomic vector or list of atomic vectors (e.g., data.frame) specifying the groups.
The atomic vector(s) must be the length of x or else an error is returned.

exclude unique values of x to exclude from the returned table. If NULL, then missing
values are always included in the returned table. See table for documentation
on the same argument.

useNA character vector of length 1 specifying how to handle missing values (i.e., whether
to include NA as an element in the returned table). There are three options: 1)
"no" = don’t include missing values in the table, 2) "ifany" = include missing
values if there are any, 3) "always" = include missing values in the table, regard-
less of whether there are any or not. See table for documentation on the same
argument.

prop logical vector of length 1 specifying whether the returned table should include
counts (FALSE) or proportions (TRUE). If NAs are excluded (e.g., useNA =
"no" or exclude = c(NA, NaN)), then the proportions will be based on the num-
ber of observed elements.

sort character vector of length 1 specifying how the returned table will be sorted.
There are three options: 1) "frequency" = the frequency of the unique values
in x, 2) "position" = the position when each unique value first appears in x, 3)
"alphanum" = alphanumeric ordering of the unique values in x (the sorting used



long2wide 35

by table). When "frequency" is specified and there are ties, then the ties are
sorted alphanumerically.

decreasing logical vector of length 1 specifying whether the table should be sorted in de-
creasing (TRUE) or increasing (FALSE) order.

na.last logical vector of length 1 specifying whether the table should have NAs last or
in whatever position they end up at. This argument is only relevant if NAs exist
in x and are included in the table (e.g., useNA = "always" or exclude = NULL).

Details

tables_by uses plyr::rbind.fill to combine the results from table applied to each variable
into a single data.frame for each group. If a variable from data[vrb.nm] for each group does not
have values present in other variables from data[vrb.nm] for that group, then the frequencies in
the return object will be 0.

The name for the table element giving the frequency of missing values is "(NA)". This is different
from table where the name is NA_character_. This change allows for the sorting of tables that
include missing values, as subsetting in R is not possible with NA_character_ names. In future
versions of the package, this might change as it should be possible to avoid this issue by subetting
with a logical vector or integer indices instead of names. However, it is convenient to be able to
subset the return object fully by names.

Value

list of numeric vector of frequencies by group. The number of list elements are the groups specified
by unique(interaction(grp, sep = sep)). The frequencies either counts (if prop = FALSE) or
proportions (if prop = TRUE) with the unique values of x as names (missing values have name =
"(NA)"). Note, this is different from table, which returns a 1D-array and has class "table".

See Also

freq freq_by freqs_by table

Examples

x <- freq_by(mtcars$"gear", grp = mtcars$"vs")
str(x)
y <- freq_by(mtcars$"am", grp = mtcars$"vs", useNA = "no")
str(y)
str2str::lv2m(lapply(X = y, FUN = rev), along = 1) # ready to pass to prop.test()

long2wide Reshape Multiple Scores From Long to Wide

Description

long2wide reshapes data from long to wide. This if often necessary to do with multilevel data
where variables in the long format seek to be reshaped to multiple sets of variables in the wide
format. If only one column needs to be reshaped, then you can use unstack2 or cast - but that
does not work for *multiple* columns.



36 long2wide

Usage

long2wide(
data,
vrb.nm,
grp.nm,
obs.nm,
sep = ".",
colnames.by.obs = TRUE,
keep.attr = FALSE

)

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables to be reshaped.
In longitudinal panel data, this would be the scores.

grp.nm character vector of colnames from data specifying the groups. In longitudnal
panel data, this would be the participant ID variable.

obs.nm character vector of length 1 with a colname from data specifying the obser-
vation within each group. In longitudinal panel data, this would be the time
variable.

sep character vector of length 1 specifying the string that separates the name prefix
(e.g., score) from it’s number suffix (e.g., timepoint). If sep = "", then that
implies there is no string separating the name prefix and the number suffix (e.g.,
"outcome1").

colnames.by.obs

logical vector of length 1 specifying whether to sort the return object colnames
by the observation label (TRUE) or by the order of vrb.nm. See the example at
the end of the "MULTIPLE GROUPING VARIABLES" section of the examples.

keep.attr logical vector of length 1 specifying whether to keep the "reshapeWide" attribute
(from reshape) in the return object.

Details

long2wide uses reshape(direction = "wide") to reshape the data. It attempts to streamline the
task of reshaping long to wide as the reshape arguments can be confusing because the same argu-
ments are used for wide vs. long reshaping. See reshape if you are curious.

Value

data.frame with nrow equal to nrow(unique(data[grp.nm])) and number of reshaped columns
equal to length(vrb.nm) * unique(data[[obs.nm]]). The colnames will have the structure
paste0(vrb.nm, sep, unique(data[[obs.nm]])). The reshaped colnames are sorted by the ob-
servation labels if colnames.by.obs = TRUE and sorted by vrb.nm if colnames.by.obs = FALSE.
Overall, the columns are in the following order: 1) grp.nm of the groups, 2) reshaped columns, 3)
additional columns that were not reshaped.



make.dummy 37

See Also

wide2long reshape unstack2

Examples

# SINGLE GROUPING VARIABLE
dat_long <- as.data.frame(ChickWeight) # b/c groupedData class does weird things...
w1 <- long2wide(data = dat_long, vrb.nm = "weight", grp.nm = "Chick",

obs.nm = "Time") # NAs inserted for missing observations in some groups
w2 <- long2wide(data = dat_long, vrb.nm = "weight", grp.nm = "Chick",

obs.nm = "Time", sep = "_")
head(w1); head(w2)
w3 <- long2wide(data = dat_long, vrb.nm = "weight", grp.nm = "Chick",

obs.nm = "Time", sep = "_T", keep.attr = TRUE)
attributes(w3)

# MULTIPLE GROUPING VARIABLE
tmp <- psychTools::sai
grps <- interaction(tmp[1:3], drop = TRUE)
dups <- duplicated(grps)
dat_long <- tmp[!(dups), ] # for some reason there are duplicate groups in the data
vrb_nm <- str2str::pick(names(dat_long), val = c("study","time","id"), not = TRUE)
w4 <- long2wide(data = dat_long, vrb.nm = vrb_nm, grp.nm = c("study","id"),

obs.nm = "time")
w5 <- long2wide(data = dat_long, vrb.nm = vrb_nm, grp.nm = c("study","id"),

obs.nm = "time", colnames.by.obs = FALSE) # colnames sorted by `vrb.nm` instead
head(w4); head(w5)

make.dummy Make Dummy Columns

Description

make.dummy creates dummy columns (i.e., dichotomous numeric vectors coded 0 and 1) from log-
ical conditions. If you want to make logical conditions from columns of a data.frame, you will
need to call the data.frame and its columns explicitly as this function does not use non-standard
evaluation.

Usage

make.dummy(..., rtn.lgl = FALSE)

Arguments

... logical conditions that evaluate to logical vectors of the same length. If the
logical vectors are not the same length, an error is returned. The names of the
arguments are the colnames in the return object. If unnamed, then default R
data.frame naming is used, which can get ugly.



38 make.dumNA

rtn.lgl logical vector of length 1 specifying whether the dummy columns should be
logical vectors (TRUE) rather than numeric vectors (FALSE).

Value

data.frame of dummy columns based on the logical conditions n .... If rtn.lgl = TRUE, then the
columns are logical vectors. If out.lgl = FALSE, then the columns are numeric vectors where 0 =
FALSE and 1 = TRUE. The colnames are the names of the arguments in .... If not specified, then
default data.frame names are created from the logical conditions themselves (which can get ugly).

See Also

make.dumNA

Examples

make.dummy(attitude$"rating" > 50) # ugly colnames
make.dummy("rating_50plus" = attitude$"rating" > 50,

"advance_50minus" = attitude$"advance" < 50)
make.dummy("rating_50plus" = attitude$"rating" > 50,

"advance_50minus" = attitude$"advance" < 50, rtn.lgl = TRUE)
## Not run:

make.dummy("rating_50plus" = attitude$"rating" > 50,
"mpg_20plus" = mtcars$"mpg" > 20)

## End(Not run)

make.dumNA Make Dummy Columns For Missing Data.

Description

make.dumNA makes dummy columns (i.e., dichomotous numeric vectors coded 0 and 1) for missing
data. Each variable is treated in isolation.

Usage

make.dumNA(data, vrb.nm, ov = FALSE, rtn.lgl = FALSE, suffix = "_m")

Arguments

data data.frame of data.
vrb.nm character vector of colnames from data specifying the variables.
ov logical vector of length 1 specifying whether the dummy columns should be re-

verse coded such that missing values = 0/FALSE and observed values = 1/TRUE.
rtn.lgl logical vector of length 1 specifying whether the dummy columns should be

logical vectors (TRUE) rather than numeric vectors (FALSE).
suffix character vector of length 1 specifying the string that should be appended to the

end of the colnames in the return object.



make.fun_if 39

Value

data.frame of numeric (logical if rtn.lgl = TRUE) columns where missing = 1 and observed = 0
(flipped if ov = TRUE) for each variable. The colnames are created by paste0(vrb.nm, suffix).

See Also

make.dummy

Examples

make.dumNA(data = airquality, vrb.nm = c("Ozone","Solar.R"))
make.dumNA(data = airquality, vrb.nm = c("Ozone","Solar.R"),

rtn.lgl = TRUE) # logical vectors returned
make.dumNA(data = airquality, vrb.nm = c("Ozone","Solar.R"),

ov = TRUE, suffix = "_o") # 1 = observed value

make.fun_if Make a Function Conditional on Frequency of Observed Values

Description

make.fun_if makes a function that evaluates conditional on a specified minimum frequency of
observed values. Within the function, if the frequency of observed values is less than (or equal to)
ov.min, then false is returned rather than the return value.

Usage

make.fun_if(
fun,
...,
ov.min.default = 1,
prop.default = TRUE,
inclusive.default = TRUE,
false = NA

)

Arguments

fun function that takes an atomic vector as its first argument. The first argument does
not have to be named "x" within fun, but it will be named "x" in the returned
function.

... additional arguments with parameters to fun. This would be similar to impute
in sum_if. However in the current version of make.fun_if, the parameters you
provide will always be used within the returned function and cannot be specified
by the user of the returned function. Unfortunately, I cannot figure out how to
include user-specified arguments (with defaults) within the returned function
other than ov.min.default, prop.default, and inclusive.default.



40 make.fun_if

ov.min.default numeric vector of length 1 specifying what the default should be for the argu-
ment ov.min within the returned function, which specifies the minimum fre-
quency of observed values required. If prop = TRUE, then this is a decimal be-
tween 0 and 1. If prop = FALSE, then this is a integer between 0 and length(x).

prop.default logical vector of length 1 specifying what the default should be for the argument
prop within the returned function, which specifies whether ov.min should refer
to the proportion of observed values (TRUE) or the count of observed values
(FALSE).

inclusive.default

logical vector of length 1 speicfying what the default should be for the argu-
ment inclusive within the returned function, which specifies whether the func-
tion should be evaluated if the frequency of observed values is exactly equal to
ov.min.

false vector of length 1 specifying what should be returned if the observed values con-
dition is not met within the returned function. The default is NA. Whatever the
value is, it will be coerced to the same mode as x within the returned function.

Value

function that takes an atomic vector x as its first argument, ... as other arguments, ending with
ov.min, prop, and inclusive as final arguments with defaults specified by ov.min.default,
prop.default, and inclusive.default, respectively.

See Also

sum_if mean_if

Examples

# SD
sd_if <- make.fun_if(fun = sd, na.rm = TRUE) # always have na.rm = TRUE
sd_if(x = airquality[[1]], ov.min = .75) # proportion of observed values
sd_if(x = airquality[[1]], ov.min = 116,

prop = FALSE) # count of observed values
sd_if(x = airquality[[1]], ov.min = 116, prop = FALSE,

inclusive = FALSE) # not include ov.min values itself

# skewness
skew_if <- make.fun_if(fun = psych::skew, type = 1) # always have type = 1
skew_if(x = airquality[[1]], ov.min = .75) # proportion of observed values
skew_if(x = airquality[[1]], ov.min = 116,

prop = FALSE) # count of observed values
skew_if(x = airquality[[1]], ov.min = 116, prop = FALSE,

inclusive = FALSE) # not include ov.min values itself

# mode
popular <- function(x) names(sort(table(x), decreasing = TRUE))[1]
popular_if <- make.fun_if(fun = popular) # works with character vectors too
popular_if(x = c(unlist(dimnames(HairEyeColor)), rep.int(x = NA, times = 10)),



make.product 41

ov.min = .50)
popular_if(x = c(unlist(dimnames(HairEyeColor)), rep.int(x = NA, times = 10)),

ov.min = .60)

make.product Make Product Terms (e.g., interactions)

Description

make.product creates product terms (i.e., interactions) from various components. make.product
uses Center for the optional of centering and/or scaling the predictors and/or moderators before
making the product terms.

Usage

make.product(
data,
x.nm,
m.nm,
center.x = FALSE,
center.m = FALSE,
scale.x = FALSE,
scale.m = FALSE,
suffix.x = "",
suffix.m = "",
sep = ":",
combo = TRUE

)

Arguments

data data.frame of data.

x.nm character vector of colnames from data specifying the predictor columns.

m.nm character vector of colnames from data specifying the moderator columns.

center.x logical vector of length 1 specifying whether the predictor columns should be
grand-mean centered before making the product terms.

center.m logical vector of length 1 specifying whether the moderator columns should be
grand-mean centered before making the product terms.

scale.x logical vector of length 1 specifying whether the predictor columns should be
grand-SD scaled before making the product terms.

scale.m logical vector of length 1 specifying whether the moderator columns should be
grand-SD scaled before making the product terms.

suffix.x character vector of length 1 specifying any suffix to add to the end of the predic-
tor colnames x.nm when creating the colnames of the return object.



42 mean_if

suffix.m character vector of length 1 specifying any suffix to add to the end of the mod-
erator colnames m.nm when creating the colnames of the return object.

sep character vector of length 1 specifying the string to connect x.nm and m.nm when
specifying the colnames of the return object.

combo logical vector of length 1 specifying whether all combinations of the predic-
tors and moderators should be calculated or only those in parallel to each other
(i.e., x.nm[i] and m.nm[i]). This argument is only applicable when multiple
predictors AND multiple moderators are given.

Value

data.frame with product terms (e.g., interactions) as columns. The colnames are created by paste(paste0(x.nm,
suffix.x), paste0(m.nm, suffix.m), sep = sep).

Examples

make.product(data = attitude, x.nm = c("complaints","privileges"),
m.nm = "learning", center.x = TRUE, center.m = TRUE,
suffix.x = "_c", suffix.m = "_c") # with grand-mean centering

make.product(data = attitude, x.nm = c("complaints","privileges"),
m.nm = c("learning","raises"), combo = TRUE) # all possible combinations

make.product(data = attitude, x.nm = c("complaints","privileges"),
m.nm = c("learning","raises"), combo = FALSE) # only combinations "in parallel"

mean_if Mean Conditional on Minimum Frequency of Observed Values

Description

mean_if calculates the mean of a numeric or logical vector conditional on a specified minimum
frequency of observed values. If the frequency of observed values is less than (or equal to) ov.min,
then NA is returned rather than the mean.

Usage

mean_if(x, trim = 0, ov.min = 1, prop = TRUE, inclusive = TRUE)

Arguments

x numeric or logical vector.

trim numeric vector of length 1 specifying the proportion of values from each end of
x to trim. Trimmed values are recoded to their endpoint for calculation of the
mean. See mean.default.

ov.min minimum frequency of observed values required. If prop = TRUE, then this is
a decimal between 0 and 1. If prop = FALSE, then this is a integer between 0
and length(x).



mode2 43

prop logical vector of length 1 specifying whether ov.min should refer to the propor-
tion of observed values (TRUE) or the count of observed values (FALSE).

inclusive logical vector of length 1 specifying whether the mean should be calculated if
the frequency of observed values is exactly equal to ov.min.

Value

numeric vector of length 1 providing the mean of x or NA conditional on if the frequency of observed
data is greater than (or equal to) ov.min.

See Also

mean.default sum_if make.fun_if

Examples

mean_if(x = airquality[[1]], ov.min = .75) # proportion of observed values
mean_if(x = airquality[[1]], ov.min = 116,

prop = FALSE) # count of observe values
mean_if(x = airquality[[1]], ov.min = 116, prop = FALSE,

inclusive = FALSE) # not include ov.min value itself
mean_if(x = c(TRUE, NA, FALSE, NA),

ov.min = .50) # works with logical vectors as well as numeric

mode2 Statistical Mode of a Numeric Vector

Description

mode2 calculates the statistical mode - a measure of central tendancy - of a numeric vector. This
is in contrast to mode in base R, which returns the storage mode of an object. In the case multiple
modes exist, the multiple argument allows the user to specify if they want the multiple modes
returned or just one.

Usage

mode2(x, na.rm = FALSE, multiple = FALSE)

Arguments

x atomic vector
na.rm logical vector of length 1 specifying if missing values should be removed from

x before calculating its frequencies.
multiple logical vector of length 1 specifying if multiple modes should be returned in

the case they exist. If multiple modes exist and multiple = TRUE, the multi-
ple modes will be returned in alphanumeric order. If multiple modes exist and
multiple = TRUE, the first mode in alphanumeric order will be returned. Note,
NA is always last in the alphanumeric order. If only one mode exists, then the
multiple argument is not used.



44 ncases

Value

atomic vector of the same storage mode as x providing the statistical mode(s).

See Also

freq table

Examples

# ONE MODE
vec <- c(7,8,9,7,8,9,9)
mode2(vec)
mode2(vec, multiple = TRUE)

# TWO MODES
vec <- c(7,8,9,7,8,9,8,9)
mode2(vec)
mode2(vec, multiple = TRUE)

# WITH NA
vec <- c(7,8,9,7,8,9,NA,9)
mode2(vec)
mode2(vec, na.rm = TRUE)
vec <- c(7,8,9,7,8,9,NA,9,NA,NA)
mode2(vec)
mode2(vec, multiple = TRUE)

ncases Number of Cases in Data

Description

ncases counts how many cases in a data.frame there are that have a specified frequency of observed
values across a set of columns. This function is similar to nrow and is essentially partial.cases
+ sum. The user can have ncases return the number of complete cases by calling ov.min = 1, prop
= TRUE, and inclusive = TRUE (the default).

Usage

ncases(data, vrb.nm = names(data), ov.min = 1, prop = TRUE, inclusive = TRUE)

Arguments

data data.frame or matrix of data.

vrb.nm a character vector of colnames from data specifying the variables.

ov.min minimum frequency of observed values required per row. If prop = TRUE,
then this is a decimal between 0 and 1. If prop = FALSE, then this is a integer
between 0 and length(vrb.nm).



nom2dum 45

prop logical vector of length 1 specifying whether ov.min should refer to the propor-
tion of observed values (TRUE) or the count of observed values (FALSE).

inclusive logical vector of length 1 specifying whether the case should be included if the
frequency of observed values in a row is exactly equal to ov.min.

Value

integer vector of length 1 providing the nrow in data with the given amount of observed values.

See Also

partial.cases nrow

Examples

vrb_nm <- c("Ozone","Solar.R","Wind")
nrow(airquality[vrb_nm]) # number of cases regardless of missing data
sum(complete.cases(airquality[vrb_nm])) # number of complete cases
ncases(data = airquality, vrb.nm = c("Ozone","Solar.R","Wind"),

ov.min = 2/3) # number of rows with at least 2 of the 3 variables observed

nom2dum Nominal Variable to Dummy Variables

Description

nom2dum converts a nominal variable into a set of dummy variables. There is one dummy variable
for each unique value in the nominal variable. Note, base R does this recoding internally through
the model.matrix.default function, but it is used in the context of regression-like models and it
is not clear how to simplify it for general use cases outside that context.

Usage

nom2dum(nom, yes = 1L, no = 0L, prefix = "", rtn.fct = FALSE)

Arguments

nom character vector (or any atomic vector, including factors, which will be then
coerced to a character vector) specifying the nominal variable.

yes atomic vector of length 1 specifying what unique value should represent rows
when the nominal category of interest is present. For a traditional dummy vari-
able this value would be 1.

no atomic vector of length 1 specifying what unique value should represent rows
when the nominal category of interest is absent. For a traditional dummy vari-
able this value would be 0.

prefix character vector of length 1 specifying the string that should be appended to the
beginning of each colname in the return object.

rtn.fct logical vector of length 1 specifying whether the columns of the return object
should be factors where the first level is no and the second level is yes.



46 partial.cases

Details

Note, that yes and no are assumed to be the same typeof. If they are not, then the columns in
the return object will be coerced to the most complex typeof (i.e., most to least: character, double,
integer, logical).

Value

data.frame of dummy columns with colnames specified by paste0(prefix, unique(nom)) and
rownames specified by names(nom) or default data.frame rownames (i.e., c("1","2","3", etc.) if
names(nom) is NULL.

See Also

model.matrix.default dum2nom

Examples

nom2dum(infert$"education") # default
nom2dum(infert$"education", prefix = "edu_") # use of the `prefix` argument
nom2dum(nom = infert$"education", yes = "one", no = "zero",

rtn.fct = TRUE) # returns factor columns

partial.cases Find Partial Cases

Description

partial.cases indicates which cases are at least partially observed, given a specified frequency
of observed values across a set of columns. This function builds off complete.cases. While
complete.cases requires completely observed cases, partial.cases allows the user to specify
the frequency of columns required to be observed. The default arguments are equal to complete.cases.

Usage

partial.cases(data, vrb.nm, ov.min = 1, prop = TRUE, inclusive = TRUE)

Arguments

data data.frame or matrix of data.
vrb.nm a character vector of colnames from data specifying the variables which will be

used to determine the partially observed cases.
ov.min minimum frequency of observed values required per row. If prop = TRUE,

then this is a decimal between 0 and 1. If prop = FALSE, then this is a integer
between 0 and length(vrb.nm).

prop logical vector of length 1 specifying whether ov.min should refer to the propor-
tion of observed values (TRUE) or the count of observed values (FALSE).

inclusive logical vector of length 1 specifying whether the case should be included if the
frequency of observed values in a row is exactly equal to ov.min.



pomp 47

Value

logical vector of length = nrow(data) with names = rownames(data) specifying if the frequency
of observed values is greater than (or equal to, if inclusive = TRUE) ov.min.

See Also

complete.cases rowNA ncases

Examples

cases2keep <- partial.cases(data = airquality,
vrb.nm = c("Ozone","Solar.R","Wind"), ov.min = .66)

airquality2 <- airquality[cases2keep, ] # all cases with 2/3 variables observed
cases2keep <- partial.cases(data = airquality,

vrb.nm = c("Ozone","Solar.R","Wind"), ov.min = 1, prop = TRUE, inclusive = TRUE)
complete_cases <- complete.cases(airquality)
identical(x = unname(cases2keep),

y = complete_cases) # partial.cases(ov.min = 1, prop = TRUE,
# inclusive = TRUE) = complete.cases()

pomp Recode a Numeric Vector to Percentage of Maximum Possible (POMP)
Units

Description

pomp recodes a numeric vector to percentage of maximum possible (POMP) units. This can be
useful when data is measured with arbitrary units (e.g., Likert scale).

Usage

pomp(x, mini, maxi, relative = FALSE, unit = 1)

Arguments

x numeric vector.

mini numeric vector of length 1 specifying the minimum numeric value possible.

maxi numeric vector of length 1 specifying the maximum numeric value possible.

relative logical vector of length 1 specifying whether relative POMP scores (rather than
absolute POMP scores) should be created. If TRUE, then the mini and maxi
arguments are ignored. See details for the distinction between absolute and
relative POMP scores.

unit numeric vector of length 1 specifying how many percentage points is desired
for the units. Traditionally, POMP scores use unit = 1 (default) such that one
unit is one percentage point. However, another option is to use unit = 100
such that one unit is all 100 percentage points (i.e., proportion of maximum
possible). This argument also gives the flexibility of specifying units in between



48 pomps

1 and 100 percentage points. For example, unit = 50 would mean that one unit
represents going from low (i.e., 25th percentile) to high (i.e., 75th percentile) on
the variable.

Details

There are too common approaches to POMP scores: 1) absolute POMP units where the minimum
and maximum are the smallest/largest values possible from the measurement instrument (e.g., 1 to
7 on a Likert scale) and 2) relative POMP units where the minimum and maximum are the small-
est/largest values observed in the data (e.g., 1.3 to 6.8 on a Likert scale). Both will be correlated
perfectly with the original units as they are each linear transformations.

Value

numeric vector from recoding x to percentage of maximum possible (pomp) with units specified by
unit.

See Also

pomps

Examples

vec <- psych::bfi[[1]]
pomp(x = vec, mini = 1, maxi = 6) # absolute POMP units
pomp(x = vec, relative = TRUE) # relative POMP units
pomp(x = vec, mini = 1, maxi = 6, unit = 100) # unit = 100
pomp(x = vec, mini = 1, maxi = 6, unit = 50) # unit = 50

pomps Recode Numeric Data to Percentage of Maximum Possible (POMP)
Units

Description

pomps recodes numeric data to percentage of maximum possible (POMP) units. This can be useful
when data is measured with arbitrary units (e.g., Likert scale).

Usage

pomps(
data,
vrb.nm,
mini,
maxi,
relative = FALSE,
unit = 1,
suffix = paste0("_p", unit)

)



pomps 49

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables.

mini numeric vector of length 1 specifying the minimum numeric value possible.
Note, this is assumed to be the same for each variable.

maxi numeric vector of length 1 specifying the maximum numeric value possible.
Note, this is assumed to be the same for each variable.

relative logical vector of length 1 specifying whether relative POMP scores (rather than
absolute POMP scores) should be created. If TRUE, then the mini and maxi
arguments are ignored. See details for the distinction between absolute and
relative POMP scores.

unit numeric vector of length 1 specifying how many percentage points is desired
for the units. Traditionally, POMP scores use unit = 1 (default) such that one
unit is one percentage point. However, another option is to use unit = 100
such that one unit is all 100 percentage points (i.e., proportion of maximum
possible). This argument also gives the flexibility of specifying units in between
1 and 100 percentage points. For example, unit = 50 would mean that one unit
represents going from low (i.e., 25th percentile) to high (i.e., 75th percentile) on
the variable.

suffix character vector of length 1 specifying the string to add to the end of the column
names in the return object.

Details

There are too common approaches to POMP scores: 1) absolute POMP units where the minimum
and maximum are the smallest/largest values possible from the measurement instrument (e.g., 1 to
7 on a Likert scale) and 2) relative POMP units where the minimum and maximum are the small-
est/largest values observed in the data (e.g., 1.3 to 6.8 on a Likert scale). Both will be correlated
perfectly with the original units as they are each linear transformations.

Value

data.frame of variables recoded to percentage of maximum possible (pomp) with units specified by
unit and names specified by paste0(vrb.nm, suffix).

See Also

pomp

Examples

vrb_nm <- names(psych::bfi)[grepl(pattern = "A", x = names(psych::bfi))]
pomps(data = psych::bfi, vrb.nm = vrb_nm, min = 1, max = 6) # absolute POMP units
pomps(data = psych::bfi, vrb.nm = vrb_nm, relative = TRUE) # relative POMP units
pomps(data = psych::bfi, vrb.nm = vrb_nm, min = 1, max = 6, unit = 100) # unit = 100
pomps(data = psych::bfi, vrb.nm = vrb_nm, min = 1, max = 6, unit = 50) # unit = 50
pomps(data = psych::bfi, vrb.nm = vrb_nm, min = 1, max = 6, suffix = "_pomp")



50 quest

quest Pre-processing Questionnaire Data

Description

quest is a package for pre-processing questionnaire data to get it ready for statistical modeling. It
contains functions for investigating missing data (e.g., rowNA), reshaping data (e.g., wide2long),
validating responses (e.g., revalids), recoding variables (e.g., recodes), scoring (e.g., scores),
centering (e.g., centers), aggregating (e.g., aggs), shifting (e.g., shifts), etc. Functions whose
first phrases end with an s are vectorized versions of their functions without an s at the end of the
first phrase. For example, center inputs a (atomic) vector and outputs a atomic vector to center
and/or scale a single variable; centers inputs a data.frame and outputs a data.frame to center and/or
scale multiple variables. Functions that end in _by are calculated by group. For example, center
does grand-mean centering while center_by does group-mean centering. Putting the two together,
centers_by inputs a data.frame and outputs a data.frame to center and/or scale multiple variables
by group. Functions that end in _if are calculated dependent on the frequency of observed values
(aka amount of missing data). The quest package uses the str2str package internally to convert
R objects from one structure to another. See str2str for details.

Types of functions

There are two main types of functions. 1) Helper functions that primarily exist to save a few lines
of code and are primarily for convenience (e.g., vecNA). 2) Functions for wrangling questionnaire
data (e.g., nom2dum, reverses).

Abbreviations

See the table below

names

nmov observed values

NA missing values

prop proportion

sep separator

vrb variable

grp group

id identifier

rtn return

fun function

dfm data.frame

fct factor

nom nominal variable

dum dummy variable



recode2other 51

pomp percentage of maximum possible

std standardize

wth within-groups

btw between-groups

recode2other Recode Unique Values in a Character Vector to 0ther (or NA)

Description

recode2other recodes multiple unique values in a character vector to the same new value (e.g.,
"other", NA_character_). It’s primary use is to recode based on the minimum frequency of the
unique values so that low frequency values can be combined into the same category; however, it
also allows for recoding particular unique values given by the user (see details). This function is a
wrapper for car::recode, which can handle general recoding of character vectors.

Usage

recode2other(
x,
freq.min,
prop = FALSE,
inclusive = TRUE,
other.nm = "other",
extra.nm = NULL

)

Arguments

x character vector. If not a character vector, it will be coarced to one via as.character.

freq.min numeric vector of length 1 specifying the minimum frequency of a unique value
to keep it unchanged and consequentially recode any unique values with fre-
quencues less than (or equal to) it.

prop logical vector of length 1 specifying if freq.min provides the frequency as a
count (FALSE) or proportion (TRUE).

inclusive logical vector of length 1 specifying whether the frequency of a unique value ex-
actly equal to freq.min should be kept unchanged (and not recoded to other.nm).

other.nm character vector of length 1 specifying what value the other unique values should
be recoded to. This can be NA_character_ resulting in recoding to a missing
value.

extra.nm character vector specifying extra unique values that should be recoded to other.nm
that are not included based on the minimum frequency from the combination of
freq.min, prop, inclusive. The default is NULL, meaning no extra unique
values are recoded.



52 recodes

Details

The extra.nm argument allows for recode2other to be used as simpler function that just re-
codes particular unique values to the same new value (although arguably this is easier to do using
car::recode directly). To do so set freq.min = 0 and provide the unique values to extra.nm.
Note, that the current version of this function does not allow for NA_character_ to be included in
extra.nm as it will end up treating it as "NA" (see examples).

Value

character vector of the same length as x with unique values with frequency less than freq.nm
recoded to other.nm as well as any unique values in extra.nm. While the current version of the
function allows for recoding *to* NA values via other.nm, it does not allow for recoding *from*
NA values via extra.nm (see examples).

See Also

recode ifelse

Examples

# based on minimum frequency unique values
state_region <- as.character(state.region)
recode2other(state_region, freq.min = 13) # freq.min as a count
recode2other(state_region, freq.min = 0.26, prop = TRUE) # freq.min as a proportion
recode2other(state_region, freq.min = 13, other.nm = "_blank_")
recode2other(state_region, freq.min = 13,

other.nm = NA) # allows for other.nm to be NA
recode2other(state_region, freq.min = 13,

extra.nm = "South") # add an extra unique value to recode
recode2other(state_region, freq.min = 13,

inclusive = FALSE) # recodes "West" to "other"

# based on user given unique values
recode2other(state_region, freq.min = 0,

extra.nm = c("South","West")) # recodes manually rather than by freq.min
# current version does NOT allow for NA to be a unique value that is converted to other
state_region2 <- c(NA, state_region, NA)
recode2other(state_region2, freq.min = 13) # NA remains in the character vector
recode2other(state_region2, freq.min = 0,

extra.nm = c("South","West",NA)) # NA remains in the character vector

recodes Recode Data



recodes 53

Description

recodes recodes data based on specified recodes using the car::recode function. This can be used
for numeric or character (including factors) data. See recode for details. The levels argument
from car::recode is excluded because there is no easy way to vectorize it when only a subset of
the variables are factors.

Usage

recodes(data, vrb.nm, recodes, suffix = "_r", as.factor, as.numeric = TRUE)

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables.

recodes character vector of length 1 specifying the recodes. See details of recode for
how to use this argument.

suffix character vector of length 1 specifying the string to add to the end of the col-
names in the return object.

as.factor logical vector of length 1 specifying if the recoded columns should be returned
as factors. The default depends on the column in data[vrb.nm]. If the column
is a factor, then as.factor = TRUE for that column. If the column is not a
factor, then as.factor = FALSE for that column. Any non-default, specified
value for this argument will result in as.factor being universally applied to all
columns in data[vrb.nm].

as.numeric logical vector of length 1 specifying if the recoded columns should be returned
as numeric vectors when possible. This can be useful when having character
vectors converted to numeric, such that numbers with typeof character (e.g.,
"1") will be coerced to typeof numeric (e.g., 1). Note, this argument has no ef-
fect on columns in data[vrb.nm] which are typeof character and have letters in
their values (e.g., "1a"). Note, this argument is often not needed as you can di-
rectly recode to a numeric by excluding quotes from the number in the recodes
argument.

Value

data.frame of recoded variables with colnames specified by paste0(vrb.nm, suffix). In general,
the columns of the data.frame are the same typeof as those in data except for instances when
as.factor and/or as.numeric change the typeof.

See Also

recode reverses

Examples

recodes(data = psych::bfi, vrb.nm = c("A1","C4","C5","E1","E2","O2","O5"),
recodes = "1=6; 2=5; 3=4; 4=3; 5=2; 6=1")

re_codes <- "'Quebec' = 'canada'; 'Mississippi' = 'usa'; 'nonchilled' = 'no'; 'chilled' = 'yes'"



54 renames

recodes(data = CO2, vrb.nm = c("Type","Treatment"), recodes = re_codes,
as.factor = FALSE) # convert from factors to characters

renames Rename Data Columns from a Codebook

Description

renames renames columns in a data.frame from a codebook. The codebook is assumed to be a
list of data.frames containing the old and new column names. See details for how the codebook
should be structured. The idea is that the codebook has been imported as an excel workbook with
different sets of column renaming information in different workbook sheets. This function is simply
a wrapper for plyr::rename.

Usage

renames(
data,
codebook,
old = 1L,
new = 2L,
warn_missing = TRUE,
warn_duplicated = TRUE

)

Arguments

data data.frame of data.

codebook list of data.frames containing the old and new column names.

old numeric vector or character vector of length 1 specifying the position or name
of the column in the codebook data.frames that contains the old column names
present in data.

new numeric vector or character vector of length 1 specifying the position or name
of the column in the codebook data.frames that contains the new column names
to rename to in data.

warn_missing logical vector of length 1 specifying whether renames should return a warning
if any old names in codebook are not present in data.

warn_duplicated

logical vector of length 1 specifying whether renames should return a warning
if the renaming process results in duplicate column names in the return object.

Details

codebook is a list of data.frames where one column refers to the old names and another column
refers to the new names. Therefore, each row of the data.frames refers to a column in data. The
position or names of the columns in the codebook data.frames that contain the old (i.e., old) and
new (i.e., new) data columns must be the same for each data.frame in codebook.



reorders 55

Value

data.frame identical to data except that the old names in codebook have been replaced by the new
names in codebook.

See Also

rename

Examples

code_book <- list(
data.frame("old" = c("rating","complaints"), "new" = c("RATING","COMPLAINTS")),
data.frame("old" = c("privileges","learning"), "new" = c("PRIVILEGES","LEARNING"))

)
renames(data = attitude, codebook = code_book, old = "old", new = "new")

reorders Reorder Levels of Factor Data

Description

reorders re-orders the levels of factor data. The factors are columns in a data.frame where the same
reordering scheme is desired. This is often useful before using factor data in a statistical analysis
(e.g., lm) or a graph (e.g., ggplot). It is essentially a vectorized version of reorder.default.

Usage

reorders(data, fct.nm, ord.nm = NULL, fun, ..., suffix = "_r")

Arguments

data data.frame of data.
fct.nm character vector of colnames in data that specify the factor columns. If any of

the columns specified by fct.nm are not factors, then an error is returned.
ord.nm character vector of length 1 or NULL. If a character vector of length 1, it is a

colname in data specifying the column in data that will be used in conjunction
with fun to re-order the factor columns. If NULL (default), it is assumed that
each factor column itself will be used in conjunction with fun to re-order the
factor columns.

fun function that will be used to re-order the factor columns. The function is ex-
pected to input an atomic vector of length = nrow(data) and return an atomic
vector of length 1. fun is applied to data[[ord.nm]] if ord.nm is a character
vector of length 1 or applied to each column in data[fct.nm] if ord.nm = NULL.

... additional named arguments used by fun. For example, if fun is mean, the user
might specify an argument na.rm = TRUE to set the na.rm argument in the mean
function.

suffix character vector of length 1 specifying the string that will be appended to the
end of the colnames in the return object.



56 revalid

Value

data.frame of re-ordered factor columns with colnames = paste0(fct.nm, suffix).

See Also

reorder.default

Examples

# factor vector
reorder(x = state.region, X = state.region,

FUN = length) # least frequent to most frequent
reorder(x = state.region, X = state.region,

FUN = function(vec) {-1 * length(vec)}) # most frequent to least frequent

# data.frame of factors
infert_fct <- infert
fct_nm <- c("education","parity","induced","case","spontaneous")
infert_fct[fct_nm] <- lapply(X = infert[fct_nm], FUN = as.factor)
x <- reorders(data = infert_fct, fct.nm = fct_nm,

fun = length) # least frequent to most frequent
lapply(X = x, FUN = levels)
y <- reorders(data = infert_fct, fct.nm = fct_nm,

fun = function(vec) {-1 * length(vec)}) # most frequent to least frequent
lapply(X = y, FUN = levels)
# ord.nm specified as a different column in data.frame
z <- reorders(data = infert_fct, fct.nm = fct_nm, ord.nm = "pooled.stratum",

fun = mean) # category with highest mean for pooled.stratum to
# category with lowest mean for pooled.stratum

lapply(X = z, FUN = levels)

revalid Recode Invalid Values from a Vector

Description

revalid recodes invalid data to specified values. For example, sometimes invalid values are present
in a vector of data (e.g., age = -1). This function allows you to specify which values are possible
and will then recode any impossible values to undefined. This function is a useful wrapper for the
function car::recode, tailored for the specific use of recoding invalid values.

Usage

revalid(x, valid, undefined = NA)



revalids 57

Arguments

x atomic vector.

valid atomic vector of valid values for x.

undefined atomic vector of length 1 specifying what the invalid values should be recoded
to.

Value

atomic vector with the same typeof as x where any values not present in valid have been recoded
to undefined.

See Also

revalids valid_test valids_test

Examples

revalid(x = attitude[[1]], valid = 25:75, undefined = NA) # numeric vector
revalid(x = as.character(ToothGrowth[["supp"]]), valid = c('VC'),

undefined = NA) # character vector
revalid(x = ToothGrowth[["supp"]], valid = c('VC'),

undefined = NA) # factor

revalids Recode Invalid Values from Data

Description

revalids recodes invalid data to specified values. For example, sometimes invalid values are
present in a vector of data (e.g., age = -1). This function allows you to specify which values are
possible and will then recode any impossible values to undefined. revalids is simply a vectorized
version of revalid to more easily revalid multiple columns of a data.frame at the same time.

Usage

revalids(data, vrb.nm, valid, undefined = NA, suffix = "_v")

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables.

valid atomic vector of valid values for the data. Note, the valid values must be the
same for each variable.

undefined atomic vector of length 1 specifying what the invalid values should be recoded
to.

suffix character vector of length 1 specifying the string to add to the end of the col-
names in the return object.



58 reverse

Value

data.frame of recoded variables where any values not present in valid have been recoded to undefined
with colnames specified by paste0(vrb.nm, suffix).

See Also

revalid valids_test valid_test

Examples

revalids(data = attitude, vrb.nm = names(attitude),
valid = 25:75) # numeric data

revalids(data = as.data.frame(CO2), vrb.nm = c("Type","Treatment"),
valid = c('Quebec','nonchilled')) # factors

reverse Reverse Code a Numeric Vector

Description

reverse reverse codes a numeric vector based on minimum and maximum values. For example,
say numerical values of response options can range from 1 to 4. The function will change 1 to 4, 2
to 3, 3 to 2, and 4 to 1. If there are an odd number of response options, the middle in the sequence
will be unchanged.

Usage

reverse(x, mini, maxi)

Arguments

x numeric vector.

mini numeric vector of length 1 specifying the minimum numeric value.

maxi numeric vector of length 1 specifying the maximum numeric value.

Value

numeric vector that correlates exactly -1 with x.

See Also

reverses reverse.code recode



reverses 59

Examples

x <- psych::bfi[[1]]
head(x, n = 15)
y <- reverse(x = psych::bfi[[1]], min = 1, max = 6)
head(y, n = 15)
cor(x, y, use = "complete.obs")

reverses Reverse Code Numeric Data

Description

reverses reverse codes numeric data based on minimum and maximum values. For example, say
numerical values of response options can range from 1 to 4. The function will change 1 to 4, 2 to 3,
3 to 2, and 4 to 1. If there are an odd number of response options, the middle in the sequence will
be unchanged.

Usage

reverses(data, vrb.nm, mini, maxi, suffix = "_r")

Arguments

data data.frame of data.
vrb.nm character vector of colnames from data specifying the variables.
mini numeric vector of length 1 specifying the minimum numeric value.
maxi numeric vector of length 1 specifying the maximum numeric value.
suffix character vector of length 1 specifying the string to add to the end of the col-

names in the return object.

Details

reverses is simply a vectorized version of reverse to more easily reverse code multiple columns
of a data.frame at the same time.

Value

data.frame of reverse coded variables with colnames specified by paste0(vrb.nm, suffix).

See Also

reverse reverse.code recodes

Examples

tmp <- !(is.element(el = names(psych::bfi) , set = c("gender","education","age")))
vrb_nm <- names(psych::bfi)[tmp]
reverses(data = psych::bfi, vrb.nm = vrb_nm, mini = 1, maxi = 6)



60 rowMeans_if

rowMeans_if Row Means Conditional on Frequency of Observed Values

Description

rowMean_if calculates the mean of every row in a numeric or logical matrix conditional on the
frequency of observed data. If the frequency of observed values in that row is less than (or equal to)
that specified by ov.min, then NA is returned for that row.

Usage

rowMeans_if(x, ov.min = 1, prop = TRUE, inclusive = TRUE)

Arguments

x numeric or logical matrix. If not a matrix, it will be coerced to one.

ov.min minimum frequency of observed values required per row. If prop = TRUE,
then this is a decimal between 0 and 1. If prop = FALSE, then this is a integer
between 0 and ncol(x).

prop logical vector of length 1 specifying whether ov.min should refer to the propor-
tion of observed values (TRUE) or the count of observed values (FALSE).

inclusive logical vector of length 1 specifying whether the mean should be calculated if
the frequency of observed values in a row is exactly equal to ov.min.

Details

Conceptually this function does: apply(X = x, MARGIN = 1, FUN = mean_if, ov.min = ov.min, prop
= prop, inclusive = inclusive). But for computational efficiency purposes it does not because
then the observed values conditioning would not be vectorized. Instead, it uses rowMeans and then
inserts NAs for rows that have too few observed values

Value

numeric vector of length = nrow(x) with names = rownames(x) providing the mean of each row or
NA depending on the frequency of observed values.

See Also

rowSums_if colMeans_if colSums_if rowMeans

Examples

rowMeans_if(airquality)
rowMeans_if(x = airquality, ov.min = 5, prop = FALSE)



rowNA 61

rowNA Frequency of Missing Values by Row

Description

rowNA compute the frequency of missing values in a matrix by row. This function essentially does
apply(X = x, MARGIN = 1, FUN = vecNA). It is also used by other functions in the quest package
related to missing values (e.g., rowMeans_if).

Usage

rowNA(x, prop = FALSE, ov = FALSE)

Arguments

x matrix with any typeof. If not a matrix, it will be coerced to a matrix via
as.matrix. The argument rownames.force is set to TRUE to allow for row-
names to carry over for non-matrix objects (e.g., data.frames).

prop logical vector of length 1 specifying whether the frequency of missing values
should be returned as a proportion (TRUE) or a count (FALSE).

ov logical vector of length 1 specifying whether the frequency of observed val-
ues (TRUE) should be returned rather than the frequency of missing values
(FALSE).

Value

numeric vector of length = nrow(x), and names = rownames(x), providing the frequency of missing
values (or observed values if ov = TRUE) per row. If prop = TRUE, the values will range from 0 to
1. If prop = FALSE, the values will range from 1 to ncol(x).

See Also

is.na vecNA colNA rowsNA

Examples

rowNA(as.matrix(airquality)) # count of missing values
rowNA(as.data.frame(airquality)) # with rownames
rowNA(as.matrix(airquality), prop = TRUE) # proportion of missing values
rowNA(as.matrix(airquality), ov = TRUE) # count of observed values
rowNA(as.data.frame(airquality), prop = TRUE, ov = TRUE) # proportion of observed values



62 rowsNA

rowsNA Frequency of Multiple Sets of Missing Values by Row

Description

rowsNA computes the frequency of missing values for multiple sets of columns from a data.frame.
The arguments prop and ov allow the user to specify if they want to sum or mean the missing values
as well as compute the frequency of observed values rather than missing values. This function is
essentially a vectorized version of rowNA that inputs and outputs a data.frame.

Usage

rowsNA(data, vrb.nm.list, prop = FALSE, ov = FALSE)

Arguments

data data.frame of data.

vrb.nm.list list where each element is a character vector of colnames in data specifying
the variables for that set of columns. The names of vrb.nm.list will be the
colnames of the return object.

prop logical vector of length 1 specifying whether the frequency of missing values
should be returned as a proportion (TRUE) or a count (FALSE).

ov logical vector of length 1 specifying whether the frequency of observed val-
ues (TRUE) should be returned rather than the frequency of missing values
(FALSE).

Value

data.frame with the frequency of missing values (or observed values if ov = TRUE) for each set of
variables. The names are specified by names(vrb.nm.list); if vrb.nm.list does not have any
names, then the first element from vrb.nm.list[[i]] is used.

See Also

rowNA colNA vecNA is.na

Examples

vrb_list <- lapply(X = c("O","C","E","A","N"), FUN = function(chr) {
tmp <- grepl(pattern = chr, x = names(psych::bfi))
names(psych::bfi)[tmp]

})
rowsNA(data = psych::bfi,

vrb.nm.list = vrb_list) # names set to first elements in `vrb.nm.list`[[i]]
names(vrb_list) <- paste0(c("O","C","E","A","N"), "_m")
rowsNA(data = psych::bfi, vrb.nm.list = vrb_list) # names set to names(`vrb.nm.list`)



rowSums_if 63

rowSums_if Row Sums Conditional on Frequency of Observed Values

Description

rowSums_if calculates the sum of every row in a numeric or logical matrix conditional on the
frequency of observed data. If the frequency of observed values in that row is less than (or equal to)
that specified by ov.min, then NA is returned for that row. It also has the option to return a value
other than 0 (e.g., NA) when all rows are NA, which differs from rowSums(x, na.rm = TRUE).

Usage

rowSums_if(
x,
ov.min = 1,
prop = TRUE,
inclusive = TRUE,
impute = TRUE,
allNA = NA_real_

)

Arguments

x numeric or logical matrix. If not a matrix, it will be coerced to one.

ov.min minimum frequency of observed values required per row. If prop = TRUE,
then this is a decimal between 0 and 1. If prop = FALSE, then this is a integer
between 0 and ncol(x).

prop logical vector of length 1 specifying whether ov.min should refer to the propor-
tion of observed values (TRUE) or the count of observed values (FALSE).

inclusive logical vector of length 1 specifying whether the sum should be calculated if the
frequency of observed values in a row is exactly equal to ov.min.

impute logical vector of length 1 specifying if missing values should be imputed with
the mean of observed values of x[i, ]. If TRUE (default), this will make sums
over the same columns with different amounts of observed data comparable.

allNA numeric vector of length 1 specifying what value should be returned for rows
that are all NA. This is most applicable when ov.min = 0 and inclusive =
TRUE. The default is NA, which differs from rowSums with na.rm = TRUE where
0 is returned. Note, the value is overwritten by NA if the frequency of observed
values in that row is less than (or equal to) that specified by ov.min.

Details

Conceptually this function is doing: apply(X = x, MARGIN = 1, FUN = sum_if, ov.min = ov.min,
prop = prop, inclusive = inclusive). But for computational efficiency purposes it does not
because then the observed values conditioning would not be vectorized. Instead, it uses rowSums
and then inserts NAs for rows that have too few observed values.



64 score

Value

numeric vector of length = nrow(x) with names = rownames(x) providing the sum of each row or
NA (or allNA) depending on the frequency of observed values.

See Also

rowMeans_if colSums_if colMeans_if rowSums

Examples

rowSums_if(airquality)
rowSums_if(x = airquality, ov.min = 5, prop = FALSE)
x <- data.frame("x" = c(1, 1, NA), "y" = c(2, NA, NA), "z" = c(NA, NA, NA))
rowSums_if(x)
rowSums_if(x, ov.min = 0)
rowSums_if(x, ov.min = 0, allNA = 0)
identical(x = rowSums(x, na.rm = TRUE),

y = unname(rowSums_if(x, impute = FALSE, ov.min = 0, allNA = 0))) # identical to
# rowSums(x, na.rm = TRUE)

score Observed Unweighted Scoring of a Set of Variables/Items

Description

score calculates observed unweighted scores across a set of variables/items. If a row’s frequency
of observed data is less than (or equal to) ov.min, then NA is returned for that row. data[vrb.nm]
is coerced to a matrix before scoring. If the coercion leads to a character matrix, an error is returned.

Usage

score(
data,
vrb.nm,
avg = TRUE,
ov.min = 1,
prop = TRUE,
inclusive = TRUE,
impute = TRUE,
std = FALSE,
std.data = std,
std.score = std

)



score 65

Arguments

data data.frame or numeric/logical matrix

vrb.nm character vector of colnames in data specifying the set of variables/items.

avg logical vector of length 1 specifying whether mean scores (TRUE) or sum scores
(FALSE) should be created.

ov.min minimum frequency of observed values required per row. If prop = TRUE,
then this is a decimal between 0 and 1. If prop = FALSE, then this is a integer
between 0 and length(vrb.nm).

prop logical vector of length 1 specifying whether ov.min should refer to the propor-
tion of observed values (TRUE) or the count of observed values (FALSE).

inclusive logical vector of length 1 specifying whether the score should be calculated
(rather than NA) if the frequency of observed values in a row is exactly equal to
ov.min.

impute logical vector of length 1 specifying if missing values should be imputed with
the mean of observed values from each row of data[vrb.nm] (i.e., row mean
imputation). If TRUE (default), this will make sums over the same rows with
different frequencies of missing values comparable. Note, this argument is only
used when avg = FALSE since when avg = TRUE row mean imputation is
always done implicitly.

std logical vector of length 1 specifying whether 1) data[vrb.nm] should be stan-
dardized before scoring and 2) the score standardized after creation. This argu-
ment is for convenience as these two standardization processes are often used
together. However, this argument will be overwritten by any non-default value
for std.data and std.score.

std.data logical vector of length 1 specifying whether data[vrb.nm] should be standard-
ized before scoring.

std.score logical vector of length 1 specifying whether the score should be standardized
after creation.

Value

numeric vector of the mean/sum of each row or NA if the frequency of observed values is less than
(or equal to) ov.min. The names are the rownames of data.

See Also

scores rowMeans_if rowSums_if scoreItems

Examples

score(data = attitude, vrb.nm = c("complaints","privileges","learning","raises"))
score(data = attitude, vrb.nm = c("complaints","privileges","learning","raises"),

std = TRUE) # standardized scoring
score(data = airquality, vrb.nm = c("Ozone","Solar.R","Temp"),

ov.min = 0.75) # conditional on observed values



66 scores

scores Observed Unweighted Scoring of Multiple Sets of Variables/Items

Description

scores calculates observed unweighted scores across multiple sets of variables/items. If a row’s
frequency of observed data is less than (or equal to) ov.min, then NA is returned for that row. Each
set of variables/items are coerced to a matrix before scoring. If the coercion leads to a character ma-
trix, an error is returned. This can be tested with lapply(X = vrb.nm.list, FUN = function(nm)
is.character(as.matrix(data[nm]))).

Usage

scores(
data,
vrb.nm.list,
avg = TRUE,
ov.min = 1,
prop = TRUE,
inclusive = TRUE,
impute = TRUE,
std = FALSE,
std.data = std,
std.score = std

)

Arguments

data data.frame or numeric/logical matrix

vrb.nm.list list where each element is a character vector of colnames in data specifying the
variables/items for that score. The names of vrb.nm.list will be the names of
the scores in the return object.

avg logical vector of length 1 specifying whether mean scores (TRUE) or sum scores
(FALSE) should be created.

ov.min minimum frequency of observed values required per row. If prop = TRUE,
then this is a decimal between 0 and 1. If prop = FALSE, then this is a integer
between 0 and length(vrb.nm.list[[i]]).

prop logical vector of length 1 specifying whether ov.min should refer to the propor-
tion of observed values (TRUE) or the count of observed values (FALSE). If the
multiple sets of variables/items contain different numbers of variables, it proba-
bly makes the most sense to use the proportion of observed values (TRUE).

inclusive logical vector of length 1 specifying whether the scores should be calculated
(rather than NA) if the frequency of observed values in a row is exactly equal to
ov.min.



shift 67

impute logical vector of length 1 specifying if missing values should be imputed with
the mean of observed values from each row of data[vrb.nm.list[[i]] ] (i.e.,
row mean imputation). If TRUE (default), this will make sums over the same
rows with different frequencies of missing values comparable. Note, this ar-
gument is only used when avg = FALSE since when avg = TRUE row mean
imputation is always done implicitly.

std logical vector of length 1 specifying whether 1) the variables should be stan-
dardized before scoring and 2) the score standardized after creation. This argu-
ment is for convenience as these two standardization processes are often used
together. However, this argument will be overwritten by any non-default value
for std.data and std.score.

std.data logical vector of length 1 specifying whether the variables/items should be stan-
dardized before scoring.

std.score logical vector of length 1 specifying whether the scores should be standardized
after creation.

Value

data.frame of mean/sum scores with NA for any row with the frequency of observed values less
than (or equal to) ov.min. The colnames are specified by names(vrb.nm.list) and rownames by
row.names(data).

See Also

score rowMeans_if rowSums_if scoreItems

Examples

list_colnames <- list("first" = c("rating","complaints","privileges"),
"second" = c("learning","raises","critical"))

scores(data = attitude, vrb.nm.list = list_colnames)
list_colnames <- list("first" = c("Ozone","Wind"),

"second" = c("Solar.R","Temp"))
scores(data = airquality, vrb.nm.list = list_colnames, ov.min = .50,

inclusive = FALSE) # scoring conditional on observed values

shift Shift a Vector (i.e., lag/lead)

Description

shift shifts elements of a vector right (n < 0) for lags or left (n > 0) for leads replacing the undefined
data with a user-defined value (e.g., NA). The number of elements shifted is equal to abs(n). It is
assumed that x is already sorted by time such that the first element is earliest in time and the last
element is the latest in time.



68 shift

Usage

shift(x, n, undefined = NA)

Arguments

x atomic vector or list vector.

n integer vector with length 1. Specifies the direction and magnitude of the shift.
See details.

undefined atomic vector with length 1 (probably makes sense to be the same typeof as x).
Specifies what to insert for undefined values after the shifting takes place. See
details.

Details

If n is negative, then shift inserts undefined into the first abs(n) elements of x, shifting all
other values of x to the right abs(n) positions, and then dropping the last abs(n) elements of x to
preserve the original length of x. If n is positive, then shift drops the first abs(n) elements of x,
shifting all other values of x left abs(n) positions, and then inserts undefined into the last abs(n)
elements of x to preserve the original length of x. If n is zero, then shift simply returns x.

It is recommended to use L when specifying n to prevent problems with floating point numbers.
shift tries to circumvent this issue by a call to round within shift if n is not an integer; however
that is not a complete fail safe. The problem is that as.integer(n) implicit in shift truncates
rather than rounds.

Value

an atomic vector of the same length as x that is shifted. If x and undefined are different typeofs,
then the return will be coerced to the more complex typeof (i.e., complex to simple: character,
double, integer, logical).

See Also

shifts shift_by shifts_by

Examples

shift(x = attitude[[1]], n = -1L) # use L to prevent problems with floating point numbers
shift(x = attitude[[1]], n = -2L) # can specify any integer up to the length of `x`
shift(x = attitude[[1]], n = +1L) # can specify negative or positive integers
shift(x = attitude[[1]], n = +2L, undefined = -999) # user-specified indefined value
shift(x = setNames(object = letters, nm = LETTERS), n = 3L) # names are kept



shifts 69

shifts Shift Data (i.e., lag/lead)

Description

shifts shifts rows of data down (n < 0) for lags or up (n > 0) for leads replacing the undefined data
with a user-defined value (e.g., NA). The number of rows shifted is equal to abs(n). It is assumed
that data[vrb.nm] is already sorted by time such that the first row is earliest in time and the last
row is the latest in time.

Usage

shifts(data, vrb.nm, n, undefined = NA, suffix)

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables.

n integer vector of length 1. Specifies the direction and magnitude of the shift.
See details.

undefined atomic vector of length 1 (probably makes sense to be the same typeof as the
vectors in data[vrb.nm]). Specifies what to insert for undefined values after
the shifting takes place. See details.

suffix character vector of length 1 specifying the string to append to the end of the
colnames of the return object. The default depends on the n argument: 1) if n <
0, then suffix = paste0("_g", -n), 2) if n > 0, then suffix = paste0("_d",
+n), 3) if n = 0, then suffix = "".

Details

If n is negative, then shifts inserts undefined into the first abs(n) rows of data[vrb.nm], shifting
all other rows of x down abs(n) positions, and then dropping the last abs(n) row of data[vrb.nm]
to preserve the original nrow of data. If n is positive, then shifts drops the first abs(n) rows of
x, shifting all other rows of data[vrb.nm] up abs(n) positions, and then inserts undefined into
the last abs(n) rows of x to preserve the original length of data. If n is zero, then shifts simply
returns data[vrb.nm].

It is recommended to use L when specifying n to prevent problems with floating point numbers.
shifts tries to circumvent this issue by a call to round within shifts if n is not an integer; however
that is not a complete fail safe. The problem is that as.integer(n) implicit in shifts truncates
rather than rounds.

Value

data.frame of shifted data with colnames specified by suffix.



70 shifts_by

See Also

shift shifts_by shift_by

Examples

shifts(data = attitude, vrb.nm = colnames(attitude), n = -1L)
shifts(data = mtcars, vrb.nm = colnames(mtcars), n = 2L)

shifts_by Shift Data (i.e., lag/lead) by Group

Description

shifts_by shifts rows of data down (n < 0) for lags or up (n > 0) for leads replacing the undefined
data with a user-defined value (e.g., NA). The number of rows shifted is equal to abs(n). It is
assumed that data[vrb.nm] is already sorted within each group by time such that the first row for
that group is earliest in time and the last row for that group is the latest in time. The groups can
be specified by multiple columns in data (e.g., grp.nm with length > 1), and interaction will be
implicitly called to create the groups.

Usage

shifts_by(data, vrb.nm, grp.nm, n, undefined = NA, suffix)

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables.

grp.nm character vector of colnames from data specifying the groups.

n integer vector of length 1. Specifies the direction and magnitude of the shift.
See details.

undefined atomic vector of length 1 (probably makes sense to be the same typeof as the
vectors in data[vrb.nm]). Specifies what to insert for undefined values after
the shifting takes place. See details.

suffix character vector of length 1 specifying the string to append to the end of the
colnames of the return object. The default depends on the n argument: 1) if n < 0,
then suffix = paste0("_gw", -n), 2) if n > 0, then suffix = paste0("_dw",
+n), 3) if n = 0, then suffix = "".

Details

If n is negative, then shifts_by inserts undefined into the first abs(n) rows of data[vrb.nm] for
each group, shifting all other rows of x down abs(n) positions, and then dropping the last abs(n)
row of data[vrb.nm] to preserve the original nrow of each group. If n is positive, then shifts_by
drops the first abs(n) rows of x for each group, shifting all other rows of data[vrb.nm] up abs(n)



shift_by 71

positions, and then inserts undefined into the last abs(n) rows of x to preserve the original length
of each group. If n is zero, then shifts_by simply returns data[vrb.nm].

It is recommended to use L when specifying n to prevent problems with floating point numbers.
shifts_by tries to circumvent this issue by a call to round within shifts_by if n is not an integer;
however that is not a complete fail safe. The problem is that as.integer(n) implicit in shifts_by
truncates rather than rounds.

Value

data.frame of shifted data by group with colnames specified by suffix.

See Also

shift_by shifts shift

Examples

shifts_by(data = ChickWeight, vrb.nm = c("weight","Time"), grp.nm = "Chick", n = -1L)
shifts_by(data = mtcars, vrb.nm = c("disp","mpg"), grp.nm = c("vs","am"), n = 1L)
shifts_by(data = as.data.frame(CO2), vrb.nm = c("conc","uptake"),

grp.nm = c("Type","Treatment"), n = 2L) # multiple grouping columns

shift_by Shift a Vector (i.e., lag/lead) by Group

Description

shift_by shifts elements of a vector right (n < 0) for lags or left (n > 0) for leads by group, replacing
the undefined data with a user-defined value (e.g., NA). The number of elements shifted is equal to
abs(n). It is assumed that x is already sorted within each group by time such that the first element
for that group is earliest in time and the last element for that group is the latest in time.

Usage

shift_by(x, grp, n, undefined = NA)

Arguments

x atomic vector or list vector.

grp list of atomic vector(s) and/or factor(s) (e.g., data.frame), which each have same
length as x. It can also be an atomic vector or factor, which will then be made
the first element of a list internally.

n integer vector with length 1. Specifies the direction and magnitude of the shift.
See details.

undefined atomic vector with length 1 (probably makes sense to be the same typeof as x).
Specifies what to insert for undefined values after the shifting takes place. See
details.



72 sum_if

Details

If n is negative, then shift_by inserts undefined into the first abs(n) elements of x for each
group, shifting all other values of x to the right abs(n) positions, and then dropping the last abs(n)
elements of x to preserve the original length of each group. If n is positive, then shift_by drops the
first abs(n) elements of x for each group, shifting all other values of x left abs(n) positions, and
then inserts undefined into the last abs(n) elements of x to preserve the original length of each
group. If n is zero, then shift_by simply returns x.

It is recommended to use L when specifying n to prevent problems with floating point numbers.
shift_by tries to circumvent this issue by a call to round within shift_by if n is not an integer;
however that is not a complete fail safe. The problem is that as.integer(n) implicit in shift_by
truncates rather than rounds.

Value

an atomic vector of the same length as x that is shifted by group. If x and undefined are differ-
ent typeofs, then the return will be coerced to the most complex typeof (i.e., complex to simple:
character, double, integer, logical).

See Also

shifts_by shift shifts

Examples

shift_by(x = ChickWeight[["Time"]], grp = ChickWeight[["Chick"]], n = -1L)
tmp_nm <- c("vs","am") # b/c Roxygen2 doesn't like c() in a []
shift_by(x = mtcars[["disp"]], grp = mtcars[tmp_nm], n = 1L)
tmp_nm <- c("Type","Treatment") # b/c Roxygen2 doesn't like c() in a []
shift_by(x = as.data.frame(CO2)[["uptake"]], grp = as.data.frame(CO2)[tmp_nm],

n = 2L) # multiple grouping vectors

sum_if Sum Conditional on Minimum Frequency of Observed Values

Description

sum_if calculates the sum of a numeric or logical vector conditional on a specified minimum fre-
quency of observed values. If the amount of observed data is less than (or equal to) ov.min, then
NA is returned rather than the sum.

Usage

sum_if(x, impute = TRUE, ov.min = 1, prop = TRUE, inclusive = TRUE)



tapply2 73

Arguments

x numeric or logical vector.

impute logical vector of length 1 specifying if missing values should be imputed with
the mean of observed values of x. If TRUE (default), this will make sums over
the same vectors with different amounts of missing data comparable.

ov.min minimum frequency of observed values required. If prop = TRUE, then this is
a decimal between 0 and 1. If prop = FALSE, then this is a integer between 0
and length(x).

prop logical vector of length 1 specifying whether ov.min should refer to the propor-
tion of observed values (TRUE) or the count of observed values (FALSE).

inclusive logical vector of length 1 specifying whether the sum should be calculated
(rather than NA) if the frequency of observed values is exactly equal to ov.min.

Value

numeric vector of length 1 providing the sum of x or NA conditional on if the frequency of observed
data is greater than (or equal to) ov.min.

See Also

sum mean_if make.fun_if

Examples

sum_if(x = airquality[[1]], ov.min = .75) # proportion of observed values
sum_if(x = airquality[[1]], ov.min = 116,

prop = FALSE) # count of observe values
sum_if(x = airquality[[1]], ov.min = 116, prop = FALSE,

inclusive = FALSE) # not include ov.min value itself
sum_if(x = c(TRUE, NA, FALSE, NA),

ov.min = .50) # works with logical vectors as well as numeric

tapply2 Apply a Function to a (Atomic) Vector by Group

Description

tapply2 applies a function to a (atomic) vector by group and is an alternative to the base R function
tapply. The function is apart of the split-apply-combine type of function discussed in the plyr
R package and is somewhat similar to dlply. It splits up one (atomic) vector .xinto a (atomic)
vector for each group in .grp, applies a function .fun to each (atomic) vector, and then returns
the results as a list with names equal to the group values unique(interaction(.grp.nm, sep =
.sep)). tapply2 is simply split.default + lapply. Similar to dlply, The arguments all start
with . so that they do not conflict with arguments from the function .fun. If you want to apply a
function a data.frame rather than a (atomic) vector, then use by2.



74 tapply2

Usage

tapply2(.x, .grp, .sep = ".", .fun, ...)

Arguments

.x atomic vector

.grp list of atomic vector(s) and/or factor(s) (e.g., data.frame) containing the groups.
They should each have same length as .x. It can also be an atomic vector or
factor, which will then be made the first element of a list internally.

.sep character vector of length 1 specifying the string to combine the group values
together with. .sep is only used if there are multiple grouping variables (i.e.,
.grp is a list with multiple elements).

.fun function to apply to .x for each group.

... additional named arguments to pass to .fun.

Value

list of objects containing the return object of .fun for each group. The names are the unique
combinations of the grouping variables (i.e., unique(interaction(.grp, sep = .sep))).

See Also

tapply by2 dlply

Examples

# one grouping variable
tapply2(mtcars$"cyl", .grp = mtcars$"vs", .fun = median, na.rm = TRUE)

# two grouping variables
grp_nm <- c("vs","am") # Roxygen runs the whole script if I put a c() in a []
x <- tapply2(mtcars$"cyl", .grp = mtcars[grp_nm], .fun = median, na.rm = TRUE)
print(x)
str(x)

# compare to tapply
grp_nm <- c("vs","am") # Roxygen runs the whole script if I put a c() in a []
y <- tapply(mtcars$"cyl", INDEX = mtcars[grp_nm],

FUN = median, na.rm = TRUE, simplify = FALSE)
print(y)
str(y) # has dimnames rather than names



valids_test 75

valids_test Test for Invalid Elements in Data

Description

Valid.test tests whether data has any invalid elements. Valid values are specified by valid. Each
variable is tested independently. If the variable in data[vrb.nm] has any values other than valid,
then FALSE is returned for that variable; If the variable in data[vrb.nm] only has values in valid,
then TRUE is returned for that variable.

Usage

valids_test(data, vrb.nm, valid, na.rm = TRUE)

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables

valid atomic vector or list vector of valid values.

na.rm logical vector of length 1 specifying whether NA should be ignored from the
validity test. If TRUE (default), then any NAs are treated as valid.

Value

logical vector with length = length(vrb.nm) and names = vrb.nm specifying whether all elements
in each variable of data[vrb.nm] are valid. If FALSE, then (at least one) invalid values are present
in that variable of data[vrb.nm].

See Also

valid_test revalids revalid

Examples

valids_test(data = psych::bfi, vrb.nm = names(psych::bfi)[1:25],
valid = 1:6) # return TRUE

valids_test(data = psych::bfi, vrb.nm = names(psych::bfi)[1:25],
valid = 0:5) # 6 is not present in `valid`

valids_test(data = psych::bfi, vrb.nm = names(psych::bfi)[1:25],
valid = 1:6, na.rm = FALSE) # NA is not present in `valid`

valids_test(data = ToothGrowth, vrb.nm = c("supp","dose"),
valid = list("VC", "OJ", 0.5, 1.0, 2.0)) # list vector as `valid` to allow for
# elements of different typeof



76 valid_test

valid_test Test for Invalid Elements in a Vector

Description

valid_test tests whether a vector has any invalid elements. Valid values are specified by valid.
If the vector x has any values other than valid, then FALSE is returned; If the vector x only has
values in valid, then TRUE is returned. This function can be useful for checking data after manual
human entry.

Usage

valid_test(x, valid, na.rm = TRUE)

Arguments

x atomic vector or list vector.

valid atomic vector or list vector of valid values.

na.rm logical vector of length 1 specifying whether NA should be ignored from the
validity test. If TRUE (default), then any NAs are treated as valid.

Value

logical vector of length 1 specifying whether all elements in x are valid values. If FALSE, then (at
least one) invalid values are present.

See Also

valids_test revalid revalids

Examples

valid_test(x = psych::bfi[[1]], valid = 1:6) # return TRUE
valid_test(x = psych::bfi[[1]], valid = 0:5) # 6 is not present in `valid`
valid_test(x = psych::bfi[[1]], valid = 1:6,

na.rm = FALSE) # NA is not present in `valid`



vecNA 77

vecNA Frequency of Missing Values in a Vector

Description

vecNA computes the frequency of missing values in an atomic vector. vecNA is essentially a wrapper
for sum or mean + is.na or !is.na and can be useful for functional programming (e.g., lapply(FUN
= vecNA)). It is also used by other functions in the quest package related to missing values (e.g.,
mean_if).

Usage

vecNA(x, prop = FALSE, ov = FALSE)

Arguments

x atomic vector or list vector. If not a vector, it will be coerced to a vector via
as.vector.

prop logical vector of length 1 specifying whether the frequency of missing values
should be returned as a proportion (TRUE) or a count (FALSE).

ov logical vector of length 1 specifying whether the frequency of observed val-
ues (TRUE) should be returned rather than the frequency of missing values
(FALSE).

Value

numeric vector of length 1 providing the frequency of missing values (or observed values if ov =
TRUE). If prop = TRUE, the value will range from 0 to 1. If prop = FALSE, the value will range
from 1 to length(x).

See Also

is.na rowNA colNA rowsNA

Examples

vecNA(airquality[[1]]) # count of missing values
vecNA(airquality[[1]], prop = TRUE) # proportion of missing values
vecNA(airquality[[1]], ov = TRUE) # count of observed values
vecNA(airquality[[1]], prop = TRUE, ov = TRUE) # proportion of observed values



78 wide2long

wide2long Reshape Multiple Sets of Variables From Wide to Long

Description

wide2long reshapes data from wide to long. This if often necessary to do with multilevel data where
multiple sets of variables in the wide format seek to be reshaped to multiple rows in the long format.
If only one set of variables needs to be reshaped, then you can use stack2 or melt.data.frame -
but that does not work for *multiple* sets of variables. See details for more information.

Usage

wide2long(
data,
vrb.nm.list,
grp.nm = NULL,
sep = ".",
rtn.obs.nm = "obs",
order.by.grp = TRUE,
keep.attr = FALSE

)

Arguments

data data.frame of multilevel data in the wide format.
vrb.nm.list A unique argument for the quest package such that it can take on different

types of inputs. The conventional use is to provide a list of character vectors
specifying each set of colnames to be reshaped. In longitudinal panel data, each
list element would contain a score with multiple timepoints. The advanced use
is to provide a single character vector specifying the colnames to be reshaped
(not organized by sets). See details.

grp.nm character vector specifying the colnames in data corresponding to the groups.
Because data is in the wide format, data[grp.nm] must have unique rows (aka
groups); if this is not the case, an error is returned. grp.nm can be NULL, in
which case the rownames of data will be used. In longitudinal panel data this
variable would be the participant ID variable.

sep character vector of length 1 specifying the string in the column names provided
by vrb.nm.list that separates out the name prefix from the number suffix. If
sep = "", then that implies there is no string separating the name prefix and the
number suffix (e.g., "outcome1").

rtn.obs.nm character vector of length 1 specifying the new colname in the return object
indicating which observation within each group the row refers to. In longitudinal
panel data, this would be the returned time variable.

order.by.grp logical vector of length 1 specifying whether to sort the return object first by
grp.nm and then obs.nm (TRUE) or by obs.nm and then grp.nm (FALSE).

keep.attr logical vector of length 1 specifying whether to keep the "reshapeLong" attribute
(from reshape) in the return object.



wide2long 79

Details

wide2long uses reshape(direction = "long") to reshape the data. It attempts to streamline the
task of reshaping wide to long as the reshape arguments can be confusing because the same argu-
ments are used for wide vs. long reshaping. See reshape if you are curious.

IF vrb.nm.list IS A LIST OF CHARACTER VECTORS: The conventional use of vrb.nm.list
is to provide a list of character vectors, which specify each set of variables to be reshaped. For
example, if data contains data from a longitudinal panel study with the same scores at different
waves, then there might be a column for each score at each wave. vrb.nm.list would then contain
an element for each score with each element containing a character vector of the colnames for that
score at each wave (see examples). The names of the list elements would then be the colnames in
the return object for those scores.

IF vrb.nm.list IS A CHARACTER VECTOR: The advanced use of vrb.nm.list is to provide
a single character vector, which specify the variables to be reshaped (not organized by sets). In
this case (i.e., if vrb.nm.list is not a list), then wide2long (really reshape) will attempt to guess
which colnames go together as a set. It is assumed the following column naming scheme has been
used: 1) have the same name prefix for columns within a set, 2) have the same number suffixes
for each set of columns, 3) use, *and only use*, sep in the colnames to separate the name prefix
and the number suffix. For example, the name prefixes might be "predictor" and "outcome" while
the number suffixes might be "0", "1", and "2", and the separator might be ".", resulting in column
names such as "outcome.1". The name prefix could include separators other than sep (e.g., "out-
come_item.1"), but it cannot include sep (e.g., "outcome.item.1"). So "outcome_item1.1" could be
acceptable, but "outcome.item1.1" would not.

Value

data.frame with nrow equal to nrow(data) * length(vrb.nm.list[[1]]) if vrb.nm.list is a
list (i.e., conventional use) or nrow(data) * number of unique number suffixes in vrb.nm.list
if vrb.nm.list is not a list (i.e., advanced use). The columns will be in the following order: 1)
grp.nm of the groups, 2) rtn.obs.nm of the observation labels, 3) the reshaped columns, 4) the
additional columns that were not reshaped and instead repeated. How the returned data.frame is
sorted depends on order.by.grp.

See Also

long2wide reshape stack2

Examples

# SINGLE GROUPING VARIABLE
dat_wide <- data.frame(

x_1.1 = runif(5L),
x_2.1 = runif(5L),
x_3.1 = runif(5L),
x_4.1 = runif(5L),
x_1.2 = runif(5L),
x_2.2 = runif(5L),
x_3.2 = runif(5L),
x_4.2 = runif(5L),



80 wide2long

x_1.3 = runif(5L),
x_2.3 = runif(5L),
x_3.3 = runif(5L),
x_4.3 = runif(5L),
y_1.1 = runif(5L),
y_2.1 = runif(5L),
y_1.2 = runif(5L),
y_2.2 = runif(5L),
y_1.3 = runif(5L),
y_2.3 = runif(5L))

row.names(dat_wide) <- letters[1:5]
print(dat_wide)

# vrb.nm.list = list of character vectors (conventional use)
vrb_pat <- c("x_1","x_2","x_3","x_4","y_1","y_2")
vrb_nm_list <- lapply(X = setNames(vrb_pat, nm = vrb_pat), FUN = function(pat) {

str2str::pick(x = names(dat_wide), val = pat, pat = TRUE)})
# without `grp.nm`
z1 <- wide2long(dat_wide, vrb.nm = vrb_nm_list)
# with `grp.nm`
dat_wide$"ID" <- letters[1:5]
z2 <- wide2long(dat_wide, vrb.nm = vrb_nm_list, grp.nm = "ID")
dat_wide$"ID" <- NULL

# vrb.nm.list = character vector + guessing (advanced use)
vrb_nm <- str2str::pick(x = names(dat_wide), val = "ID", not = TRUE)
# without `grp.nm`
z3 <- wide2long(dat_wide, vrb.nm.list = vrb_nm)
# with `grp.nm`
dat_wide$"ID" <- letters[1:5]
z4 <- wide2long(dat_wide, vrb.nm = vrb_nm, grp.nm = "ID")
dat_wide$"ID" <- NULL

# comparisons
head(z1); head(z3); head(z2); head(z4)
all.equal(z1, z3)
all.equal(z2, z4)
# keeping the reshapeLong attributes
z7 <- wide2long(dat_wide, vrb.nm = vrb_nm_list, keep.attr = TRUE)
attributes(z7)

# MULTIPLE GROUPING VARIABLES
bfi2 <- psych::bfi
bfi2$"person" <- unlist(lapply(X = 1:400, FUN = rep.int, times = 7))
bfi2$"day" <- rep.int(1:7, times = 400L)
head(bfi2, n = 15)

# vrb.nm.list = list of character vectors (conventional use)
vrb_pat <- c("A","C","E","N","O")
vrb_nm_list <- lapply(X = setNames(vrb_pat, nm = vrb_pat), FUN = function(pat) {

str2str::pick(x = names(bfi2), val = pat, pat = TRUE)})
z5 <- wide2long(bfi2, vrb.nm.list = vrb_nm_list, grp = c("person","day"),

rtn.obs.nm = "item")



winsor 81

# vrb.nm.list = character vector + guessing (advanced use)
vrb_nm <- str2str::pick(x = names(bfi2),

val = c("person","day","gender","education","age"), not = TRUE)
z6 <- wide2long(bfi2, vrb.nm.list = vrb_nm, grp = c("person","day"),

sep = "", rtn.obs.nm = "item") # need sep = "" because no character separating
# scale name and item number

all.equal(z5, z6)

winsor Winsorize a Numeric Vector

Description

winsor winsorizes a numeric vector by recoding extreme values as a user-identified boundary value,
which is defined by z-score units. The to.na argument provides the option of recoding the extreme
values as missing.

Usage

winsor(x, z.min = -3, z.max = 3, rtn.int = FALSE, to.na = FALSE)

Arguments

x numeric vector

z.min numeric vector of length 1 specifying the lower boundary value in z-score units.

z.max numeric vector of length 1 specifying the upper boundary value in z-score units.

rtn.int logical vector of length 1 specifying whether the recoded values should be rounded
to the nearest integer. This can be useful when working with count data and dec-
imal values are impossible.

to.na logical vector of length 1 specifying whether the extreme values should be re-
coded to NA rather than winsorized to the boundary values.

Details

Note, the psych package also has a function called winsor, which offers the option to winsorize a
numeric vector by quantiles rather than z-scores. If you have both the quest package and the psych
package attached in your current R session (e.g., using library), depending on which package you
attached first, R might default to using the winsor function in either the quest package or the psych
package. One way to deal with this issue is to explicitly call which package you want to use the
winsor package from. You can do this using the :: function in base R where the package name
comes before the :: and the function names comes after it (e.g., quest::winsor).

Value

numeric vector of the same length as x with extreme values recoded as either the boundary values
or NA.



82 winsors

See Also

winsors winsor # psych package

Examples

# winsorize
table(quakes$"stations")
new <- winsor(quakes$"stations")
table(new)

# recode as NA
vecNA(quakes$"stations")
new <- winsor(quakes$"stations", to.na = TRUE)
vecNA(new)

# rtn.int = TRUE
winsor(x = cars[[1]], z.min = -2, z.max = 2, rtn.int = FALSE)
winsor(x = cars[[1]], z.min = -2, z.max = 2, rtn.int = TRUE)

winsors Winsorize Numeric Data

Description

winsors winsorizes numeric data by recoding extreme values as a user identified boundary value,
which is defined by z-score units. The to.na argument provides the option of recoding the extreme
values as missing.

Usage

winsors(
data,
vrb.nm,
z.min = -3,
z.max = 3,
rtn.int = FALSE,
to.na = FALSE,
suffix = "_win"

)

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables.

z.min numeric vector of length 1 specifying the lower boundary value in z-score units.

z.max numeric vector of length 1 specifying the upper boundary value in z-score units.



winsors 83

rtn.int logical vector of length 1 specifying whether the recoded values should be rounded
to the nearest integer. This can be useful when working with count data and dec-
imal values are impossible.

to.na logical vector of length 1 specifying whether the extreme values should be re-
coded to NA rather than winsorized to the boundary values.

suffix character vector of length 1 specifying the string to append to the end of the
colnames in the return object.

Value

data.frame of winsorized data with extreme values recoded as either the boundary values or NA and
colnames = paste0(vrb.nm, suffix).

See Also

winsor winsor # psych package

Examples

# winsorize
lapply(X = quakes[c("mag","stations")], FUN = table)
new <- winsors(quakes, vrb.nm = names(quakes))
lapply(X = new, FUN = table)

# recode as NA
vecNA(quakes)
new <- winsors(quakes, vrb.nm = names(quakes), to.na = TRUE)
vecNA(new)

# rtn.int = TRUE
winsors(data = cars, vrb.nm = names(cars), z.min = -2, z.max = 2, rtn.int = FALSE)
winsors(data = cars, vrb.nm = names(cars), z.min = -2, z.max = 2, rtn.int = TRUE)



Index

agg, 3, 8, 25
agg_dfm, 6, 10
aggregate, 4, 6
aggs, 5, 8, 27
as.vector, 77
ave, 4, 6, 9, 10
ave_dfm, 9

by, 10, 11
by2, 8, 10, 73, 74

cast, 35
center, 12, 13, 15, 16
center_by, 12, 13, 15, 15, 25
centers, 12, 13, 15, 16
centers_by, 12, 13, 14, 16, 27
change, 16, 17–20
change_by, 17–19, 20
changes, 17, 17, 19, 20
changes_by, 17, 18, 18, 20
colMeans, 21
colMeans_if, 21, 22, 24, 60, 64
colNA, 22, 61, 62, 77
colSums, 24
colSums_if, 21, 23, 60, 64
complete.cases, 46, 47

daply, 8
ddply, 8
decompose, 24, 27
decomposes, 25, 25
dlply, 10, 11, 73, 74
dum2nom, 27, 46

freq, 28, 31, 35, 44
freq_by, 30, 31, 33, 34, 35
freqs, 30, 30, 33
freqs_by, 30, 31, 32, 33, 35

ifelse, 52
is.na, 22, 61, 62, 77

long2wide, 35, 79

make.dummy, 37, 39
make.dumNA, 38, 38
make.fun_if, 39, 43, 73
make.product, 41
mean.default, 43
mean_if, 40, 42, 73, 77
melt.data.frame, 78
mode, 43
mode2, 43
model.matrix.default, 46

ncases, 44, 47
nom2dum, 28, 45
nrow, 45

partial.cases, 45, 46
pomp, 47, 49
pomps, 48, 48

quest, 50

recode, 52, 53, 58
recode2other, 51
recodes, 52, 59
rename, 55
renames, 54
reorder.default, 56
reorders, 55
reshape, 36, 37, 78, 79
revalid, 56, 58, 75, 76
revalids, 57, 57, 75, 76
reverse, 58, 59
reverse.code, 58, 59
reverses, 53, 58, 59
rowMeans, 60
rowMeans_if, 21, 24, 60, 61, 64, 65, 67
rowNA, 22, 47, 61, 62, 77
rowsNA, 22, 61, 62, 77
rowSums, 64

84



INDEX 85

rowSums_if, 21, 24, 60, 63, 65, 67

scale.default, 12, 13, 15, 16
score, 64, 67
scoreItems, 65, 67
scores, 65, 66
shift, 16, 17, 67, 70–72
shift_by, 20, 25, 68, 70, 71, 71
shifts, 17, 18, 68, 69, 71, 72
shifts_by, 19, 27, 68, 70, 70, 72
stack2, 78, 79
str2str, 50
sum, 73
sum_if, 40, 43, 72

table, 29–31, 33–35, 44
tapply, 73, 74
tapply2, 10, 11, 73

unstack2, 35, 37

valid_test, 57, 58, 75, 76
valids_test, 57, 58, 75, 76
vecNA, 22, 61, 62, 77

wide2long, 37, 78
winsor, 81, 82, 83
winsors, 82, 82


	agg
	aggs
	agg_dfm
	ave_dfm
	by2
	center
	centers
	centers_by
	center_by
	change
	changes
	changes_by
	change_by
	colMeans_if
	colNA
	colSums_if
	decompose
	decomposes
	dum2nom
	freq
	freqs
	freqs_by
	freq_by
	long2wide
	make.dummy
	make.dumNA
	make.fun_if
	make.product
	mean_if
	mode2
	ncases
	nom2dum
	partial.cases
	pomp
	pomps
	quest
	recode2other
	recodes
	renames
	reorders
	revalid
	revalids
	reverse
	reverses
	rowMeans_if
	rowNA
	rowsNA
	rowSums_if
	score
	scores
	shift
	shifts
	shifts_by
	shift_by
	sum_if
	tapply2
	valids_test
	valid_test
	vecNA
	wide2long
	winsor
	winsors
	Index

