rATTAINS

CRAN status rATTAINS status badge Project Status: Active – The project has reached a stable, usable state and is being actively developed. R-CMD-check codecov DOI

rATTAINS provides functions for downloading tidy data from the United States (U.S.) Environmental Protection Agency (EPA) ATTAINS webservice. ATTAINS is the online system used to track and report Clean Water Act assessments and Total Maximum Daily Loads (TMDLs) in U.S. surface waters. rATTAINS facilitates access to the public information webservice made available through the EPA.

rATTAINS is on CRAN:

install.packages('rATTAINS')

Or install the development version from r-universe:

install.packages('rATTAINS',
                 repos = 'https://mps9506.r-universe.dev')

Functions and webservices

There are eight user available functions that correspond with the first eight web services detailed by EPA. All arguments are case sensitive. By default the functions attempt to provide flattened “tidy” data as a single or multiple dataframes. By using the tidy = FALSE argument in the function below, the raw JSON will be read into the session for the user to parse if desired. This can be useful since some webservices provide different results based on the query and the tidying process used in rATTAINS might make poor assumptions in the data flattening process. If the function returns unexpected results, try parsing the raw JSON string.

Examples:

Get a summary about assessed uses from the Texas Commission on Environmental Quality:

library(rATTAINS)
state_summary(organization_id = "TCEQMAIN", reporting_cycle = "2020") %>%
  .[1,] %>% str()
#> Warning: Automatic coercion from double to character was deprecated in purrr 1.0.0.
#> ℹ Please use an explicit call to `as.character()` within `map_chr()` instead.
#> ℹ The deprecated feature was likely used in the tidyjson package.
#>   Please report the issue at <https://github.com/colearendt/tidyjson/issues>.
#> Warning: Automatic coercion from integer to character was deprecated in purrr 1.0.0.
#> ℹ Please use an explicit call to `as.character()` within `map_chr()` instead.
#> ℹ The deprecated feature was likely used in the tidyjson package.
#>   Please report the issue at <https://github.com/colearendt/tidyjson/issues>.
#> tibble [1 × 13] (S3: tbl_df/tbl/data.frame)
#>  $ organization_identifier: chr "TCEQMAIN"
#>  $ organization_name      : chr "Texas"
#>  $ organization_type_text : chr "State"
#>  $ reporting_cycle        : chr "2020"
#>  $ combined_cycles        : chr NA
#>  $ water_type_code        : chr "ESTUARY"
#>  $ units_code             : chr "Square Miles"
#>  $ use_name               : chr "Aquatic Life Use"
#>  $ fully_supporting       : chr "1861.320000"
#>  $ fully_supporting_count : chr "57"
#>  $ not_assessed           : chr "46.190000"
#>  $ not_assessed_count     : chr "6"
#>  $ parameters             :List of 1
#>   ..$ : tibble [7 × 7] (S3: tbl_df/tbl/data.frame)
#>   .. ..$ parameter_group               : chr [1:7] "TOXIC INORGANICS" "ORGANIC ENRICHMENT/OXYGEN DEPLETION" "PESTICIDES" "TOXIC ORGANICS" ...
#>   .. ..$ cause                         : chr [1:7] NA "616.850000" NA NA ...
#>   .. ..$ cause_count                   : chr [1:7] NA "5" NA NA ...
#>   .. ..$ meeting_criteria              : num [1:7] NA 1901.8 NA NA 96.9 ...
#>   .. ..$ meeting_criteria_count        : num [1:7] NA 62 NA NA 8 NA 8
#>   .. ..$ insufficent_information       : num [1:7] 2.76 NA 3.2 1.07 344.3 ...
#>   .. ..$ insufficient_information_count: num [1:7] 1 NA 3 2 6 7 5

Get a summary about assessed uses, parameters and plans in a HUC12:

huc12_summary(huc = "020700100204")
#> $huc_summary
#> # A tibble: 1 × 14
#>   huc12  asses…¹ total…² total…³ asses…⁴ asses…⁵ asses…⁶ asses…⁷ asses…⁸ asses…⁹
#>   <chr>    <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
#> 1 02070…      17    46.1    46.2    35.2    76.4       0       0       0       0
#> # … with 4 more variables: contain_impaired_waters_catchment_area_sq_mi <dbl>,
#> #   contain_impaired_waters_catchment_area_percent <dbl>,
#> #   contain_restoration_catchment_area_sq_mi <dbl>,
#> #   contain_restoration_catchment_area_percent <dbl>, and abbreviated variable
#> #   names ¹​assessment_unit_count, ²​total_catchment_area_sq_mi,
#> #   ³​total_huc_area_sq_mi, ⁴​assessed_catchment_area_sq_mi,
#> #   ⁵​assessed_catchment_area_percent, ⁶​assessed_good_catchment_area_sq_mi, …
#> 
#> $au_summary
#> # A tibble: 17 × 1
#>    assessment_unit_id          
#>    <chr>                       
#>  1 MD-02140205-Northwest_Branch
#>  2 MD-02140205                 
#>  3 DCTFD01R_00                 
#>  4 DCTNA01R_00                 
#>  5 DCTFS01R_00                 
#>  6 MD-ANATF                    
#>  7 DCTTX27R_00                 
#>  8 DCTFC01R_00                 
#>  9 MD-02140205-Mainstem        
#> 10 DCTWB00R_02                 
#> 11 DCANA00E_02                 
#> 12 DCTHR01R_00                 
#> 13 DCTWB00R_01                 
#> 14 DCTPB01R_00                 
#> 15 DCTDU01R_00                 
#> 16 DCANA00E_01                 
#> 17 DCAKL00L_00                 
#> 
#> $ir_summary
#> # A tibble: 2 × 4
#>   epa_ir_category_name catchment_size_sq_mi catchment_size_percent assessment_…¹
#>   <chr>                               <dbl>                  <dbl>         <dbl>
#> 1 4A                                   12.7                   27.5            10
#> 2 5                                    25.8                   56.0             7
#> # … with abbreviated variable name ¹​assessment_unit_count
#> 
#> $use_summary
#> # A tibble: 5 × 5
#>   use_group_name      use_attainment           catchment_size_…¹ catch…² asses…³
#>   <chr>               <chr>                                <dbl>   <dbl>   <dbl>
#> 1 ECOLOGICAL_USE      Not Supporting                      10.9     23.7       13
#> 2 FISHCONSUMPTION_USE Insufficient Information            15.9     34.4        1
#> 3 FISHCONSUMPTION_USE Not Supporting                      15.9     34.4       12
#> 4 OTHER_USE           Fully Supporting                     0.683    1.48       3
#> 5 RECREATION_USE      Not Supporting                      15.2     32.9       13
#> # … with abbreviated variable names ¹​catchment_size_sq_mi,
#> #   ²​catchment_size_percent, ³​assessment_unit_count
#> 
#> $param_summary
#> # A tibble: 16 × 4
#>    parameter_group_name                catchment_size_sq_mi catchment_…¹ asses…²
#>    <chr>                                              <dbl>        <dbl>   <dbl>
#>  1 ALGAL GROWTH                                        9.21        20.0        2
#>  2 CHLORINE                                            1.73         3.75       1
#>  3 HABITAT ALTERATIONS                                 2.80         6.07       2
#>  4 HYDROLOGIC ALTERATION                               5.98        13.0        5
#>  5 METALS (OTHER THAN MERCURY)                        11.8         25.7        9
#>  6 NUTRIENTS                                           9.21        20.0        2
#>  7 OIL AND GREASE                                     10.9         23.7        3
#>  8 ORGANIC ENRICHMENT/OXYGEN DEPLETION                12.7         27.5        6
#>  9 PATHOGENS                                          15.9         34.4       13
#> 10 PESTICIDES                                         15.2         32.9        9
#> 11 PH/ACIDITY/CAUSTIC CONDITIONS                       1.95         4.22       1
#> 12 POLYCHLORINATED BIPHENYLS (PCBS)                   15.2         32.9       10
#> 13 SEDIMENT                                            1.90         4.11       1
#> 14 TOXIC ORGANICS                                     13.3         28.7        8
#> 15 TRASH                                               9.21        20.0        2
#> 16 TURBIDITY                                          15.9         34.4       13
#> # … with abbreviated variable names ¹​catchment_size_percent,
#> #   ²​assessment_unit_count
#> 
#> $res_plan_summary
#> # A tibble: 1 × 4
#>   summary_type_name catchment_size_sq_mi catchment_size_percent assessment_uni…¹
#>   <chr>                            <dbl>                  <dbl>            <dbl>
#> 1 TMDL                              15.9                   34.4               13
#> # … with abbreviated variable name ¹​assessment_unit_count
#> 
#> $vision_plan_summary
#> # A tibble: 1 × 4
#>   summary_type_name catchment_size_sq_mi catchment_size_percent assessment_uni…¹
#>   <chr>                            <dbl>                  <dbl>            <dbl>
#> 1 TMDL                              15.9                   34.4               13
#> # … with abbreviated variable name ¹​assessment_unit_count

Find statistical surveys completed by an organization:

df <- surveys(organization_id="SDDENR")
str(df)
#> List of 2
#>  $ documents: tibble [0 × 12] (S3: tbl_df/tbl/data.frame)
#>   ..$ organization_identifier: chr(0) 
#>   ..$ organization_name      : chr(0) 
#>   ..$ organization_type_text : chr(0) 
#>   ..$ survey_status_code     : chr(0) 
#>   ..$ year                   : num(0) 
#>   ..$ survey_comment_text    : chr(0) 
#>   ..$ agency_code            : chr(0) 
#>   ..$ document_file_type     : chr(0) 
#>   ..$ document_file_name     : chr(0) 
#>   ..$ document_description   : chr(0) 
#>   ..$ document_comments      : chr(0) 
#>   ..$ document_url           : chr(0) 
#>  $ surveys  : tibble [104 × 19] (S3: tbl_df/tbl/data.frame)
#>   ..$ organization_identifier        : chr [1:104] "SDDENR" "SDDENR" "SDDENR" "SDDENR" ...
#>   ..$ organization_name              : chr [1:104] "South Dakota" "South Dakota" "South Dakota" "South Dakota" ...
#>   ..$ organization_type_text         : chr [1:104] "State" "State" "State" "State" ...
#>   ..$ survey_status_code             : chr [1:104] "Final" "Final" "Final" "Final" ...
#>   ..$ year                           : num [1:104] 2018 2018 2018 2018 2018 ...
#>   ..$ survey_comment_text            : chr [1:104] NA NA NA NA ...
#>   ..$ water_type_group_code          : chr [1:104] "LAKE/RESERVOIR/POND" "LAKE/RESERVOIR/POND" "LAKE/RESERVOIR/POND" "LAKE/RESERVOIR/POND" ...
#>   ..$ sub_population_code            : chr [1:104] "Statewide" "Statewide" "Statewide" "Statewide" ...
#>   ..$ unit_code                      : chr [1:104] "Acres" "Acres" "Acres" "Acres" ...
#>   ..$ size                           : num [1:104] 213265 213265 213265 213265 213265 ...
#>   ..$ site_number                    : chr [1:104] "70" "70" "70" "70" ...
#>   ..$ survey_water_group_comment_text: chr [1:104] NA NA NA NA ...
#>   ..$ stressor                       : chr [1:104] "TEMPERATURE" NA "DISSOLVED OXYGEN" NA ...
#>   ..$ survey_use_code                : chr [1:104] "AQUATIC LIFE - TEMPERATURE" "AQUATIC LIFE - PH" "AQUATIC LIFE - DISSOLVED OXYGEN" "IMMERSION RECREATION WATERS" ...
#>   ..$ survey_category_code           : chr [1:104] "Fully Supporting" "Fully Supporting" "Fully Supporting" "Not Supporting" ...
#>   ..$ statistic                      : chr [1:104] "Condition Estimate" "Condition Estimate" "Condition Estimate" "Condition Estimate" ...
#>   ..$ metric_value                   : num [1:104] 85.9 62.9 95.1 7.24 98.8 37.1 4.9 95.1 37.1 4.9 ...
#>   ..$ confidence_level               : num [1:104] 90 90 90 90 90 90 90 90 90 90 ...
#>   ..$ comment_text                   : chr [1:104] NA NA NA NA ...

Citation

If you use this package in a publication, please cite as:

citation("rATTAINS")
#> 
#> To cite rATTAINS in publications use:
#> 
#>   Schramm, Michael (2021).  rATTAINS: Access EPA 'ATTAINS' Data.  R
#>   package version 0.1.4. doi:10.5281/zenodo.3635017
#>   https://CRAN.R-project.org/package=rATTAINS
#> 
#> A BibTeX entry for LaTeX users is
#> 
#>   @Manual{,
#>     title = {{rATTAINS}: Access EPA 'ATTAINS' Data},
#>     author = {Michael Schramm},
#>     year = {2021},
#>     url = {https://CRAN.R-project.org/package=rATTAINS},
#>     doi = {10.5281/zenodo.5469911},
#>     note = {R package version 0.1.4},
#>   }