rATTAINS provides functions for downloading tidy data from the United States (U.S.) Environmental Protection Agency (EPA) ATTAINS webservice. ATTAINS is the online system used to track and report Clean Water Act assessments and Total Maximum Daily Loads (TMDLs) in U.S. surface waters. rATTAINS facilitates access to the public information webservice made available through the EPA.
rATTAINS is on CRAN:
install.packages('rATTAINS')
Or install the development version from r-universe:
install.packages('rATTAINS',
repos = 'https://mps9506.r-universe.dev')
There are eight user available functions that correspond with the
first eight web services detailed by EPA.
All arguments are case sensitive. By default the functions attempt to
provide flattened “tidy” data as a single or multiple dataframes. By
using the tidy = FALSE
argument in the function below, the
raw JSON will be read into the session for the user to parse if desired.
This can be useful since some webservices provide different results
based on the query and the tidying process used in rATTAINS might make
poor assumptions in the data flattening process. If the function returns
unexpected results, try parsing the raw JSON string.
state_summary()
provides summary information for
assessed uses for organizations and by integrated reporting
cycle.
huc_12_summary()
provides summary information about
impairments, actions, and documents for the specified 12-digit HUC
(watershed).
actions()
provides a summary of information for
particular finalized actions (TMDLs and related).
assessments()
provides summary data about the
specified assessment decisions by waterbody.
plans()
returns a summary of the plans (TMDLs and
related) within a specified HUC.
domain_values()
returns allowed values in ATTAINS.
By default (no arguments) the function returns a list of allowed
domain_names
.
assessment_units()
returns a summary of information
about the specified assessment units.
surveys()
returns results from state statistical
survey results in ATTAINS.
Get a summary about assessed uses from the Texas Commission on Environmental Quality:
library(rATTAINS)
state_summary(organization_id = "TCEQMAIN", reporting_cycle = "2020") %>%
1,] %>% str()
.[#> Warning: Automatic coercion from double to character was deprecated in purrr 1.0.0.
#> ℹ Please use an explicit call to `as.character()` within `map_chr()` instead.
#> ℹ The deprecated feature was likely used in the tidyjson package.
#> Please report the issue at <https://github.com/colearendt/tidyjson/issues>.
#> Warning: Automatic coercion from integer to character was deprecated in purrr 1.0.0.
#> ℹ Please use an explicit call to `as.character()` within `map_chr()` instead.
#> ℹ The deprecated feature was likely used in the tidyjson package.
#> Please report the issue at <https://github.com/colearendt/tidyjson/issues>.
#> tibble [1 × 13] (S3: tbl_df/tbl/data.frame)
#> $ organization_identifier: chr "TCEQMAIN"
#> $ organization_name : chr "Texas"
#> $ organization_type_text : chr "State"
#> $ reporting_cycle : chr "2020"
#> $ combined_cycles : chr NA
#> $ water_type_code : chr "ESTUARY"
#> $ units_code : chr "Square Miles"
#> $ use_name : chr "Aquatic Life Use"
#> $ fully_supporting : chr "1861.320000"
#> $ fully_supporting_count : chr "57"
#> $ not_assessed : chr "46.190000"
#> $ not_assessed_count : chr "6"
#> $ parameters :List of 1
#> ..$ : tibble [7 × 7] (S3: tbl_df/tbl/data.frame)
#> .. ..$ parameter_group : chr [1:7] "TOXIC INORGANICS" "ORGANIC ENRICHMENT/OXYGEN DEPLETION" "PESTICIDES" "TOXIC ORGANICS" ...
#> .. ..$ cause : chr [1:7] NA "616.850000" NA NA ...
#> .. ..$ cause_count : chr [1:7] NA "5" NA NA ...
#> .. ..$ meeting_criteria : num [1:7] NA 1901.8 NA NA 96.9 ...
#> .. ..$ meeting_criteria_count : num [1:7] NA 62 NA NA 8 NA 8
#> .. ..$ insufficent_information : num [1:7] 2.76 NA 3.2 1.07 344.3 ...
#> .. ..$ insufficient_information_count: num [1:7] 1 NA 3 2 6 7 5
Get a summary about assessed uses, parameters and plans in a HUC12:
huc12_summary(huc = "020700100204")
#> $huc_summary
#> # A tibble: 1 × 14
#> huc12 asses…¹ total…² total…³ asses…⁴ asses…⁵ asses…⁶ asses…⁷ asses…⁸ asses…⁹
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 02070… 17 46.1 46.2 35.2 76.4 0 0 0 0
#> # … with 4 more variables: contain_impaired_waters_catchment_area_sq_mi <dbl>,
#> # contain_impaired_waters_catchment_area_percent <dbl>,
#> # contain_restoration_catchment_area_sq_mi <dbl>,
#> # contain_restoration_catchment_area_percent <dbl>, and abbreviated variable
#> # names ¹assessment_unit_count, ²total_catchment_area_sq_mi,
#> # ³total_huc_area_sq_mi, ⁴assessed_catchment_area_sq_mi,
#> # ⁵assessed_catchment_area_percent, ⁶assessed_good_catchment_area_sq_mi, …
#>
#> $au_summary
#> # A tibble: 17 × 1
#> assessment_unit_id
#> <chr>
#> 1 MD-02140205-Northwest_Branch
#> 2 MD-02140205
#> 3 DCTFD01R_00
#> 4 DCTNA01R_00
#> 5 DCTFS01R_00
#> 6 MD-ANATF
#> 7 DCTTX27R_00
#> 8 DCTFC01R_00
#> 9 MD-02140205-Mainstem
#> 10 DCTWB00R_02
#> 11 DCANA00E_02
#> 12 DCTHR01R_00
#> 13 DCTWB00R_01
#> 14 DCTPB01R_00
#> 15 DCTDU01R_00
#> 16 DCANA00E_01
#> 17 DCAKL00L_00
#>
#> $ir_summary
#> # A tibble: 2 × 4
#> epa_ir_category_name catchment_size_sq_mi catchment_size_percent assessment_…¹
#> <chr> <dbl> <dbl> <dbl>
#> 1 4A 12.7 27.5 10
#> 2 5 25.8 56.0 7
#> # … with abbreviated variable name ¹assessment_unit_count
#>
#> $use_summary
#> # A tibble: 5 × 5
#> use_group_name use_attainment catchment_size_…¹ catch…² asses…³
#> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 ECOLOGICAL_USE Not Supporting 10.9 23.7 13
#> 2 FISHCONSUMPTION_USE Insufficient Information 15.9 34.4 1
#> 3 FISHCONSUMPTION_USE Not Supporting 15.9 34.4 12
#> 4 OTHER_USE Fully Supporting 0.683 1.48 3
#> 5 RECREATION_USE Not Supporting 15.2 32.9 13
#> # … with abbreviated variable names ¹catchment_size_sq_mi,
#> # ²catchment_size_percent, ³assessment_unit_count
#>
#> $param_summary
#> # A tibble: 16 × 4
#> parameter_group_name catchment_size_sq_mi catchment_…¹ asses…²
#> <chr> <dbl> <dbl> <dbl>
#> 1 ALGAL GROWTH 9.21 20.0 2
#> 2 CHLORINE 1.73 3.75 1
#> 3 HABITAT ALTERATIONS 2.80 6.07 2
#> 4 HYDROLOGIC ALTERATION 5.98 13.0 5
#> 5 METALS (OTHER THAN MERCURY) 11.8 25.7 9
#> 6 NUTRIENTS 9.21 20.0 2
#> 7 OIL AND GREASE 10.9 23.7 3
#> 8 ORGANIC ENRICHMENT/OXYGEN DEPLETION 12.7 27.5 6
#> 9 PATHOGENS 15.9 34.4 13
#> 10 PESTICIDES 15.2 32.9 9
#> 11 PH/ACIDITY/CAUSTIC CONDITIONS 1.95 4.22 1
#> 12 POLYCHLORINATED BIPHENYLS (PCBS) 15.2 32.9 10
#> 13 SEDIMENT 1.90 4.11 1
#> 14 TOXIC ORGANICS 13.3 28.7 8
#> 15 TRASH 9.21 20.0 2
#> 16 TURBIDITY 15.9 34.4 13
#> # … with abbreviated variable names ¹catchment_size_percent,
#> # ²assessment_unit_count
#>
#> $res_plan_summary
#> # A tibble: 1 × 4
#> summary_type_name catchment_size_sq_mi catchment_size_percent assessment_uni…¹
#> <chr> <dbl> <dbl> <dbl>
#> 1 TMDL 15.9 34.4 13
#> # … with abbreviated variable name ¹assessment_unit_count
#>
#> $vision_plan_summary
#> # A tibble: 1 × 4
#> summary_type_name catchment_size_sq_mi catchment_size_percent assessment_uni…¹
#> <chr> <dbl> <dbl> <dbl>
#> 1 TMDL 15.9 34.4 13
#> # … with abbreviated variable name ¹assessment_unit_count
Find statistical surveys completed by an organization:
<- surveys(organization_id="SDDENR")
df str(df)
#> List of 2
#> $ documents: tibble [0 × 12] (S3: tbl_df/tbl/data.frame)
#> ..$ organization_identifier: chr(0)
#> ..$ organization_name : chr(0)
#> ..$ organization_type_text : chr(0)
#> ..$ survey_status_code : chr(0)
#> ..$ year : num(0)
#> ..$ survey_comment_text : chr(0)
#> ..$ agency_code : chr(0)
#> ..$ document_file_type : chr(0)
#> ..$ document_file_name : chr(0)
#> ..$ document_description : chr(0)
#> ..$ document_comments : chr(0)
#> ..$ document_url : chr(0)
#> $ surveys : tibble [104 × 19] (S3: tbl_df/tbl/data.frame)
#> ..$ organization_identifier : chr [1:104] "SDDENR" "SDDENR" "SDDENR" "SDDENR" ...
#> ..$ organization_name : chr [1:104] "South Dakota" "South Dakota" "South Dakota" "South Dakota" ...
#> ..$ organization_type_text : chr [1:104] "State" "State" "State" "State" ...
#> ..$ survey_status_code : chr [1:104] "Final" "Final" "Final" "Final" ...
#> ..$ year : num [1:104] 2018 2018 2018 2018 2018 ...
#> ..$ survey_comment_text : chr [1:104] NA NA NA NA ...
#> ..$ water_type_group_code : chr [1:104] "LAKE/RESERVOIR/POND" "LAKE/RESERVOIR/POND" "LAKE/RESERVOIR/POND" "LAKE/RESERVOIR/POND" ...
#> ..$ sub_population_code : chr [1:104] "Statewide" "Statewide" "Statewide" "Statewide" ...
#> ..$ unit_code : chr [1:104] "Acres" "Acres" "Acres" "Acres" ...
#> ..$ size : num [1:104] 213265 213265 213265 213265 213265 ...
#> ..$ site_number : chr [1:104] "70" "70" "70" "70" ...
#> ..$ survey_water_group_comment_text: chr [1:104] NA NA NA NA ...
#> ..$ stressor : chr [1:104] "TEMPERATURE" NA "DISSOLVED OXYGEN" NA ...
#> ..$ survey_use_code : chr [1:104] "AQUATIC LIFE - TEMPERATURE" "AQUATIC LIFE - PH" "AQUATIC LIFE - DISSOLVED OXYGEN" "IMMERSION RECREATION WATERS" ...
#> ..$ survey_category_code : chr [1:104] "Fully Supporting" "Fully Supporting" "Fully Supporting" "Not Supporting" ...
#> ..$ statistic : chr [1:104] "Condition Estimate" "Condition Estimate" "Condition Estimate" "Condition Estimate" ...
#> ..$ metric_value : num [1:104] 85.9 62.9 95.1 7.24 98.8 37.1 4.9 95.1 37.1 4.9 ...
#> ..$ confidence_level : num [1:104] 90 90 90 90 90 90 90 90 90 90 ...
#> ..$ comment_text : chr [1:104] NA NA NA NA ...
If you use this package in a publication, please cite as:
citation("rATTAINS")
#>
#> To cite rATTAINS in publications use:
#>
#> Schramm, Michael (2021). rATTAINS: Access EPA 'ATTAINS' Data. R
#> package version 0.1.4. doi:10.5281/zenodo.3635017
#> https://CRAN.R-project.org/package=rATTAINS
#>
#> A BibTeX entry for LaTeX users is
#>
#> @Manual{,
#> title = {{rATTAINS}: Access EPA 'ATTAINS' Data},
#> author = {Michael Schramm},
#> year = {2021},
#> url = {https://CRAN.R-project.org/package=rATTAINS},
#> doi = {10.5281/zenodo.5469911},
#> note = {R package version 0.1.4},
#> }