Package 'rMOST'

November 17, 2022

Title Estimates Pareto-Optimal Solution for Hiring with 3 Objectives

Version 0.0.2

Description Estimates Pareto-optimal solution for personnel selection with 3 objectives using Normal Boundary Intersection (NBI) algorithm introduced by Das and Dennis (1998) <doi:10.1137/S1052623496307510>. Takes predictor intercorrelations and predictor-objective relations as input and generates a series of solutions containing predictor weights as output. Accepts between 3 and 10 selection predictors. Maximum 2 objectives could be adverse impact objectives. Partially modeled after De Corte (2006) TROFSS Fortran program <https://users.ugent.be/~wdecorte/trofss.pdf> and updated from 'ParetoR' package described in Song et al. (2017) <doi:10.1037/apl0000240>. For details, see Song et al. (in press).
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.2.1
Suggests knitr, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

Imports graphics, grDevices, nloptr, stats

Config/testthat/edition 3

NeedsCompilation no

Author Chelsea Song [aut, cre] (<https://orcid.org/0000-0003-0910-1281>)

Maintainer Chelsea Song <qianqisong@gmail.com>

Repository CRAN

Date/Publication 2022-11-17 12:00:14 UTC

R topics documented:

MOST	•••	 		•	•	•	•	•	•	•	•	·	•	•	•	•	•	•	•	•	•	•	 		•		•	•	2

4

Index

MOST

Description

Optimizes 3 objectives with normal boundary intersection algorithm

Usage

MOST(optProb, Rx, Rxy1, Rxy2, Rxy3, sr, prop1, prop2, d1, d2, Spac = 10)

Arguments

optProb	Optimization problem. "3C" = no adverse impact objectives and three non- adverse impact objectives; "2C_1AI" = one adverse impact objective and two non-adverse impact objectives; "1C_2AI" = two adverse impact objectives and one non-adverse impact objective.
Rx	Predictor intercorrelation matrix
Rxy1	Needs to specify for all three types of optimization problems (optProb). Predic- tor criterion-related validity for non-adverse impact objective 1 (i.e., correlation between each predictor and non-adverse impact objective 1)
Rxy2	Only specify if optimization problem is "3C" or "2C_1AI". Predictor criterion- related validity for non-adverse impact objective 2 (i.e., correlation between each predictor and non-adverse impact objective 2)
Rxy3	Only specify if optimization problem is "3C". Predictor criterion-related validity for non-adverse impact objective 3 (i.e., correlation between each predictor and non-adverse impact objective 3)
sr	Only specify if optimization problem is "2C_1AI" or "1C_2AI". Overall selection ratio.
prop1	Only specify if optimization problem is "2C_1AI" or "1C_2AI". Proportion of minority1 in the applicant pool; prop1 = (# of minority1 applicants)/(total # of applicants)
prop2	Only specify if optimization problem is "1C_2AI". Proportion of minority2 in the applicant pool; prop2 = (# of minority2 applicants)/(total # of applicants)
d1	Only specify if optimization problem is "2C_1AI" or "1C_2AI". Vector of stan- dardized group-mean differences between majority and minority 1 for each pre- dictor; d1 = avg_majority - avg_minority1
d2	Only specify if optimization problem is "1C_2AI". Vector of standardized group- mean differences between majority and minority 2 for each predictor; d2 = avg_majority - avg_minority2
Spac	Determines the number of solutions.

Value

Pareto-Optimal solutions with objective values (e.g., C1, AI1) and the corresponding predictor weights (e.g., P1, P2)

MOST

MOST

Inputs required by optimization problems

Different types of optimization problems require different input parameters:

- optProb = "3C": MOST(optProb, Rx, Rxy1, Rxy2, Rxy3)
- optProb = "2C_1AI": MOST(optProb, Rx, Rxy1, Rxy2, sr, prop1, d1)
- optProb = "1C_2AI": MOST(optProb, Rx, Rxy1, sr, prop1, d1, prop2, d2)

Notes regarding the inputs

- For personnel selection applications, all predictor-intercorrelations and criterion-related validity inputs should be corrected for range restriction and criterion unreliability to reflect the relations in the applicant sample.
- For optimization problems with 2 adverse impact objectives (i.e., optProb = "1C_2AI"), d1 and d2 should be the standardized mean difference between a minority group and the same reference group (e.g., Black-White and Hispanic-White, not Black-White and female-male)

Optimization

- Optimization may take several minutes to run.
- Optimization may fail in some applications due to non-convergence.

For more details, please consult the vignette.

Examples

```
# A sample optimization problem with 3 non-adverse impact objectives and 3 predictors
# For more examples, please consult the vignette.
```

```
# Get Pareto-optimal solutions
```

```
out <- MOST(optProb = "3C", Rx = Rx, Rxy1 = Rxy1, Rxy2 = Rxy2, Rxy3 = Rxy3, Spac = 10)
out</pre>
```

Index

MOST, 2