
Package ‘rPref’
October 14, 2022

Version 1.3

Date 2019-02-15

Title Database Preferences and Skyline Computation

Author Patrick Roocks <mail@p-roocks.de>

Maintainer Patrick Roocks <mail@p-roocks.de>

Description Routines to select and visualize the maxima for a given strict
partial order. This especially includes the computation of the Pareto
frontier, also known as (Top-k) Skyline operator (see Börzsönyi, et al.
(2001) <doi:10.1109/ICDE.2001.914855>), and some generalizations
known as database preferences (see Kießling (2002)
<doi:10.1016/B978-155860869-6/50035-4>).

URL https://www.p-roocks.de/rpref

Depends R (>= 3.1.2)

Imports Rcpp (>= 1.0.0), RcppParallel (>= 4.3.6), dplyr (>= 0.8.0),
igraph (>= 1.0.1), lazyeval (>= 0.2.1), methods, utils

SystemRequirements C++11, GNU make, Windows: cmd.exe and cscript.exe

License GPL (>= 2)

LazyData true

LinkingTo Rcpp, RcppParallel

Suggests testthat, graph, Rgraphviz (>= 2.16.0), knitr, ggplot2,
rmarkdown

Collate 'rPref.r' 'RcppExports.R' 'pref-classes.r' 'base-pref.r'
'base-pref-macros.r' 'complex-pref.r' 'general-pref.r'
'pref-eval.r' 'show-pref.r' 'visualize.r' 'pred-succ.r'

VignetteBuilder knitr

RoxygenNote 6.1.1

Encoding UTF-8

NeedsCompilation yes

Repository CRAN

Date/Publication 2019-02-16 10:00:03 UTC

1

https://doi.org/10.1109/ICDE.2001.914855
https://doi.org/10.1016/B978-155860869-6/50035-4
https://www.p-roocks.de/rpref

2 base_pref

R topics documented:
base_pref . 2
base_pref_macros . 4
complex_pref . 6
general_pref . 8
get_hasse_diag . 10
plot_btg . 11
plot_front . 13
pred_succ . 14
psel . 16
rPref . 19
show.pref . 20
show.query . 21

Index 23

base_pref Base Preferences

Description

Base preferences are used to describe the different goals (dimensions, in case of a Skyline query)
of a preference query.

Usage

low(expr, df = NULL)

low_(expr, df = NULL)

high(expr, df = NULL)

high_(expr, df = NULL)

true(expr, df = NULL)

true_(expr, df = NULL)

is.base_pref(x)

Arguments

expr A numerical/logical expression which is the term to evaluate for the current
preference. The objective is to search for minimal/maximal values of this ex-
pression (for low/high) or for logical TRUE values (for true). For low_, high_
and true_, the argument must be an expression, a call or a string.

base_pref 3

df (optional) A data frame, having the same structure (i.e., columns) like that data
frame, where this preference is evaluated later on. Causes a partial evaluation of
the preference and the preference is associated with this data frame. See below
for details.

x An object to be tested if it is a base preference.

Details

Mathematically, all base preferences are strict weak orders (irreflexive, transitive and negative tran-
sitive).

The three fundamental base preferences are:

low(a), high(a) Search for minimal/maximal values of a, i.e., the induced order is the "smaller
than" or "greater than" order on the values of a. The values of a must be numeric values.

true(a) Search for true values in logical expressions, i.e., TRUE is considered to be better than
FALSE. The values of a must be logical values. For a tuplewise evaluation of a complex logical
expression one has to use the & and | operators for logical AND/OR (and not the && and ||
operators).

The term expr may be just a single attribute or may contain an arbitrary expression, depending on
more than one attribute, e.g., low(a+2*b+f(c)). There a, b and c are columns of the addressed
data set and f has to be a previously defined function.

Functions contained in expr are evaluated over the entire data set, i.e., it is possible to use aggregate
functions (min, mean, etc.). Note that all functions (and also variables which are not columns of
the data set, where expr will be evaluated on) must be defined in the same environment (e.g.,
environment of a function or global environment) as the base preference is defined.

The function is.base_pref returns TRUE if x is a preference object and FALSE otherwise.

Using Expressions in Preferences

The low_, high_ and true_ preferences have the same functionality as low, high and true but ex-
pect an expression, a call or a string as argument. For example, low(a) is equivalent to low_(expression(a))
or low_("a"). Lazy expressions (see the lazyeval package) are also possible.

This is helpful for developing your own base preferences. Assume you want to define a base Pref-
erence false as the dual of true. A definition like false <- function(x) -true(x) is the wrong
approach, as psel(data.frame(a = c(1,2)), false(a == 1)) will result in the error "object ’a’
not found". This is because a is considered as a variable and not as an (abstract) symbol to be
evaluated later. By defining

false <- function(x, ...) -true_(substitute(x), ...)

one gets a preference which behaves like a "built-in" preference. Additional optional parameters
(like df) are bypassed. The object false(a == 1) will output [Preference] -true(a == 1) on
the console and psel(data.frame(a = c(1,2)), false(a==1)) returns correctly the second tuple
with a==2.

There is a special symbol df__ which can be used in preference expression to access the given data
set df, when psel is called on this data set. For example, on a data set where the first column has
the name A the preference low(df__[[1]]) is equivalent to low(A).

4 base_pref_macros

Partial Evaluation and Associated Data Frames

If the optional parameter df is given, then the expression is evaluated at the time of definition as far
as possible. All variables occurring as columns in df remain untouched. For example, consider

f <- function(x) 2*x
p <- true(cyl == f(1), mtcars)

Then p is equivalent to the preference true(cyl == 2) as the variable cyl is a column in mtcars.
Additionally the data set mtcars is associated with the preference p, implying that the preference
selection can be done with peval. See assoc.df for details on associated data sets.

The preference selection, i.e., psel(mtcars, p) can be invoked without the partial evaluation. But
this results in an error, if the function f has meanwhile removed from the current environment.
Hence it is safer to do an early partial evaluation of all preferences, as far as they contain user
defined functions.

The partial evaluation can be done manually by partial.eval.pref.

See Also

See complex_pref how to compose complex preferences to retrieve e.g., the Skyline. See general_pref
for functions applying to all kind of preferences. See base_pref_macros for more base preferences.

Examples

define a preference with a score value combining mpg and hp
p1 <- high(4 * mpg + hp)
perform the preference selection
psel(mtcars, p1)

define a preference with a given function
f <- function(x, y) (abs(x - mean(x))/max(x) + abs(y - mean(y))/max(y))
p2 <- low(f(mpg, hp))
psel(mtcars, p2)

use partial evaluation for weighted scoring
p3 <- high(mpg/sum(mtcars$mpg) + hp/sum(mtcars$hp), df = mtcars)
p3
select Pareto optima
peval(p3)

base_pref_macros Useful Base Preference Macros

Description

In addition to the base preferences, rPref offers some macros to define preferences where a given
interval or point is preferred.

base_pref_macros 5

Usage

around(expr, center, df = NULL)

between(expr, left, right, df = NULL)

pos(expr, pos_value, df = NULL)

layered(expr, ..., df = NULL)

Arguments

expr A numerical expression (for around and between) or an arbitrary expression
(for pos and layered). The objective are those tuples where expr evaluates to
a value within the preferred interval, layer, etc. Regarding attributes, functions
and variables, the same requirements as for base_pref apply.

center Preferred numerical value for around.

df (optional) Data frame for partial evaluation and association of preference and
data set. See base_pref for details.

left Lower limit (numerical) of the preferred interval for between.

right Upper limit (numerical) of the preferred interval for between.

pos_value A vector containing the preferred values for a pos preference. It has to be of the
same type (numeric, logical, character, ...) as expr.

... Layers (sets) for a layered preference. Each parameter corresponds to a layer
and the first one characterizes the most preferred values.

Definition of the Preference Macros

between(expr, left, right) Those tuples are preferred where expr evaluates to a value between
left and right. For values not in this interval, the values nearest to the interval are preferred.

around(expr, center) Same as between(expr, center, center).

pos(expr, pos_value) Those tuples are preferred, where expr evaluates to a value which is con-
tained in pos_value.

layered(expr, layer1, layer2, ..., layerN) For the most preferred tuples expr must evalu-
ate to a value in layer1. The second-best tuples are those where expr evaluates to a value in
layer2 and so forth. Values occurring in none of the layers are considered worse than those in
layerN. Technically, this is realized by a prioritization chain (lexicographical order) of true
preferences.

Note that only the argument expr may contain columns from the data frame, all other variables
must evaluate to explicit values. For example around(mpg, mean(mpg)) is not allowed. In this
case, one can use around(mpg, mean(mtcars$mpg)) instead. Or alternatively, without using the
base preference macros, low(abs(mpg - mean(mpg))) does the same. There, the actual mean value
of mpg is calculated just when the preference selection via psel is called.

6 complex_pref

Examples

search for cars where mpg is near to 25
psel(mtcars, around(mpg, 25))

cyl = 2 and cyl = 4 are equally good, cyl = 6 is worse
psel(mtcars, layered(cyl, c(2, 4), 6))

complex_pref Complex Preferences

Description

Complex preferences are used to compose different preference orders. For example the Pareto
composition (via operator *) is the usual operator to compose the preference for a Skyline query.
The Skyline is also known as Pareto frontier. All complex preferences are mathematically strict
partial orders (irreflexive and transitive).

Usage

S4 method for signature 'preference,preference'
e1 * e2

S4 method for signature 'preference,preference'
e1 & e2

S4 method for signature 'preference,preference'
e1 | e2

S4 method for signature 'preference,preference'
e1 + e2

reverse(p)

is.complex_pref(x)

Arguments

p, e1, e2 Preference objects (they can be either base preferences, see base_pref, or com-
plex preferences)

x An object to be tested if it is a complex preference.

Skylines

The most important preference composition operator is the Pareto operator (p1 * p2) to formulate
a Skyline query. A tuple t1 is better than t2 w.r.t. p1 * p2 if it is strictly better w.r.t. one of the
preferences p1, p2 and is better or equal w.r.t. the other preference.

The syntactical correspondence to other query languages supporting Skylines/preferences to rPref
is given as follows:

complex_pref 7

• A query in the syntax from Borzsonyi et. al (2001) like
"... SKYLINE OF a MAX, b MIN, c MAX"
corresponds in rPref to the preference
high(a) * low(b) * high(c).

• A query in the syntax from Kiessling (2002) like
"... PREFERRING a LOWEST AND (b HIGHEST PRIOR TO c LOWEST)"
corresponds in rPref to
low(a) * (high(b) & low(c)).

• A query in the syntax of the "Skyline" feature of the commercial database "EXASOL EXAS-
olution 5" like
"... PREFERRING LOW a PLUS (b = 1 PRIOR TO LOW c))"
corresponds in rPref to
low(a) * (true(b == 1) & low(c)).

Note that preferences in rPref can be translated to some of this query dialects by show.query.

Definition of Additional Preference Operators

Additionally, rPref supports the following preference composition operators:

p1 & p2 Prioritization (lexicographical order): A tuple t1 is better than t2 w.r.t. p1 & p2 if it is
strictly better w.r.t. p1 or is equal w.r.t. p1 and is better w.r.t. p2.

p1 | p2 Intersection preference: A tuple t1 is better than t2 w.r.t. p1 | p2 if it is strictly better w.r.t.
both preferences. This is a stricter variant of the Pareto operator. The evaluation of psel(df,
p1 | p2) is always a subset of psel(df, p1 * p2).

p1 + p2 Union preference: A tuple t1 is better than t2 w.r.t. p1 + p2 if it is strictly better w.r.t.
to one of the preferences. Note that this can violate the strict partial order property, if the
domains (the tuples on which p1 and p2 define better-than-relationships) of the preferences
are not disjoint.

reverse(p1) or -p1 Reverse preference (converse relation): A tuple t1 is better than t2 w.r.t. -p1
if t2 is better than t1 w.r.t. p1. The unary minus operator, i.e. -p1, is a short hand notation for
reverse(p1).

The function is.complex_pref returns TRUE if x is a complex preference object (i.e., was con-
structed by one of these binary operators or the unary operator reverse) and FALSE otherwise.

Associated Data Sets

If one of the preferences for a binary operator are associated with a data set (see base_pref), then
this association is propagated. For example, the preference

p <- high(mpg, df = mtcars) * high(hp)

as well as

p <- high(mpg) * high(hp, df = mtcars)

both result in the same complex preference which is associated with mtcars. A partial evaluation
is also invoked for all preferenced which are added. For example, using this p,

8 general_pref

p <- p * true(cyl == max(mtcars$cyl))

generates the following console output:

[Preference] high(mpg) * high(hp) * true(cyl == 8)
* associated data source: data.frame "mtcars" [32 x 11]

We see that the association with the data set is propagated and max(mtcars$cyl) is partially eval-
uated.

References

S. Borzsonyi, D. Kossmann, K. Stocker (2001): The Skyline Operator. In Data Engineering (ICDE
’01), pages 421-430.

W. Kiessling (2002): Foundations of Preferences in Database Systems. In Very Large Data Bases
(VLDB ’02), pages 311-322.

S. Mandl, O. Kozachuk, M. Endres, W. Kiessling (2015): Preference Analytics in EXASolution.
16th Conference on Database Systems for Business, Technology, and Web.

See Also

See base_pref for the construction of base preferences. See general_pref for functions applica-
ble to all kind of preferences. See psel for the evaluation of preferences.

Examples

define preference for cars with low consumption (high mpg-value)
and simultaneously high horsepower
p1 <- high(mpg) * high(hp)

perform the preference search
psel(mtcars, p1)

alternative way: create preference with associated data set
p2 <- high(mpg, df = mtcars) * high(hp)
peval(p2)

general_pref Utility Functions for Preferences

Description

Collection of some useful functions which are applicable to all preference objects.

general_pref 9

Usage

empty()

is.empty_pref(x)

S4 method for signature 'preference'
length(x)

is.preference(x)

S4 method for signature 'preference'
as.expression(x, ...)

S4 method for signature 'preference'
assoc.df(x)

S4 replacement method for signature 'preference'
assoc.df(x) <- value

Arguments

x A preference, or, for is.preference, an object to be tested if it is an (empty)
preference.

... Optional arguments passed to as.expression.

value A data frame to associate with a preference object.

Details

The empty preference empty() is a neutral element for the complex preference compositions {*,
&, +}. It holds that empty() * p and empty() & p is equal to p for all preferences p.

The function length(p) returns the term length of the preference term p which is defined as the
number of base preferences in a complex preference term. The empty preference empty() has
length 0, and all base preferences have length 1.

With as.expression(p) for a preference p the call to the preference is constructed. This means,
eval(as.expression(p)) returns the preference p, evaluated in the current environment.

The function is.empty_pref returns TRUE if x is the empty preference object empty() and FALSE
otherwise.

With assoc.df the associated data frame of a preference can be retrieved or set. Setting the associ-
ated data frame means that a partial evaluation based on this data frame is done. See show.pref for
details on partial evaluation of preferences. Next, the preference is linked to that data frame, such
that peval(p) can be used instead of psel(df, p). It returns NULL if no data frame is associated.
Use set.assoc.df(NULL) to delete an associated data frame.

See Also

See base_pref for the construction of base preferences, and complex_pref for the construction of
complex preferences. See show.pref for string output and partial evaluation of preference terms.

10 get_hasse_diag

Examples

Same as low(a) * low(b)
p <- low(a) * low(b) * empty()

returns 2, as empty() does not count
length(p)

the preference expression (without empty())
as.expression(p)

get_hasse_diag Adjacency List of Hasse diagramm

Description

Returns the adjacency list of the Hasse diagram of a preference as an (n x 2) matrix. This is the
transitive reduction of the preference relation.

Usage

get_hasse_diag(df, pref)

Arguments

df A data frame.

pref A preference on the columns of df, see psel for details.

Details

A row (i, j) in the resulting matrix means that df[i,] is better than df[j,] with regard to the
preference p. The matrix is the transitive reduction (Hasse diagram) of the induced relations, i.e., if
(1,2) and (2,3) occur in the result, then (1,3) will not be contained. The number of rows in the result
depends on the number of non-transitive Better-Than-Relationships in df w.r.t. p.

See Also

get_btg to plot the Hasse diagram.

Examples

get_hasse_diag(mtcars, low(mpg))

plot_btg 11

plot_btg Better-Than-Graphs

Description

Returns/plots a Hasse diagram of a preference order (also called the Better-Than-Graph, short BTG)
on a given data set. Ploting within R relies on the igraph package or the Rgraphviz package. Alter-
natively, a dot file for an external graphviz/dot interpreter can be generated.

Usage

plot_btg(df, pref, labels = 1:nrow(df), flip.edges = FALSE,
levelwise = TRUE, use_dot = "Rgraphviz" %in%
rownames(installed.packages()))

get_btg(df, pref, flip.edges = FALSE, use_dot = "Rgraphviz" %in%
rownames(installed.packages()))

get_btg_dot(df, pref, labels = 1:nrow(df), flip.edges = FALSE,
levelwise = TRUE, file = NULL)

Arguments

df A data frame.

pref A preference on the columns of df, see psel for details.

labels (optional) Labels for the vertices. Default values are the row indices.

flip.edges (optional) Flips the orientation of edges, if TRUE than arrows point from worse
nodes to better nodes.

levelwise (optional) Only relevant is the dot layouter is used. If TRUE, all tuples from the
same level are placed on one row. If FALSE, the row arrangement is subject to
the dot layouter.

use_dot (optional) If TRUE, the dot layouter from Rgraphviz is used. If FALSE, igraph is
used. By default this is TRUE iff Rgraphviz is available.

file (optional) If specified, then get_btg_dot writes the graph specification to given
file path. If not specified, the graph specification is returned as a string.

Details

The Hasse diagram of a preference visualizes all the better-than-relationships on a given data set.
All edges which can be retrieved by transitivity of the order are omitted in the graph.

The functions get_btg and plot_btg either use the igraph package (if use_dot = FALSE) or the dot
layouter from the Rgraphviz package (if use_dot = TRUE). If Rgraphviz is available it is used by de-
fault, otherwise the igraph Package is used. Note that Rgraphviz is only available on BioConductor
and not on CRAN.

12 plot_btg

The dot layouter from Rgraphviz is more appropriate for Better-Than-Graphs than the igraph lay-
outer, as all edges will be directed in the same direction (rank based ordering). Using levelwise =
TRUE (the default), all tuples of the same level are placed on the same row.

BTGs with igraph

If used with use_dot = FALSE, the function get_btg returns a list l with the following list entries:

l$graph An igraph object, created with the igraph package.

l$layout A typical Hasse diagram layout for plotting the graph, also created with igraph.

To plot the resulting graph returned from get_btg, use the plot function as follows:

plot(l$graph, layout = l$layout)

For more details, see igraph.plotting.

BTGs with Rgraphviz

If used with use_dot = FALSE, the function get_btg returns a graphNEL object from the graph-
package (Rgraphviz is build on top of that package). This object can also be plotted using plot(...).

Direct Plotting

In both cases (wheter Rgraphviz is used or not), the function plot_btg directly plots the Better-
Than-Graph. There is an additional parameter labels, specifying the node labels. The default are
the row numbers (not the rownames of the data frame), ranging from "1" to as.character(nrow(df)).

Dot (Graphviz) String Output

The function get_btg_dot produces the source code of the Better-Than-Graph in the dot language
of the Graphviz software. This is useful for an external dot interpreter. Depending on the file
parameter the output is either written to a file (if a file path is given) or returned as a string (if file
= NULL).

Additional Parameters

By default, the directed edges in the diagram point from better to worse nodes w.r.t. the preference.
This means an arrow can be read as "is better than". If flip.edges = TRUE is set, then the arrows
point from worse nodes to better nodes ("is worse than"). In any case, the better nodes are plotted
at the top and the worse nodes at the bottom of the diagram.

If Rgraphviz is used for plot_btg and for get_btg_dot, the option levelwise controls if all nodes
of the same level are placed in one row. If this parameter is FALSE, then the vertical arrangement is
subject to the dot layouter.

Examples

pick a small data set and create preference and BTG
df <- mtcars[1:10,]
pref <- high(mpg) * low(wt)

plot_front 13

directly plot the BTG with row numbers as labels
uses Rgraphviz if available and igraph otherwise
plot_btg(df, pref)

plot the graph with labels with relevant values
labels <- paste0(df$mpg, "; ", df$wt)
plot_btg(df, pref, labels)

show lattice structure of 3-dimensional Pareto preference
df <- merge(merge(data.frame(x = 1:3), data.frame(y = 1:3)), data.frame(z = 1:2))
labels <- paste0(df$x, ",", df$y, ",", df$z)
plot_btg(df, low(x) * low(y) * low(z), labels)

Create a graph with external Graphviz (requires installed Graphviz)
Not run:
creates tmpgraph.dot in the current working directoy
get_btg_dot(df, pref, labels, file = "tmpgraph.dot")
convert to diagram tmpgraph.png using Graphviz
shell(paste0('"C:/Program Files (x86)/Graphviz2.38/bin/dot.exe"',

' -Tpng tmpgraph.dot -o tmpgraph.png'))
open resulting image
shell("tmpgraph.png")
End(Not run)

plot_front Pareto Front Plot

Description

Connects the points of a Pareto front (also known as Pareto frontier) and hence visualizes the dom-
inance region of a Skyline.

Usage

plot_front(df, pref, ...)

Arguments

df The data frame for which the Pareto front is plotted. This may be already a max-
imal set w.r.t. the preference pref, but anyway the maximal set is recalculated
via psel(df, pref).

pref The preference representing the Skyline goals. This must be a Pareto composi-
tion (p1 * p2) or intersection composition (p1 | p2) of two low or high prefer-
ences.

... Additional graphic parameters which are passed to the segments function (in-
ternally used to plot the front).

14 pred_succ

Details

plot_front assumes that there is an existing plot, where the value of the first preference was plotted
as x-coordinate and the value of the second preference as y-coordinate.

Note that plot_front is only recommended if you want to use the plotting functionality from base
R. If you prefer to use ggplot2, we recommend using geom_step for plotting the Pareto front. See
vignette("visualization", package = "rPref") for examples.

Examples

plots Pareto fronts for the hp/mpg values of mtcars
show_front <- function(pref) {

plot(mtcars$hp, mtcars$mpg)
sky <- psel(mtcars, pref)
plot_front(mtcars, pref, col = rgb(0, 0, 1))
points(skyhp, skympg, lwd = 3)

}

do this for all four combinations of Pareto compositions
show_front(low(hp) * low(mpg))
show_front(low(hp) * high(mpg))
show_front(high(hp) * low(mpg))
show_front(high(hp) * high(mpg))

compare this to the front of a intersection preference
show_front(high(hp) | high(mpg))

pred_succ Predecessor and Successor Functions

Description

Function for traversing the BTG (Better-Than-Graph or Hasse diagram) of a preference.

Usage

init_pred_succ(p, df = NULL)

hasse_pred(p, v, intersect = FALSE)

hasse_succ(p, v, intersect = FALSE)

all_pred(p, v, intersect = FALSE)

all_succ(p, v, intersect = FALSE)

pred_succ 15

Arguments

p A preference. Worse tuples in the induced order are successors and better tuples
are predecessors.

df (optional) A data frame characterizing the set wherein predecessors/successors
are searched. If df is NULL then the data frame associated with the preference is
used. Causes an error if df == NULL and no data frame is associated.

v A numeric vector of indices in df. This represents the set of tuples for which
predecessors/successors are searched.

intersect (optional) Logical value. If it is FALSE (by default) the union of all predeces-
sors/successors of v is returned. For intersect = TRUE the intersection of those
values is returned.

Details

These functions return the predecessors and successors in the Better-Than-Graph of a preference.
Note that the successors/predecessors can can be plotted via get_btg. Before any of the succes-
sor/predecessor functions can be used the initialization has to be called as follows:

init_pred_succ(p, df)

There p is a preference object and df a data frame. When this done, the data frame df is associated
with p, i.e., implicitly assoc.df is called. If the preference has already an associcated data frame,
df can be omitted. For example

p <- low(mpg, df = mtcars)
init_pred_succ(p)

does the initialization of the preference low(mpg) on the data set mtcars.

The init_pred_succ function calculates the Better-Than-Relation on df w.r.t. p. Afterwards the
predecessor and successor functions, as subsequently described, can be called. The value of v is a
numeric vector within 1:nrow(df) and characterizes a subset of tuples in df. The return value of
these functions is again a numeric vector referring to the row numbers in df and it is always ordered
ascending, independently of the order of the indices in v.

all_pred(p, v) Returns all predecessors of v, i.e., indices of better tuples than v.

all_succ(p, v) Returns all successors of v, i.e., indices of worse tuples than v.

hasse_pred(p, v) Returns the direct predecessors of v, i.e., indices of better tuples than v where
the better-than-relation is contained in the transitive reduction.

hasse_succ(p, v) Returns the direct successors of v, i.e., indices of worse tuples than v where
the better-than-relation is contained in the transitive reduction.

If v has length 1, then the value of intersect does not matter, as there is nothing to intersect or join.
For scalar values x and y the following identities hold, where f is one of the predecessor/successor
functions:

f(p, c(x, y), intersect = FALSE) == union(f(p, x), f(p, y))

f(p, c(x, y), intersect = TRUE) == intersect(f(p, x), f(p, y))

16 psel

Examples

preference on mtcars for high mpg and low weight
p <- high(mpg) * low(wt)
init_pred_succ(p, mtcars)

helper to show mpg/hp values
show_vals <- function(x) mtcars[x,c('mpg','wt')]

pick some tuple "in the middle"
show_vals(10)

show (direct) predecessors/successors of tuple 10
show_vals(hasse_pred(p, 10)) # Next better car
show_vals(hasse_succ(p, 10)) # Next worse car
show_vals(all_pred(p, 10)) # All better cars
show_vals(all_succ(p, 10)) # All worse cars

psel Preference Selection

Description

Evaluates a preference on a given data set, i.e., returns the maximal elements of a data set for a
given preference order.

Usage

psel(df, pref, ...)

psel.indices(df, pref, ...)

peval(pref, ...)

Arguments

df A data frame or, for a grouped preference selection, a grouped data frame. See
below for details.

pref The preference order constructed via complex_pref and base_pref. All vari-
ables occurring in the definition of pref must be either columns of the data
frame df or variables/functions of the environment where pref was defined.

... Additional (optional) parameters for top(-level)-k selections:
top A top value of k means that the k-best tuples of the data set are returned.

This may be non-deterministic, see below for details.
at_least An at_least value of k returns the top-k tuples and additionally all

tuples which are not dominated by the worst tuple (i.e. the minima) of the
Top-k set. The number of tuples returned is greater or equal than at_least.
In contrast to top-k, this is deterministic.

psel 17

top_level A top_level value of k returns all tuples from the k-best levels.
See below for the definition of a level.

and_connected Logical value, which is only relevant if more than one of the
above {top, at_least, top_level} values is given, otherwise it will be
ignored. Then and_connected = TRUE (which is the default) means that
all top-conditions must hold for the returned tuples: Let cond1 and cond2
be top-conditions like top=2 or top_level=3, then psel([...], cond1,
cond2) is equivalent to the intersection of psel([...], cond1) and psel([...],
cond2). If we have and_connected = FALSE, these conditions are or-connected.
This corresponds to the union of psel([...], cond1) and psel([...],
cond2).

show_level Logical value. If TRUE, a column .level is added to the returned
data frame, containing all level values. If at least one of the {top, at_least,
top_level} values are given, then show_level is TRUE by default for the
psel function. Otherwise, and for psel.indices in all cases, this option
is FALSE by default.

Details

The difference between the three variants of the preference selection is:

• The psel function returns a subset of the data set which are the maxima according to the given
preference.

• The function psel.indices returns just the row indices of the maxima (except top-k queries
with show_level = TRUE, see top-k preference selection). Hence psel(df, pref) is equiva-
lent to df[psel.indices(df, pref),] for non-grouped data frames.

• Finally, peval does the same like psel, but assumes that p has an associated data frame
which is used for the preference selection. Consider base_pref to see how base preferences
are associated with data sets or use assoc.df to explicitly associate a preference with a data
frame.

Top-k Preference Selection

For a given top value of k the k best elements and their level values are returned. The level values
are determined as follows:

• All the maxima of a data set w.r.t. a preference have level 1.

• The maxima of the remainder, i.e., the data set without the level 1 maxima, have level 2.

• The n-th iteration of "Take the maxima from the remainder" leads to tuples of level n.

By default, psel.indices does not return the level values. By setting show_level = TRUE this
function returns a data frame with the columns ’.indices’ and ’.level’. Note that, if none of the top-k
values {top, at_least, top_level} is set, then all level values are equal to 1.

By definition, a top-k preference selection is non-deterministic. A top-1 query of two equivalent
tuples (equivalence according to pref) can return on both of these tuples. For example, a top=1
preference selection on the tuples (a=1, b=1), (a=1, b=2) w.r.t. low(a) preference can return either
the ’b=1’ or the ’b=2’ tuple.

18 psel

On the contrary, a preference selection using at_least is deterministic by adding all tuples having
the same level as the worst level of the corresponding top-k query. This means, the result is filled
with all tuples being not worse than the top-k result. A preference selection with top-level-k returns
all tuples having level k or better.

If the top or at_least value is greater than the number of elements in df (i.e., nrow(df)), or
top_level is greater than the highest level in df, then all elements of df will be returned without
further warning.

Grouped Preference Selection

Using psel it is also possible to perform a preference selection where the maxima are calculated
for every group separately. The groups have to be created with group_by from the dplyr package.
The preference selection preserves the grouping, i.e., the groups are restored after the preference
selection.

For example, if the summarize function from dplyr is applied to psel(group_by(...), pref), the
summarizing is done for the set of maxima of each group. This can be used to e.g., calculate the
number of maxima in each group, see the examples below.

A {top, at_least, top_level} preference selection is applied to each group separately. A top=k
selection returns the k best tuples for each group. Hence if there are 3 groups in df, each containing
at least 2 elements, and we have top = 2, then 6 tuples will be returned.

Parallel Computation

On multi-core machines the preference selection can be run in parallel using a divide-and-conquer
approach. Depending on the data set, this may be faster than a single-threaded computation. To
activate parallel computation within rPref the following option has to be set:

options(rPref.parallel = TRUE)

If this option is not set, rPref will use single-threaded computation by default. With the option
rPref.parallel.threads the maximum number of threads can be specified. The default is the
number of cores on your machine. To set the number of threads to the value of 4, use:

options(rPref.parallel.threads = 4)

See Also

See complex_pref on how to construct a Skyline preference.

Examples

Skyline and top-k/at-least skyline
psel(mtcars, low(mpg) * low(hp))
psel(mtcars, low(mpg) * low(hp), top = 5)
psel(mtcars, low(mpg) * low(hp), at_least = 5)

preference with associated data frame and evaluation
p <- low(mpg, df = mtcars) * (high(cyl) & high(gear))
peval(p)

rPref 19

visualize the skyline in a plot
sky1 <- psel(mtcars, high(mpg) * high(hp))
plot(mtcars$mpg, mtcars$hp)
points(sky1$mpg, sky1$hp, lwd=3)

grouped preference with dplyr
library(dplyr)
psel(group_by(mtcars, cyl), low(mpg))

return size of each maxima group
summarise(psel(group_by(mtcars, cyl), low(mpg)), n())

rPref Summary of the rPref Package

Description

rPref contains routines to select and visualize the maxima for a given strict partial order. This
especially includes the computation of the Pareto frontier, also known as (Top-k) Skyline operator,
and some generalizations (database preferences).

Preference Composition/Selection

• Preferences are primarily composed from base preferences (see base_pref) and complex
preferences (see complex_pref), where especially the Pareto operator for Skylines is such
a complex preference.

• Some utility functions for preferences are collected in general_pref.

• Additionally some base preference macros are provided in base_pref_macros.

• The (top(-level)-k) preference selection psel allows to retrieve the maxima of a preference (or
Pareto frontier, Skyline), constructed with the functions above, on a given data set.

Visualization and Analysis of Preferences

• The visualization of the preference order in a Better-Than-Graph (Hasse diagram) is possible
via plot_btg.

• The adjacency list of the Hasse diagram can be accessed via get_hasse_diag.

• Predecessors/successors in the Hasse diagram are calculated with the pred_succ functions.

• The Pareto frontier can be plotted using the plot_front function.

String Output of Preferences

• The preference query for some preference-supporting DBMS can be given by show.query.

• A preference is partially evaluated and printed with show.pref.

20 show.pref

Vignettes

To learn the basics of rPref, start with the vignettes:

• A general introduction and some examples are given in
vignette("introduction", package = "rPref")

• The visualization of preferences is explained in
vignette("visualization", package = "rPref")

Further Information

The rPref homepage is http://www.p-roocks.de/rpref. To submit bugs, feature requests or
other comments, feel free to write a mail to me.

Author(s)

Patrick Roocks, <mail@p-roocks.de>

show.pref Partial Evaluation and String Output of Preferences

Description

Functions to substitute variables and functions in preferences which can be calculated before the
preference is evaluated on a data frame and character output of preferences.

Usage

show.pref(p, df = NULL)

S4 method for signature 'preference'
as.character(x, ...)

pref.str(p, df = NULL)

partial.eval.pref(p, df = NULL)

Arguments

p, x The preference to be shown or partially evaluated.

df (optional) A data frame on which the preference operates. Used for partial eval-
uation.

... Optional arguments passed to as.character.

http://www.p-roocks.de/rpref

show.query 21

Details

The function pref.str (or as.character(p) for a preference p) returns the preference string while
show.pref outputs it directly to the console, preceded by '[Preference]'. If df is specified, then
a partial evaluation of the preference is done before converting it to a string.

The function partial.eval.pref (with given data frame df) partially evaluates the internal pref-
erence expression and returns again a preference object. All expressions in p are evaluated in the
environment where p was defined, except the the column names in df (which are potential attributes
in p) and except the special variable df__, which accesses the entire data set (see psel). The content
of the data frame df does not matter; only names(df) is used to get the "free variables" in p.

If p has already an associated data frame (see assoc.df), then a partial evaluation was already
done when the data frame was associated. In this case, the df parameter should not be used. The
association will not be changed if one of these function are called with a given data frame on a
preference object having an associated data frame.

Partial Evaluation Before String Output

The functions show.pref and pref.str have the optional parameter df. If this parameter is given,
these functions call partial.eval.pref before they output or return the preference string. The
following equalities hold:

• as.character(partial.eval.pref(p, df)) == pref.str(p, df)

• show(partial.eval.pref(p, df)) produces the same console output as show.pref(p, df)

See Also

See general_pref for more utility functions for preferences.

Examples

f <- function(x) 2*x
p <- true(cyl == f(1))

prints 'true(cyl == f(1))'
p

prints 'true(cyl == 2)'
show.pref(p, mtcars)
partial.eval.pref(p, mtcars)

show.query Show Preferences in Database Query Languages

Description

For a given preference this shows the PREFERRING clause of a database query in different SQL
dialects which support preferences.

22 show.query

Usage

show.query(p, dialect = "EXASOL", df = NULL)

Arguments

p A preference.

dialect The preference query dialect, which determines the syntax of the returned query.
This has to be one of the following (not case sensitive):

’EXASOL’: Syntax of the "Skyline" feature of the commercial database EXA-
SOL EXASolution 5.

’Preference SQL’ or ’PSQL’: Syntax of the Preference SQL system. This is
a research prototype developed at the Chair of Databases and Information
Systems of the University of Augsburg. See references for details.

df Optional parameter to specify a data frame on which the preference operates
causing a partial evaluation. See show.pref for details.

Details

There are few database systems supporting Skyline queries. A Skyline query consists of a usual
SQL query followed by a PREFERRING-clause (in some rarely used dialects also SKYLINE OF). For
example consider a database table r(a,b). The preference selection psel(r, low(a) * high(b))
can be expressed by (in the Exasol dialect):

SELECT * FROM r PREFERRING LOW a PLUS HIGH b

The show.query function generates just the PREFERRING-clause, i.e. show.query(low(a) * high(b))
returns

PREFERRING LOW a PLUS HIGH b

As usual in SQL queries, all keywords are not case sensitive, i.e., PLUS or plus does not make any
difference.

References

W. Kiessling, M. Endres, F. Wenzel (2011): The Preference SQL System - An Overview. IEEE
Data Engineering Bulletin, Vol. 34 No. 3, pages 12-19.

S. Mandl, O. Kozachuk, M. Endres, W. Kiessling (2015): Preference Analytics in EXASolution.
16th Conference on Database Systems for Business, Technology, and Web.

Examples

show.query(low(a) * high(b))

show.query(low(a) * high(b), dialect = 'Preference SQL')

Index

*,preference,preference-method
(complex_pref), 6

*,preference-method (complex_pref), 6
+,preference,preference-method

(complex_pref), 6
+,preference-method (complex_pref), 6
&,preference,preference-method

(complex_pref), 6
&,preference-method (complex_pref), 6

all_pred (pred_succ), 14
all_succ (pred_succ), 14
around (base_pref_macros), 4
as.character,basepref-method

(show.pref), 20
as.character,complexpref-method

(show.pref), 20
as.character,emptypref-method

(show.pref), 20
as.character,preference-method

(show.pref), 20
as.character,reversepref-method

(show.pref), 20
as.expression,basepref-method

(general_pref), 8
as.expression,complexpref-method

(general_pref), 8
as.expression,emptypref-method

(general_pref), 8
as.expression,preference-method

(general_pref), 8
as.expression,reversepref-method

(general_pref), 8
assoc.df, 4, 15, 17, 21
assoc.df (general_pref), 8
assoc.df,preference-method

(general_pref), 8
assoc.df<- (general_pref), 8
assoc.df<-,preference-method

(general_pref), 8

base_pref, 2, 5–9, 16, 17, 19
base_pref_macros, 4, 4, 19
between (base_pref_macros), 4

complex_pref, 4, 6, 9, 16, 18, 19

empty (general_pref), 8

general_pref, 4, 8, 8, 19, 21
get_btg, 10, 15
get_btg (plot_btg), 11
get_btg_dot (plot_btg), 11
get_hasse_diag, 10, 19
group_by, 18

hasse_pred (pred_succ), 14
hasse_succ (pred_succ), 14
high, 13
high (base_pref), 2
high_ (base_pref), 2

igraph, 11, 12
igraph.plotting, 12
init_pred_succ (pred_succ), 14
is.base_pref (base_pref), 2
is.complex_pref (complex_pref), 6
is.empty_pref (general_pref), 8
is.preference (general_pref), 8

layered (base_pref_macros), 4
length,basepref-method (general_pref), 8
length,complexpref-method

(general_pref), 8
length,emptypref-method (general_pref),

8
length,preference-method

(general_pref), 8
length,reversepref-method

(general_pref), 8
low, 13
low (base_pref), 2

23

24 INDEX

low_ (base_pref), 2

partial.eval.pref, 4
partial.eval.pref (show.pref), 20
peval, 4, 9
peval (psel), 16
plot_btg, 11, 19
plot_front, 13, 19
pos (base_pref_macros), 4
pred_succ, 14, 19
pref.str (show.pref), 20
psel, 3, 8, 10, 11, 16, 19, 21

reverse (complex_pref), 6
rPref, 19
rPref-package (rPref), 19

segments, 13
show.pref, 9, 19, 20, 22
show.query, 7, 19, 21

true, 5
true (base_pref), 2
true_ (base_pref), 2

	base_pref
	base_pref_macros
	complex_pref
	general_pref
	get_hasse_diag
	plot_btg
	plot_front
	pred_succ
	psel
	rPref
	show.pref
	show.query
	Index

