
Package ‘rcoreoa’
October 14, 2022

Type Package

Title Client for the CORE API

Description Client for the CORE API (<https://core.ac.uk/docs/>).
CORE (<https://core.ac.uk>) aggregates open access research
outputs from repositories and journals worldwide and make them
available to the public.

Version 0.4.0

License MIT + file LICENSE

URL https://docs.ropensci.org/rcoreoa,

https://github.com/ropensci/rcoreoa

BugReports https://github.com/ropensci/rcoreoa/issues

VignetteBuilder knitr

Encoding UTF-8

Language en-US

Imports crul, jsonlite, pdftools, hoardr

Suggests roxygen2 (>= 7.1.0), testthat, knitr, rmarkdown, rcrossref,
vcr

RoxygenNote 7.1.0

X-schema.org-applicationCategory Literature

X-schema.org-keywords text-ming, literature, pdf, publications,
citations, full-text, metadata

X-schema.org-isPartOf https://ropensci.org

NeedsCompilation no

Author Scott Chamberlain [aut, cre],
Aristotelis Charalampous [ctb],
Simon Goring [ctb]

Maintainer Scott Chamberlain <myrmecocystus+r@gmail.com>

Repository CRAN

Date/Publication 2020-07-07 17:00:02 UTC

1

https://core.ac.uk/docs/
https://core.ac.uk
https://docs.ropensci.org/rcoreoa
https://github.com/ropensci/rcoreoa
https://github.com/ropensci/rcoreoa/issues

2 rcoreoa-package

R topics documented:
rcoreoa-package . 2
core_advanced_search . 3
core_articles . 5
core_articles_dedup . 7
core_articles_history . 9
core_articles_pdf . 10
core_articles_search . 11
core_cache . 14
core_journals . 15
core_repos . 16
core_repos_search . 17
core_repos_search_ . 18

Index 20

rcoreoa-package rcoreoa - CORE R client

Description

CORE is a web service for metadata on scholarly journal articles. Find CORE at https://core.
ac.uk and their API docs at https://core.ac.uk/docs/.

Package API

Each API endpoint has two functions that interface with it - a higher level interface and a lower
level interface. The lower level functions have an underscore (_) at the end of the function name,
while their corresponding higher level companions do not. The higher level functions parse to
list/data.frame’s (as tidy as possible). Lower level functions give back JSON (character class) thus
are slightly faster not spending time on parsing to R structures.

• core_articles() / core_articles_() - get article metadata

• core_articles_history() / core_articles_history_() - get article history metadata

• core_articles_pdf() / core_articles_pdf_() - download article PDF, and optionally ex-
tract text

• core_journals() / core_journals_() - get journal metadata

• core_repos() / core_repos_() - get repository metadata

• core_repos_search() / core_repos_search_() - search for repositories

• core_search() / core_search_() - search articles

• core_advanced_search() - advanced search of articles

Authentication

You’ll need a CORE API token/key to use this package. Get one at https://core.ac.uk/api-keys/
register

https://core.ac.uk
https://core.ac.uk
https://core.ac.uk/docs/
https://core.ac.uk/api-keys/register
https://core.ac.uk/api-keys/register

core_advanced_search 3

Pagination

Note that you are limited to a maximum of 100 results for the search functions; use combination of
page and limit parameters to paginate through results. For example:

x1 <- core_search(query = 'ecology', limit = 100, page = 1)
x2 <- core_search(query = 'ecology', limit = 100, page = 2)

Author(s)

Scott Chamberlain <myrmecocystus@gmail.com>

Aristotelis Charalampous

core_advanced_search Advanced Search CORE

Description

Advanced Search CORE

Usage

core_advanced_search(
...,
page = 1,
limit = 10,
key = NULL,
parse = TRUE,
.list = list()

)

core_query(..., op = "AND")

Arguments

... for core_query(), query fields, see Details. for core_advanced_search() any
number of queries, results of calling core_query(). Required. See Details.

page (character) page number (default: 1), optional

limit (character) records to return (default: 10, minimum: 10, maximum: 100), op-
tional

key A CORE API key. Get one at https://core.ac.uk/api-keys/register.
Once you have the key, you can pass it into this parameter, or as a much bet-
ter option, store your key as an environment variable with the name CORE_KEY
or an R option as core_key. See ?Startup for how to work with env vars and
R options

parse (logical) Whether to parse to list (FALSE) or data.frame (TRUE). Default: TRUE

https://core.ac.uk/api-keys/register

4 core_advanced_search

.list alternative to passing core_query() calls to ...; just create a list of them and
pass to this parameter; easier for programming with

op (character) operator to combine multiple fields. options: AND, OR

Details

query should be one or more calls to core_query(), (at least one is required):

• title

• description

• fullText

• authors

• publisher: string, to be used as an absolute match against the publisher name metadata field

• repositories.id: repository id

• repositories.name: repository name

• doi: string, to be used as an absolute match against the repository name metadata field (all
other fields will be ignored if included)

• oai

• identifiers

• language.name: string, to filter against languages specified in https://en.wikipedia.org/wiki/ISO_639-
1

• year: year to filter to

core_advanced_search does the HTTP request and parses, while core_advanced_search_ just
does the HTTP request, gives back JSON as a character string

Value

data.frame with the following columns:

• status: string, which will be ’OK’ or ’Not found’ or ’Too many queries’ or ’Missing param-
eter’ or ’Invalid parameter’ or ’Parameter out of bounds’

• totalHits: integer, Total number of items matching the search criteria

• data: list, a list of relevant resource

References

https://core.ac.uk/docs/#!/all/searchBatch

Examples

Not run:
compose queries
core_query(title="psychology", year=2014)
core_query(title="psychology", year=2014, op="OR")
core_query(identifiers='"oai:aura.abdn.ac.uk:2164/3837"',

identifiers='"oai:aura.abdn.ac.uk:2164/3843"', op="OR")

core_articles 5

do actual searches
core_advanced_search(

core_query(identifiers='"oai:aura.abdn.ac.uk:2164/3837"',
identifiers='"oai:aura.abdn.ac.uk:2164/3843"', op="OR")

)

res <- core_advanced_search(
core_query(title="psychology"),
core_query(doi='"10.1186/1471-2458-6-309"'),
core_query(language.name="german")

)
res

End(Not run)

core_articles Get articles

Description

Get articles

Usage

core_articles(
id,
metadata = TRUE,
fulltext = FALSE,
citations = FALSE,
similar = FALSE,
duplicate = FALSE,
urls = FALSE,
extractedUrls = FALSE,
faithfulMetadata = FALSE,
key = NULL,
method = "GET",
parse = TRUE,
...

)

core_articles_(
id,
metadata = TRUE,
fulltext = FALSE,
citations = FALSE,
similar = FALSE,
duplicate = FALSE,

6 core_articles

urls = FALSE,
extractedUrls = FALSE,
faithfulMetadata = FALSE,
key = NULL,
method = "GET",
...

)

Arguments

id (integer) CORE ID of the article that needs to be fetched. Required

metadata Whether to retrieve the full article metadata or only the ID. Default: TRUE

fulltext Whether to retrieve full text of the article. Default: FALSE

citations Whether to retrieve citations found in the article. Default: FALSE

similar Whether to retrieve a list of similar articles. Default: FALSE Because the similar
articles are calculated on demand, setting this parameter to true might slightly
slow down the response time query

duplicate Whether to retrieve a list of CORE IDs of different versions of the article. De-
fault: FALSE

urls Whether to retrieve a list of URLs from which the article can be downloaded.
This can include links to PDFs as well as HTML pages. Default: FALSE

extractedUrls Whether to retrieve a list of URLs which were extracted from the article fulltext.
Default: FALSE. This parameter is not available in CORE API v2.0 beta

faithfulMetadata

Whether to retrieve the raw XML metadata of the article. Default: FALSE

key A CORE API key. Get one at https://core.ac.uk/api-keys/register.
Once you have the key, you can pass it into this parameter, or as a much bet-
ter option, store your key as an environment variable with the name CORE_KEY
or an R option as core_key. See ?Startup for how to work with env vars and
R options

method (character) one of ’GET’ (default) or ’POST’

parse (logical) Whether to parse to list (FALSE) or data.frame (TRUE). Default: TRUE

... Curl options passed to HttpClient

Details

core_articles does the HTTP request and parses, while core_articles_ just does the HTTP
request, gives back JSON as a character string

These functions take one article ID at a time. Use lapply/loops/etc for many ids

References

https://core.ac.uk/docs/#!/articles/getArticleByCoreIdBatch https://core.ac.uk/docs/
#!/articles/getArticleByCoreId

https://core.ac.uk/api-keys/register
https://core.ac.uk/docs/#!/articles/getArticleByCoreIdBatch
https://core.ac.uk/docs/#!/articles/getArticleByCoreId
https://core.ac.uk/docs/#!/articles/getArticleByCoreId

core_articles_dedup 7

Examples

Not run:
core_articles(id = 21132995)
core_articles(id = 21132995, fulltext = TRUE)
core_articles(id = 21132995, citations = TRUE)

when passing >1 article ID
ids <- c(20955435, 21132995, 21813171, 22815670, 23828884,

23465055, 23831838, 23923390, 22559733)
you can use method="GET" with lapply or similar
res <- lapply(ids, core_articles)
vapply(res, "[[", "", c("data", "datePublished"))

or use method="POST" passing all at once
res <- core_articles(ids, method = "POST")
head(res$data)
res$data$authors

just http request, get text back
core_articles_(id = '21132995')
POST, can pass many at once
core_articles_(id = ids, method = "POST")

End(Not run)

core_articles_dedup Article deduplication

Description

Article deduplication

Usage

core_articles_dedup(
doi = NULL,
title = NULL,
year = NULL,
description = NULL,
fulltext = NULL,
identifier = NULL,
repositoryId = NULL,
key = NULL,
parse = TRUE,
...

)

core_articles_dedup_(

8 core_articles_dedup

doi = NULL,
title = NULL,
year = NULL,
description = NULL,
fulltext = NULL,
identifier = NULL,
repositoryId = NULL,
key = NULL,
...

)

Arguments

doi (character) the DOI for which the duplicates will be identified. optional

title (character) title to match when looking for duplicate articles. Either year or
description should also be supplied if this parameter is supplied. optional

year (character) year the article was published. Only used in combination with the
value for title parameter. optional

description (character) abstract for an article based on which its duplicates will be found.
This should be more than 500 characters. Value for the title parameter should
also be supplied if this is supplied. optional

fulltext (character) Full text for an article based on which its duplicates will be found.
optional

identifier (character) CORE ID of the article for which the duplicates will be identified.
optional

repositoryId (character) Limit the duplicates search to particular repository id. optional

key A CORE API key. Get one at https://core.ac.uk/api-keys/register.
Once you have the key, you can pass it into this parameter, or as a much bet-
ter option, store your key as an environment variable with the name CORE_KEY
or an R option as core_key. See ?Startup for how to work with env vars and
R options

parse (logical) Whether to parse to list (FALSE) or data.frame (TRUE). Default: TRUE

... Curl options passed to HttpClient

References

https://core.ac.uk/docs/#!/articles/nearDuplicateArticles

Examples

Not run:
core_articles_dedup(title = "Managing exploratory innovation", year = 2010)
core_articles_dedup_(title = "Managing exploratory innovation", year = 2010)

ab = 'Neonicotinoid seed dressings have caused concern world-wide. We use
large field experiments to assess the effects of neonicotinoid-treated crops
on three bee species across three countries (Hungary, Germany, and the

https://core.ac.uk/api-keys/register
https://core.ac.uk/docs/#!/articles/nearDuplicateArticles

core_articles_history 9

United Kingdom). Winter-sown oilseed rape was grown commercially with
either seed coatings containing neonicotinoids (clothianidin or
thiamethoxam) or no seed treatment (control). For honey bees, we found
both negative (Hungary and United Kingdom) and positive (Germany)
effects during crop flowering. In Hungary, negative effects on honey
bees (associated with clothianidin) persisted over winter and resulted
in smaller colonies in the following spring (24% declines). In wild
bees (Bombus terrestris and Osmia bicornis), reproduction was
negatively correlated with neonicotinoid residues. These findings
point to neonicotinoids causing a reduced capacity of bee species
to establish new populations in the year following exposure.'
core_articles_dedup(
title = "Country-specific effects of neonicotinoid pesticides on honey bees and wild bees",
description = ab, verbose = TRUE)

End(Not run)

core_articles_history Get article history

Description

Get article history

Usage

core_articles_history(id, page = 1, limit = 10, key = NULL, parse = TRUE, ...)

core_articles_history_(id, page = 1, limit = 10, key = NULL, ...)

Arguments

id (integer) CORE ID of the article that needs to be fetched. One or more. Required

page (character) page number (default: 1), optional

limit (character) records to return (default: 10, minimum: 10, maximum: 100), op-
tional

key A CORE API key. Get one at https://core.ac.uk/api-keys/register.
Once you have the key, you can pass it into this parameter, or as a much bet-
ter option, store your key as an environment variable with the name CORE_KEY
or an R option as core_key. See ?Startup for how to work with env vars and
R options

parse (logical) Whether to parse to list (FALSE) or data.frame (TRUE). Default: TRUE

... Curl options passed to HttpClient

Details

core_articles_history does the HTTP request and parses, while core_articles_history_
just does the HTTP request, gives back JSON as a character string

https://core.ac.uk/api-keys/register

10 core_articles_pdf

Value

core_articles_history_ returns a JSON string on success. core_articles_history returns a
list (equal to id length) where each element is a list of length two with elements for data and status
of the request; on failure the data slot is NULL.

References

https://core.ac.uk/docs/#!/articles/getArticleHistoryByCoreId

Examples

Not run:
core_articles_history(id = 21132995)

ids <- c(20955435, 21132995, 21813171, 22815670, 14045109, 23828884,
23465055, 23831838, 23923390, 22559733)

res <- core_articles_history(ids)
vapply(res, function(z) z$data$datetime[1], "")

just http request, get text back
core_articles_history_(21132995)

End(Not run)

core_articles_pdf Download article pdf

Description

Download article pdf

Usage

core_articles_pdf(id, key = NULL, overwrite = FALSE, ...)

core_articles_pdf_(id, key = NULL, overwrite = FALSE, ...)

Arguments

id (integer) CORE ID of the article that needs to be fetched. One or more. Required

key A CORE API key. Get one at https://core.ac.uk/api-keys/register.
Once you have the key, you can pass it into this parameter, or as a much bet-
ter option, store your key as an environment variable with the name CORE_KEY
or an R option as core_key. See ?Startup for how to work with env vars and
R options

overwrite (logical) overwrite file or not if already on disk. Default: FALSE

... Curl options passed to crul::HttpClient()

https://core.ac.uk/docs/#!/articles/getArticleHistoryByCoreId
https://core.ac.uk/api-keys/register

core_articles_search 11

Details

core_articles_pdf does the HTTP request and parses PDF to text, while core_articles_pdf_
just does the HTTP request and gives back the path to the file

If you get a message like Error: Not Found (HTTP 404), that means a PDF was not found. That
is, it does not exist. That is, there is no PDF associated with the article ID you searched for. This is
the correct behavior, and nothing is wrong with this function or this package. We could do another
web request to check if the id you pass in has a PDF or not first, but that’s another request, slowing
this function down.

Value

core_articles_pdf_ returns a file path on success. When many IDs passed to core_articles_pdf
it returns a list (equal to length of IDs) where each element is a character vector of length equal to
number of pages in the PDF; but on failure throws warning and returns NULL. When single ID
apssed to core_articles_pdf it returns a character vector of length equal to number of pages in
the PDF, but on failure stops with message

References

https://core.ac.uk/docs/#!/articles/getArticlePdfByCoreId

Examples

Not run:
just http request, get file path back
core_articles_pdf_(11549557)

get paper and parse to text
core_articles_pdf(11549557)

ids <- c(11549557, 385071)
res <- core_articles_pdf(ids)
cat(res[[1]][1])
cat(res[[2]][1])

End(Not run)

core_articles_search Search CORE articles

Description

Search CORE articles

https://core.ac.uk/docs/#!/articles/getArticlePdfByCoreId

12 core_articles_search

Usage

core_articles_search(
query,
metadata = TRUE,
fulltext = FALSE,
citations = FALSE,
similar = FALSE,
duplicate = FALSE,
urls = FALSE,
faithfulMetadata = FALSE,
page = 1,
limit = 10,
key = NULL,
parse = TRUE,
...

)

core_articles_search_(
query,
metadata = TRUE,
fulltext = FALSE,
citations = FALSE,
similar = FALSE,
duplicate = FALSE,
urls = FALSE,
faithfulMetadata = FALSE,
page = 1,
limit = 10,
key = NULL,
...

)

Arguments

query (character) query string, required

metadata (logical) Whether to retrieve the full article metadata or only the ID. Default:
TRUE

fulltext (logical) Whether to retrieve full text of the article. Default: FALSE

citations (logical) Whether to retrieve citations found in the article. Default: FALSE

similar (logical) Whether to retrieve a list of similar articles. Default: FALSE. Because
the similar articles are calculated on demand, setting this parameter to true might
slightly slow down the response time

duplicate (logical) Whether to retrieve a list of CORE IDs of different versions of the
article. Default: FALSE

urls (logical) Whether to retrieve a list of URLs from which the article can be down-
loaded. This can include links to PDFs as well as HTML pages. Default: FALSE

core_articles_search 13

faithfulMetadata

(logical) Returns the records raw XML metadata from the original repository.
Default: FALSE

page (character) page number (default: 1), optional

limit (character) records to return (default: 10, minimum: 10, maximum: 100), op-
tional

key A CORE API key. Get one at https://core.ac.uk/api-keys/register.
Once you have the key, you can pass it into this parameter, or as a much bet-
ter option, store your key as an environment variable with the name CORE_KEY
or an R option as core_key. See ?Startup for how to work with env vars and
R options

parse (logical) Whether to parse to list (FALSE) or data.frame (TRUE). Default: TRUE

... Curl options passed to HttpClient

Details

core_articles_search does the HTTP request and parses, while core_articles_search_ just
does the HTTP request, gives back JSON as a character string

References

https://core.ac.uk/docs/#!/all/search

Examples

Not run:
core_articles_search(query = 'ecology')
core_articles_search(query = 'ecology', parse = FALSE)
core_articles_search(query = 'ecology', limit = 12)
out = core_articles_search(query = 'ecology', fulltext = TRUE)

core_articles_search_(query = 'ecology')
jsonlite::fromJSON(core_articles_search_(query = 'ecology'))

post request
query <- c('data mining', 'semantic web')
res <- core_articles_search(query)
head(res$data)
res$data[[2]]$doi

End(Not run)

https://core.ac.uk/api-keys/register
https://core.ac.uk/docs/#!/all/search

14 core_cache

core_cache Caching

Description

Manage cached rcoreoa files with hoardr

Details

The dafault cache directory is paste0(rappdirs::user_cache_dir(), "/R/rcoreoa"), but you
can set your own path using cache_path_set()

cache_delete only accepts 1 file name, while cache_delete_all doesn’t accept any names, but
deletes all files. For deleting many specific files, use cache_delete in a lapply() type call

Useful user functions

• core_cache$cache_path_get() get cache path

• core_cache$cache_path_set() set cache path

• core_cache$list() returns a character vector of full path file names

• core_cache$files() returns file objects with metadata

• core_cache$details() returns files with details

• core_cache$delete() delete specific files

• core_cache$delete_all() delete all files, returns nothing

Examples

Not run:
core_cache

list files in cache
core_cache$list()

delete certain database files
core_cache$delete("file path")
core_cache$list()

delete all files in cache
core_cache$delete_all()
core_cache$list()

set a different cache path from the default

End(Not run)

core_journals 15

core_journals Get journal via its ISSN

Description

Get journal via its ISSN

Usage

core_journals(id, key = NULL, method = "GET", parse = TRUE, ...)

core_journals_(id, key = NULL, method = "GET", ...)

core_repos_(id, key = NULL, method = "GET", ...)

Arguments

id (integer) One or more journal ISSNs. Required

key A CORE API key. Get one at https://core.ac.uk/api-keys/register.
Once you have the key, you can pass it into this parameter, or as a much bet-
ter option, store your key as an environment variable with the name CORE_KEY
or an R option as core_key. See ?Startup for how to work with env vars and
R options

method (character) one of ’GET’ (default) or ’POST’

parse (logical) Whether to parse to list (FALSE) or data.frame (TRUE). Default: TRUE

... Curl options passed to HttpClient

Details

core_journals does the HTTP request and parses, while core_journals_ just does the HTTP
request, gives back JSON as a character string

These functions take one article ID at a time. Use lapply/loops/etc for many ids

References

https://core.ac.uk/docs/#!/journals/getJournalByIssnBatch https://core.ac.uk/docs/
#!/journals/getJournalByIssn

Examples

Not run:
core_journals(id = '2167-8359')

ids <- c("2167-8359", "2050-084X")
res <- lapply(ids, core_journals)
vapply(res, "[[", "", c("data", "title"))

https://core.ac.uk/api-keys/register
https://core.ac.uk/docs/#!/journals/getJournalByIssnBatch
https://core.ac.uk/docs/#!/journals/getJournalByIssn
https://core.ac.uk/docs/#!/journals/getJournalByIssn

16 core_repos

just http request, get text back
core_journals_('2167-8359')

post request, ideal for lots of ISSNs
if (requireNamespace("rcrossref", quietly = TRUE)) {
library(rcrossref)
res <- lapply(c("bmc", "peerj", "elife", "plos", "frontiers"), function(z)

cr_journals(query = z))
ids <- na.omit(unlist(lapply(res, function(b) b$data$issn)))
out <- core_journals(ids, method = "POST")
head(out)

}

End(Not run)

core_repos Get repositories via their repository IDs

Description

Get repositories via their repository IDs

Usage

core_repos(id, key = NULL, method = "GET", parse = TRUE, ...)

Arguments

id (integer) One or more repository IDs. Required

key A CORE API key. Get one at https://core.ac.uk/api-keys/register.
Once you have the key, you can pass it into this parameter, or as a much bet-
ter option, store your key as an environment variable with the name CORE_KEY
or an R option as core_key. See ?Startup for how to work with env vars and
R options

method (character) one of ’GET’ (default) or ’POST’

parse (logical) Whether to parse to list (FALSE) or data.frame (TRUE). Default: TRUE

... Curl options passed to HttpClient

Details

core_repos does the HTTP request and parses, while core_repos_ just does the HTTP request,
gives back JSON as a character string

These functions take one article ID at a time. Use lapply/loops/etc for many ids

https://core.ac.uk/api-keys/register

core_repos_search 17

References

https://core.ac.uk/docs/#!/repositories/getRepositoryById https://core.ac.uk/docs/
#!/repositories/getRepositoryByIdBatch

Examples

Not run:
core_repos(id = 507)
core_repos(id = 444)

ids <- c(507, 444, 70)
res <- lapply(ids, core_repos)
vapply(res, "[[", "", c("data", "name"))

just http request, get json as character vector back
core_repos_(507)

End(Not run)

core_repos_search Search CORE repositories

Description

Search CORE repositories

Usage

core_repos_search(query, page = 1, limit = 10, key = NULL, parse = TRUE, ...)

Arguments

query (character) query string, required

page (character) page number (default: 1), optional

limit (character) records to return (default: 10, minimum: 10, maximum: 100), op-
tional

key A CORE API key. Get one at https://core.ac.uk/api-keys/register.
Once you have the key, you can pass it into this parameter, or as a much bet-
ter option, store your key as an environment variable with the name CORE_KEY
or an R option as core_key. See ?Startup for how to work with env vars and
R options

parse (logical) Whether to parse to list (FALSE) or data.frame (TRUE). Default: TRUE

... Curl options passed to HttpClient

https://core.ac.uk/docs/#!/repositories/getRepositoryById
https://core.ac.uk/docs/#!/repositories/getRepositoryByIdBatch
https://core.ac.uk/docs/#!/repositories/getRepositoryByIdBatch
https://core.ac.uk/api-keys/register

18 core_repos_search_

Details

core_repos_search does the HTTP request and parses, while core_repos_search_ just does the
HTTP request, gives back JSON as a character string

A POST method is allowed on this route, but it’s not supported yet.

References

https://core.ac.uk/docs/#!/repositories/search

Examples

Not run:
core_repos_search(query = 'mathematics')
core_repos_search(query = 'physics', parse = FALSE)
core_repos_search(query = 'pubmed')

core_repos_search_(query = 'pubmed')
library("jsonlite")
jsonlite::fromJSON(core_repos_search_(query = 'pubmed'))

End(Not run)

core_repos_search_ Search CORE

Description

Search CORE

Usage

core_repos_search_(query, page = 1, limit = 10, key = NULL, ...)

core_search(query, page = 1, limit = 10, key = NULL, parse = TRUE, ...)

core_search_(query, page = 1, limit = 10, key = NULL, ...)

Arguments

query (character) query string, required
page (character) page number (default: 1), optional
limit (character) records to return (default: 10, minimum: 10, maximum: 100), op-

tional
key A CORE API key. Get one at https://core.ac.uk/api-keys/register.

Once you have the key, you can pass it into this parameter, or as a much bet-
ter option, store your key as an environment variable with the name CORE_KEY
or an R option as core_key. See ?Startup for how to work with env vars and
R options

https://core.ac.uk/docs/#!/repositories/search
https://core.ac.uk/api-keys/register

core_repos_search_ 19

... Curl options passed to HttpClient

parse (logical) Whether to parse to list (FALSE) or data.frame (TRUE). Default: TRUE

Details

core_search does the HTTP request and parses, while core_search_ just does the HTTP request,
gives back JSON as a character string

References

https://core.ac.uk/docs/#!/all/search

Examples

Not run:
core_search(query = 'ecology')
core_search(query = 'ecology', parse = FALSE)
core_search(query = 'ecology', limit = 12)

core_search_(query = 'ecology')
library("jsonlite")
jsonlite::fromJSON(core_search_(query = 'ecology'))

post request
query <- c('data mining', 'machine learning', 'semantic web')
res <- core_search(query)
res
res$status
res$totalHits
res$data
head(res$data[[1]])

End(Not run)

Index

∗ package
rcoreoa-package, 2

core_advanced_search, 3
core_advanced_search(), 2
core_articles, 5
core_articles(), 2
core_articles_ (core_articles), 5
core_articles_(), 2
core_articles_dedup, 7
core_articles_dedup_

(core_articles_dedup), 7
core_articles_history, 9
core_articles_history(), 2
core_articles_history_

(core_articles_history), 9
core_articles_history_(), 2
core_articles_pdf, 10
core_articles_pdf(), 2
core_articles_pdf_ (core_articles_pdf),

10
core_articles_pdf_(), 2
core_articles_search, 11
core_articles_search_

(core_articles_search), 11
core_cache, 14
core_journals, 15
core_journals(), 2
core_journals_ (core_journals), 15
core_journals_(), 2
core_query (core_advanced_search), 3
core_repos, 16
core_repos(), 2
core_repos_ (core_journals), 15
core_repos_(), 2
core_repos_search, 17
core_repos_search(), 2
core_repos_search_, 18
core_repos_search_(), 2
core_search (core_repos_search_), 18

core_search(), 2
core_search_ (core_repos_search_), 18
core_search_(), 2
crul::HttpClient(), 10

HttpClient, 6, 8, 9, 13, 15–17, 19

lapply(), 14

rcoreoa (rcoreoa-package), 2
rcoreoa-package, 2

20

	rcoreoa-package
	core_advanced_search
	core_articles
	core_articles_dedup
	core_articles_history
	core_articles_pdf
	core_articles_search
	core_cache
	core_journals
	core_repos
	core_repos_search
	core_repos_search_
	Index

