
Package ‘rempsyc’
November 1, 2022

Title Convenience Functions for Psychology

Version 0.1.0

Date 2022-10-27

Description Make your workflow faster and easier. Easily customizable
plots (via 'ggplot2'), nice APA tables (following the style of the
American Psychological Association) exportable to Word (via
'flextable'), easily run statistical tests or check assumptions, and
automatize various other tasks.

License GPL (>= 3)

URL https://rempsyc.remi-theriault.com

BugReports https://github.com/rempsyc/rempsyc/issues

Depends R (>= 3.5)

Imports methods, rlang, dplyr (>= 1.0.4), flextable (>= 0.7.1),
effectsize, insight (>= 0.18.4), performance (>= 0.10.0)

Suggests ggplot2, lmtest, ggrepel, boot, bootES, ggsignif, qqplotr,
broom, correlation, datawizard (>= 0.5.0), emmeans, ggpubr,
interactions, knitr, markdown, rmarkdown, openxlsx, openxlsx2,
patchwork, psych, report (>= 0.5.1), see, testthat (>= 3.0.0),
VennDiagram

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.2.1

NeedsCompilation no

Author Rémi Thériault [aut, cre] (<https://orcid.org/0000-0003-4315-6788>)

Maintainer Rémi Thériault <remi.theriault@mail.mcgill.ca>

Repository CRAN

Date/Publication 2022-11-01 22:15:02 UTC

1

https://rempsyc.remi-theriault.com
https://github.com/rempsyc/rempsyc/issues
https://orcid.org/0000-0003-4315-6788

2 best_duplicate

R topics documented:
best_duplicate . 2
cormatrix_excel . 3
extract_duplicates . 4
find_mad . 5
format_value . 6
nice_assumptions . 7
nice_density . 8
nice_lm . 10
nice_lm_slopes . 11
nice_mod . 12
nice_na . 13
nice_normality . 15
nice_qq . 17
nice_randomize . 18
nice_reverse . 19
nice_scatter . 20
nice_slopes . 26
nice_table . 28
nice_t_test . 31
nice_var . 33
nice_varplot . 34
nice_violin . 35
overlap_circle . 40
scale_mad . 41
sr2 . 41
winsorize_mad . 42

Index 43

best_duplicate Choose the best duplicate

Description

Chooses the best duplicate, based on the duplicate with the fewer number of NA values. In case of
ties, it picks the first duplicate, as it is the one most likely to be valid and authentic, given practice
effects.

Usage

best_duplicate(data, id)

Arguments

data The data frame.

id The ID variable for which to check for duplicates.

cormatrix_excel 3

Value

A dataframe, containing only the "best" duplicates.

Examples

df1 <- data.frame(
id = c(1, 2, 3, 1, 3),
item1 = c(NA, 1, 1, 2, 3),
item2 = c(NA, 1, 1, 2, 3),
item3 = c(NA, 1, 1, 2, 3)

)

best_duplicate(df1, id = "id")

cormatrix_excel Easy export of correlation matrix to Excel (improved version)

Description

Easily output a correlation matrix and export it to Microsoft Excel, with the first row and column
frozen, and correlation coefficients colour-coded based on effect size (0.0-0.2: small (no colour);
0.2-0.4: medium (pink/light blue); 0.4-1.0: large (red/dark blue)), following Cohen’s suggestions
for small (.10), medium (.30), and large (.50) correlation sizes.

Based on the correlation and openxlsx2 packages.

Usage

cormatrix_excel(
data,
filename,
overwrite = TRUE,
p_adjust = "none",
print.mat = TRUE,
...

)

Arguments

data The data frame
filename Desired filename (path can be added before hand but no need to specify exten-

sion).
overwrite Whether to allow overwriting previous file.
p_adjust Default p-value adjustment method (default is "none", although correlation::correlation’s

default is "holm")
print.mat Logical, whether to also print the correlation matrix to console.
... Parameters to be passed to the correlation package (see ?correlation::correlation)

4 extract_duplicates

Value

A Microsoft Excel document, containing the colour-coded correlation matrix with significance stars,
on the first sheet, and the colour-coded p-values on the second sheet.

Author(s)

Adapted from @JanMarvin (JanMarvin/openxlsx2#286) and the original rempsyc::cormatrix_excel
(now internal function cormatrix_excel_deprecated)

Examples

Basic example
cormatrix_excel(mtcars, "cormatrix1")
cormatrix_excel(iris, p_adjust = "none", "cormatrix2")
cormatrix_excel(airquality, method = "spearman", "cormatrix3")

extract_duplicates Choose the best duplicate

Description

Chooses the best duplicate, based on the duplicate with the fewer number of NA values. In case of
ties, it picks the first duplicate, as it is the one most likely to be valid and authentic, given practice
effects.

Usage

extract_duplicates(data, id)

Arguments

data The data frame.

id The ID variable for which to check for duplicates.

Value

A dataframe, containing all duplicates, for visual inspection. Note that it also contains the first
occurrence of future duplicates, unlike the duplicated() base R function. Also contains an addi-
tional column reporting the number of missing values for that row, to help in the decision-making
when selecting which duplicates to keep.

find_mad 5

Examples

df1 <- data.frame(
id = c(1, 2, 3, 1, 3),
item1 = c(NA, 1, 1, 2, 3),
item2 = c(NA, 1, 1, 2, 3),
item3 = c(NA, 1, 1, 2, 3)

)

extract_duplicates(df1, id = "id")

Filter to exclude duplicates
df2 <- df1[-c(1, 5),]
df2

find_mad Identify outliers based on 3 MAD

Description

Identify outliers based on 3 median absolute deviations (MAD).

See: Leys, C., Ley, C., Klein, O., Bernard, P., & Licata, L. (2013). Detecting outliers: Do not
use standard deviation around the mean, use absolute deviation around the median. Journal of
Experimental Social Psychology, 49(4), 764–766. https://doi.org/10.1016/j.jesp.2013.03.013

Usage

find_mad(data, col.list, ID = NULL, criteria = 3, mad.scores = TRUE)

Arguments

data The data frame.

col.list List of variables to check for outliers.

ID ID variable if you would like the outliers to be identified as such.

criteria How many MAD to use as threshold (similar to standard deviations)

mad.scores Logical, whether to output robust z (MAD) scores (default) or raw scores. De-
faults to TRUE.

Value

A list of dataframes of outliers per variable, with row numbers, based on the MAD. When printed,
provides the number of outliers, selected variables, and any outlier flagged for more than one vari-
able. More information can be obtainned by using the attributes() function around the generated
object.

6 format_value

Author(s)

Hugues Leduc, Charles-Étienne Lavoie, Rémi Thériault

Examples

find_mad(
data = mtcars,
col.list = names(mtcars),
criteria = 3

)

mtcars2 <- mtcars
mtcars2$car <- row.names(mtcars)
find_mad(

data = mtcars2,
col.list = names(mtcars),
ID = "car",
criteria = 3

)

format_value Easily format p or r values

Description

Easily format p or r values. Note: converts to character class for use in figures or manuscripts to
accommodate e.g., "< .001".

Usage

format_value(value, type = "d", ...)

format_p(p, precision = 0.001, prefix = NULL, suffix = NULL, sign = FALSE)

format_r(r, precision = 0.01)

format_d(d, precision = 0.01)

Arguments

value Value to be formatted, when using the generic format_value().

type Specify r or p value.

... To specify precision level, if necessary, when using the generic format_value().
Simply add the precision argument.

p p-value to format.

precision Level of precision desired, if necessary.

nice_assumptions 7

prefix To add a prefix before the value.

suffix To add a suffix after the value.

sign Logical. Whether to add an equal sign for p-values higher or equal to .001.

r r-value to format.

d d-value to format.

Value

A formatted p, r, or d value.

Examples

format_value(0.00041231, "p")
format_value(0.00041231, "r")
format_value(1.341231, "d")
format_p(0.0041231)
format_p(0.00041231)
format_r(0.41231)
format_r(0.041231)
format_d(1.341231)
format_d(0.341231)

nice_assumptions Easy assumptions checks

Description

Test linear regression assumptions easily with a nice summary table.

Usage

nice_assumptions(model)

Arguments

model The lm object to be passed to the function.

Value

A dataframe, with p-value results for the Shapiro-Wilk, Breusch-Pagan, and Durbin-Watson tests,
as well as a diagnostic column reporting how many assumptions are not respected for a given model.

See Also

Other functions useful in assumption testing: nice_density, nice_normality, nice_qq, nice_varplot,
nice_var. Tutorial: https://rempsyc.remi-theriault.com/articles/assumptions

https://rempsyc.remi-theriault.com/articles/assumptions

8 nice_density

Examples

Create a regression model (using data available in R by default)
model <- lm(mpg ~ wt * cyl + gear, data = mtcars)
nice_assumptions(model)

Multiple dependent variables at once
DV <- names(mtcars[-1])
formulas <- paste(DV, "~ mpg")
models.list <- lapply(X = formulas, FUN = lm, data = mtcars)
assumptions.table <- do.call("rbind", lapply(models.list, nice_assumptions
))
assumptions.table

nice_density Easy density plots

Description

Make nice density plots easily. Internally, uses na.rm = TRUE.

Usage

nice_density(
data,
variable,
group,
colours,
ytitle = "Density",
xtitle = variable,
groups.labels = NULL,
grid = TRUE,
shapiro = FALSE,
title = variable,
histogram = FALSE,
breaks.auto = FALSE,
bins = 30

)

Arguments

data The data frame

variable The dependent variable to be plotted.

group The group by which to plot the variable.

colours Desired colours for the plot, if desired.

ytitle An optional y-axis label, if desired.

nice_density 9

xtitle An optional x-axis label, if desired.
groups.labels The groups.labels (might rename to xlabels for consistency with other func-

tions)
grid Logical, whether to keep the default background grid or not. APA style suggests

not using a grid in the background, though in this case some may find it useful
to more easily estimate the slopes of the different groups.

shapiro Logical, whether to include the p-value from the Shapiro-Wilk test on the plot.
title The desired title of the plot. Can be put to NULL to remove.
histogram Logical, whether to add an histogram
breaks.auto If histogram = TRUE, then option to set bins/breaks automatically, mimicking

the default behaviour of base R hist() (the Sturges method). Defaults to FALSE.
bins If histogram = TRUE, then option to change the default bin (30).

Value

A density plot of class ggplot, by group (if provided), along a reference line representing a matched
normal distribution.

See Also

Other functions useful in assumption testing: nice_assumptions, nice_normality, nice_qq,
nice_varplot, nice_var. Tutorial: https://rempsyc.remi-theriault.com/articles/assumptions

Examples

Make the basic plot
nice_density(

data = iris,
variable = "Sepal.Length",
group = "Species"

)

Further customization
nice_density(

data = iris,
variable = "Sepal.Length",
group = "Species",
colours = c("#00BA38", "#619CFF", "#F8766D"),
xtitle = "Sepal Length",
ytitle = "Density (vs. Normal Distribution)",
groups.labels = c(
"(a) Setosa",
"(b) Versicolor",
"(c) Virginica"

),
grid = FALSE,
shapiro = TRUE,
title = "Density (Sepal Length)"

)

https://rempsyc.remi-theriault.com/articles/assumptions

10 nice_lm

nice_lm Nice formatting of lm models

Description

Formats output of lm model object for a publication-ready format.

Note: this function uses the modelEffectSizes function from the lmSupport package to get the
sr2 effect sizes.

Usage

nice_lm(model, b.label = "b", mod.id = TRUE, ...)

Arguments

model The model to be formatted.

b.label What to rename the default "b" column (e.g., to capital B if using standardized
data for it to be converted to the Greek beta symbol in the nice_table function).

mod.id Logical. Whether to display the model number, when there is more than one
model.

... Further arguments to be passed to the lm function for the models.

Value

A formatted dataframe of the specified lm model, with DV, IV, degrees of freedom, regression
coefficient, t-value, p-value, and the effect size, the semi-partial correlation squared.

See Also

Checking simple slopes after testing for moderation: nice_lm_slopes, nice_mod, nice_slopes.
Tutorial: https://rempsyc.remi-theriault.com/articles/moderation

Examples

Make and format model
model <- lm(mpg ~ cyl + wt * hp, mtcars)
nice_lm(model)

Make and format multiple models
model2 <- lm(qsec ~ disp + drat * carb, mtcars)
my.models <- list(model, model2)
nice_lm(my.models)

https://rempsyc.remi-theriault.com/articles/moderation

nice_lm_slopes 11

nice_lm_slopes Nice formatting of simple slopes for lm models

Description

Extracts simple slopes from lm model object and format for a publication-ready format.

Note: this function uses the modelEffectSizes function from the lmSupport package to get the
sr2 effect sizes.

Usage

nice_lm_slopes(model, predictor, moderator, b.label = "b", mod.id = TRUE, ...)

Arguments

model The model to be formatted.

predictor The independent variable.

moderator The moderating variable.

b.label What to rename the default "b" column (e.g., to capital B if using standardized
data for it to be converted to the Greek beta symbol in the nice_table function).

mod.id Logical. Whether to display the model number, when there is more than one
model.

... Further arguments to be passed to the lm function for the models.

Value

A formatted dataframe of the simple slopes of the specified lm model, with DV, levels of IV, degrees
of freedom, regression coefficient, t-value, p-value, and the effect size, the semi-partial correlation
squared.

See Also

Checking for moderation before checking simple slopes: nice_lm, nice_mod, nice_slopes. Tu-
torial: https://rempsyc.remi-theriault.com/articles/moderation

Examples

Make and format model
model <- lm(mpg ~ gear * wt, mtcars)
nice_lm_slopes(model, predictor = "gear", moderator = "wt")

Make and format multiple models
model2 <- lm(qsec ~ gear * wt, mtcars)
my.models <- list(model, model2)
nice_lm_slopes(my.models, predictor = "gear", moderator = "wt")

https://rempsyc.remi-theriault.com/articles/moderation

12 nice_mod

nice_mod Easy moderations

Description

Easily compute moderation analyses, with effect sizes, and format in publication-ready format.

Note: this function uses the modelEffectSizes function from the lmSupport package to get the
sr2 effect sizes.

Usage

nice_mod(
data,
response,
predictor,
moderator,
moderator2 = NULL,
covariates = NULL,
b.label = "b",
mod.id = TRUE,
...

)

Arguments

data The data frame
response The dependent variable.
predictor The independent variable.
moderator The moderating variable.
moderator2 The second moderating variable, if applicable.
covariates The desired covariates in the model.
b.label What to rename the default "b" column (e.g., to capital B if using standardized

data for it to be converted to the Greek beta symbol in the nice_table function).
mod.id Logical. Whether to display the model number, when there is more than one

model.
... Further arguments to be passed to the lm function for the models.

Value

A formatted dataframe of the specified lm model, with DV, IV, degrees of freedom, regression
coefficient, t-value, p-value, and the effect size, the semi-partial correlation squared.

See Also

Checking simple slopes after testing for moderation: nice_slopes, nice_lm, nice_lm_slopes.
Tutorial: https://rempsyc.remi-theriault.com/articles/moderation

https://rempsyc.remi-theriault.com/articles/moderation

nice_na 13

Examples

Make the basic table
nice_mod(

data = mtcars,
response = "mpg",
predictor = "gear",
moderator = "wt"

)

Multiple dependent variables at once
nice_mod(

data = mtcars,
response = c("mpg", "disp", "hp"),
predictor = "gear",
moderator = "wt"

)

Add covariates
nice_mod(

data = mtcars,
response = "mpg",
predictor = "gear",
moderator = "wt",
covariates = c("am", "vs")

)

Three-way interaction
nice_mod(

data = mtcars,
response = "mpg",
predictor = "gear",
moderator = "wt",
moderator2 = "am"

)

nice_na Report missing values according to guidelines

Description

Nicely reports NA values according to existing guidelines. This function reports both absolute and
percentage values of specified column lists. Some authors recommend reporting item-level missing
item per scale, as well as participant’s maximum number of missing items by scale. For example,
Parent (2013) writes:

I recommend that authors (a) state their tolerance level for missing data by scale or subscale (e.g.,
“We calculated means for all subscales on which participants gave at least 75% complete data”)
and then (b) report the individual missingness rates by scale per data point (i.e., the number of

14 nice_na

missing values out of all data points on that scale for all participants) and the maximum by partici-
pant (e.g., “For Attachment Anxiety, a total of 4 missing data points out of 100 were observed, with
no participant missing more than a single data point”).

Usage

nice_na(data, vars, scales)

Arguments

data The data frame.

vars Variable (or lists of variables) to check for NAs.

scales The scale names to check for NAs (single character string).

Value

A dataframe, with:

• var: variables selected

• items: number of items for selected variables

• na: number of missing cell values for those variables (e.g., 2 missing values for first participant
+ 2 missing values for second participant = total of 4 missing values)

• cells: total number of cells (i.e., number of participants multiplied by number of variables,
items)

• na_percent: the percentage of missing values (number of missing cells, na, divided by total
number of cells, cells)

• na_max: The amount of missing values for the participant with the most missing values for
the selected variables

• na_max_percent: The amount of missing values for the participant with the most missing
values for the selected variables, in percentage (i.e., na_max divided by the number of selected
variables, items)

• all_na: the number of participants missing 100% of items for that scale (the selected vari-
ables)

References

Parent, M. C. (2013). Handling item-level missing data: Simpler is just as good. The Counseling
Psychologist, 41(4), 568-600. https://doi.org/10.1177%2F0011000012445176

Examples

Use whole data frame
nice_na(airquality)

Use selected columns explicitly
nice_na(airquality,

vars = list(
c("Ozone", "Solar.R", "Wind"),

nice_normality 15

c("Temp", "Month", "Day")
)

)

If the questionnaire items start with the same name, e.g.,
set.seed(15)
fun <- function() {

c(sample(c(NA, 1:10), replace = TRUE), NA, NA, NA)
}
df <- data.frame(

ID = c("idz", NA),
scale1_Q1 = fun(), scale1_Q2 = fun(), scale1_Q3 = fun(),
scale2_Q1 = fun(), scale2_Q2 = fun(), scale2_Q3 = fun(),
scale3_Q1 = fun(), scale3_Q2 = fun(), scale3_Q3 = fun()

)

One can list the scale names directly:
nice_na(df, scales = c("ID", "scale1", "scale2", "scale3"))

nice_normality Easy normality check per group

Description

Easily make nice per-group density and QQ plots through a wrapper around the ggplot2 and
qqplotr packages.

Usage

nice_normality(
data,
variable,
group,
colours,
groups.labels,
grid = TRUE,
shapiro = FALSE,
title = NULL,
histogram = FALSE,
breaks.auto = FALSE,
...

)

Arguments

data The data frame.

variable The dependent variable to be plotted.

16 nice_normality

group The group by which to plot the variable.

colours Desired colours for the plot, if desired.

groups.labels How to label the groups.

grid Logical, whether to keep the default background grid or not. APA style suggests
not using a grid in the background, though in this case some may find it useful
to more easily estimate the slopes of the different groups.

shapiro Logical, whether to include the p-value from the Shapiro-Wilk test on the plot.

title An optional title, if desired.

histogram Logical, whether to add an histogram on top of the density plot.

breaks.auto If histogram = TRUE, then option to set bins/breaks automatically, mimicking
the default behaviour of base R hist() (the Sturges method). Defaults to FALSE.

... Further arguments from nice_qq() and nice_density() to be passed to nice_normality()

Value

A plot of classes patchwork and ggplot, containing two plots, resulting from nice_density and
nice_qq.

See Also

Other functions useful in assumption testing: nice_assumptions, nice_density, nice_qq, nice_var,
nice_varplot. Tutorial: https://rempsyc.remi-theriault.com/articles/assumptions

Examples

Make the basic plot
nice_normality(

data = iris,
variable = "Sepal.Length",
group = "Species"

)

Further customization
nice_normality(

data = iris,
variable = "Sepal.Length",
group = "Species",
colours = c(
"#00BA38",
"#619CFF",
"#F8766D"

),
groups.labels = c(

"(a) Setosa",
"(b) Versicolor",
"(c) Virginica"

),
grid = FALSE,
shapiro = TRUE

https://rempsyc.remi-theriault.com/articles/assumptions

nice_qq 17

)

nice_qq Easy QQ plots per group

Description

Easily make nice per-group QQ plots through a wrapper around the ggplot2 and qqplotr packages.

Usage

nice_qq(
data,
variable,
group,
colours,
groups.labels = NULL,
grid = TRUE,
shapiro = FALSE,
title = variable

)

Arguments

data The data frame.

variable The dependent variable to be plotted.

group The group by which to plot the variable.

colours Desired colours for the plot, if desired.

groups.labels How to label the groups.

grid Logical, whether to keep the default background grid or not. APA style suggests
not using a grid in the background, though in this case some may find it useful
to more easily estimate the slopes of the different groups.

shapiro Logical, whether to include the p-value from the Shapiro-Wilk test on the plot.

title An optional title, if desired.

Value

A qq plot of class ggplot, by group (if provided), along a reference interpretation helper, the 95%
confidence band.

See Also

Other functions useful in assumption testing: nice_assumptions, nice_density, nice_normality,
nice_var, nice_varplot. Tutorial: https://rempsyc.remi-theriault.com/articles/assumptions

https://rempsyc.remi-theriault.com/articles/assumptions

18 nice_randomize

Examples

Make the basic plot
nice_qq(

data = iris,
variable = "Sepal.Length",
group = "Species"

)

Further customization
nice_qq(

data = iris,
variable = "Sepal.Length",
group = "Species",
colours = c("#00BA38", "#619CFF", "#F8766D"),
groups.labels = c("(a) Setosa", "(b) Versicolor", "(c) Virginica"),
grid = FALSE,
shapiro = TRUE,
title = NULL

)

nice_randomize Easily randomization

Description

Randomize easily with different designs.

Usage

nice_randomize(
design = "between",
Ncondition = 3,
n = 9,
condition.names = c("a", "b", "c"),
col.names = c("id", "Condition")

)

Arguments

design The design: either between-subject (different groups) or within-subject (repeated-
measures on same people).

Ncondition The number of conditions you want to randomize.

n The desired sample size. Note that it needs to be a multiple of your number of
groups if you are usingbetween.

condition.names

The names of the randomized conditions.

col.names The desired additional column names for a runsheet.

nice_reverse 19

Value

A dataframe, with participant ID and randomized condition, based on selected design.

See Also

Tutorial: https://rempsyc.remi-theriault.com/articles/randomize

Examples

Specify design, number of conditions, number of
participants, and names of conditions:
nice_randomize(

design = "between", Ncondition = 4, n = 8,
condition.names = c("BP", "CX", "PZ", "ZL")

)

Within-Group Design
nice_randomize(

design = "within", Ncondition = 4, n = 6,
condition.names = c("SV", "AV", "ST", "AT")

)

Make a quick runsheet
randomized <- nice_randomize(

design = "within", Ncondition = 4, n = 128,
condition.names = c("SV", "AV", "ST", "AT"),
col.names = c(
"id", "Condition", "Date/Time",
"SONA ID", "Age/Gd.", "Handedness",
"Tester", "Notes"

)
)
head(randomized)

nice_reverse Easily recode scores

Description

Easily recode scores (reverse-score), typically for questionnaire answers.

Usage

nice_reverse(x, max, min = 1, warning = TRUE)

https://rempsyc.remi-theriault.com/articles/randomize

20 nice_scatter

Arguments

x The score to reverse.

max The maximum score on the scale.

min The minimum score on the scale (optional unless it isn’t 1).

warning Logical. Whether to show the warning about the minimum not being 1.

Value

A numeric vector, of reversed scores.

Examples

Reverse score of 5 with a maximum score of 5
nice_reverse(5, 5)

Reverse several scores at once
nice_reverse(1:5, 5)

Reverse scores with maximum = 4 and minimum = 0
nice_reverse(1:4, 4, min = 0)

Reverse scores with maximum = 3 and minimum = -3
nice_reverse(-3:3, 3, min = -3)

nice_scatter Easy scatter plots

Description

Make nice scatter plots easily.

Usage

nice_scatter(
data,
predictor,
response,
xtitle = predictor,
ytitle = response,
has.points = TRUE,
has.jitter = FALSE,
alpha = 0.7,
has.line = TRUE,
has.confband = FALSE,
has.fullrange = FALSE,
has.linetype = FALSE,

nice_scatter 21

has.shape = FALSE,
xmin,
xmax,
xby = 1,
ymin,
ymax,
yby = 1,
has.legend = FALSE,
legend.title = "",
group = NULL,
colours = "#619CFF",
groups.order = NULL,
groups.labels = NULL,
groups.alpha = NULL,
has.r = FALSE,
r.x = Inf,
r.y = -Inf,
has.p = FALSE,
p.x = Inf,
p.y = -Inf

)

Arguments

data The data frame.

predictor The independent variable to be plotted.

response The dependent variable to be plotted.

xtitle An optional y-axis label, if desired.

ytitle An optional x-axis label, if desired.

has.points Whether to plot the individual observations or not.

has.jitter Alternative to has.points. "Jitters" the observations to avoid overlap (overplot-
ting). Use one or the other, not both.

alpha The desired level of transparency.

has.line Whether to plot the regression line(s).

has.confband Logical. Whether to display the confidence band around the slope.

has.fullrange Logical. Whether to extend the slope beyond the range of observations.

has.linetype Logical. Whether to change line types as a function of group.

has.shape Logical. Whether to change shape of observations as a function of group.

xmin The minimum score on the x-axis scale.

xmax The maximum score on the x-axis scale.

xby How much to increase on each "tick" on the x-axis scale.

ymin The minimum score on the y-axis scale.

ymax The maximum score on the y-axis scale.

22 nice_scatter

yby How much to increase on each "tick" on the y-axis scale.

has.legend Logical. Whether to display the legend or not.

legend.title The desired legend title.

group The group by which to plot the variable

colours Desired colours for the plot, if desired.

groups.order Specifies the desired display order of the groups.

groups.labels Changes groups names (labels). Note: This applies after changing order of level.

groups.alpha The manually specified transparency desired for the groups slopes. Use only
when plotting groups separately.

has.r Whether to display the correlation coefficient, the r-value.

r.x The x-axis coordinates for the r-value.

r.y The y-axis coordinates for the r-value.

has.p Whether to display the p-value.

p.x The x-axis coordinates for the p-value.

p.y The y-axis coordinates for the p-value.

Value

A scatter plot of class ggplot.

See Also

Visualize group differences via violin plots: nice_violin. Tutorial: https://rempsyc.remi-theriault.
com/articles/scatter

Examples

Make the basic plot
nice_scatter(

data = mtcars,
predictor = "wt",
response = "mpg"

)

Save a high-resolution image file to specified directory
ggplot2::ggsave("nicescatterplothere.pdf", width = 7,

height = 7, unit = "in", dpi = 300
) # change for your own desired path

Change x- and y- axis labels
nice_scatter(

data = mtcars,
predictor = "wt",
response = "mpg",
ytitle = "Miles/(US) gallon",
xtitle = "Weight (1000 lbs)"

https://rempsyc.remi-theriault.com/articles/scatter
https://rempsyc.remi-theriault.com/articles/scatter

nice_scatter 23

)

Have points "jittered"
nice_scatter(

data = mtcars,
predictor = "wt",
response = "mpg",
has.jitter = TRUE

)

Change the transparency of the points
nice_scatter(

data = mtcars,
predictor = "wt",
response = "mpg",
alpha = 1

)

Remove points
nice_scatter(

data = mtcars,
predictor = "wt",
response = "mpg",
has.points = FALSE,
has.jitter = FALSE

)

Add confidence band
nice_scatter(

data = mtcars,
predictor = "wt",
response = "mpg",
has.confband = TRUE

)

Set x- and y- scales manually
nice_scatter(

data = mtcars,
predictor = "wt",
response = "mpg",
xmin = 1,
xmax = 6,
xby = 1,
ymin = 10,
ymax = 35,
yby = 5

)

Change plot colour
nice_scatter(

data = mtcars,
predictor = "wt",
response = "mpg",

24 nice_scatter

colours = "blueviolet"
)

Add correlation coefficient to plot and p-value
nice_scatter(

data = mtcars,
predictor = "wt",
response = "mpg",
has.r = TRUE,
has.p = TRUE

)

Change location of correlation coefficient or p-value
nice_scatter(

data = mtcars,
predictor = "wt",
response = "mpg",
has.r = TRUE,
r.x = 4,
r.y = 25,
has.p = TRUE,
p.x = 5,
p.y = 20

)

Plot by group
nice_scatter(

data = mtcars,
predictor = "wt",
response = "mpg",
group = "cyl"

)

Use full range on the slope/confidence band
nice_scatter(

data = mtcars,
predictor = "wt",
response = "mpg",
group = "cyl",
has.fullrange = TRUE

)

Remove lines
nice_scatter(

data = mtcars,
predictor = "wt",
response = "mpg",
group = "cyl",
has.line = FALSE

)

Add a legend
nice_scatter(

nice_scatter 25

data = mtcars,
predictor = "wt",
response = "mpg",
group = "cyl",
has.legend = TRUE

)

Change order of labels on the legend
nice_scatter(

data = mtcars,
predictor = "wt",
response = "mpg",
group = "cyl",
has.legend = TRUE,
groups.order = c(8, 4, 6)

)

Change legend labels
nice_scatter(

data = mtcars,
predictor = "wt",
response = "mpg",
group = "cyl",
has.legend = TRUE,
groups.labels = c("Weak", "Average", "Powerful")

)
Warning: This applies after changing order of level

Add a title to legend
nice_scatter(

data = mtcars,
predictor = "wt",
response = "mpg",
group = "cyl",
has.legend = TRUE,
legend.title = "cylinders"

)

Plot by group + manually specify colours
nice_scatter(

data = mtcars,
predictor = "wt",
response = "mpg",
group = "cyl",
colours = c("burlywood", "darkgoldenrod", "chocolate")

)

Plot by group + use different line types for each group
nice_scatter(

data = mtcars,
predictor = "wt",
response = "mpg",
group = "cyl",

26 nice_slopes

has.linetype = TRUE
)

Plot by group + use different point shapes for each group
nice_scatter(

data = mtcars,
predictor = "wt",
response = "mpg",
group = "cyl",
has.shape = TRUE

)

nice_slopes Easy simple slopes

Description

Easily compute simple slopes in moderation analysis, with effect sizes, and format in publication-
ready format.

Note: this function uses the modelEffectSizes function from the lmSupport package to get the
sr2 effect sizes.

Usage

nice_slopes(
data,
response,
predictor,
moderator,
moderator2 = NULL,
covariates = NULL,
b.label,
mod.id = TRUE,
...

)

Arguments

data The data frame

response The dependent variable.

predictor The independent variable

moderator The moderating variable.

moderator2 The second moderating variable, if applicable.

covariates The desired covariates in the model.

nice_slopes 27

b.label What to rename the default "b" column (e.g., to capital B if using standardized
data for it to be converted to the Greek beta symbol in the nice_table function).

mod.id Logical. Whether to display the model number, when there is more than one
model.

... Further arguments to be passed to the lm function for the models.

Value

A formatted dataframe of the simple slopes of the specified lm model, with DV, levels of IV, degrees
of freedom, regression coefficient, t-value, p-value, and the effect size, the semi-partial correlation
squared.

See Also

Checking for moderation before checking simple slopes: nice_mod, nice_lm, nice_lm_slopes.
Tutorial: https://rempsyc.remi-theriault.com/articles/moderation

Examples

Make the basic table
nice_slopes(

data = mtcars,
response = "mpg",
predictor = "gear",
moderator = "wt"

)

Multiple dependent variables at once
nice_slopes(

data = mtcars,
response = c("mpg", "disp", "hp"),
predictor = "gear",
moderator = "wt"

)

Add covariates
nice_slopes(

data = mtcars,
response = "mpg",
predictor = "gear",
moderator = "wt",
covariates = c("am", "vs")

)

Three-way interaction (continuous moderator and binary
second moderator required)
nice_slopes(

data = mtcars,
response = "mpg",
predictor = "gear",
moderator = "wt",

https://rempsyc.remi-theriault.com/articles/moderation

28 nice_table

moderator2 = "am"
)

nice_table Easily make nice APA tables

Description

Make nice APA tables easily through a wrapper around the flextable package with sensical de-
faults and automatic formatting features.

Usage

nice_table(
data,
highlight = FALSE,
italics,
col.format.p,
col.format.r,
col.format.ci,
format.custom,
col.format.custom,
width = 1,
broom = "",
report = "",
short = FALSE,
title,
footnote,
separate.header

)

Arguments

data The data frame, to be converted to a flextable. The data frame cannot have
duplicate column names.

highlight Highlight rows with statistically significant results? Requires a column named
"p" containing p-values. Can either accept logical (TRUE/FALSE) OR a nu-
meric value for a custom critical p-value threshold (e.g., 0.10 or 0.001).

italics Which columns headers should be italic? Useful for column names that should
be italic but that are not picked up automatically by the function. Select with
numerical range, e.g., 1:3.

col.format.p Applies p-value formatting to columns that cannot be named "p" (for example
for a data frame full of p-values, also because it is not possible to have more
than one column named "p"). Select with numerical range, e.g., 1:3.

nice_table 29

col.format.r Applies r-value formatting to columns that cannot be named "r" (for example
for a data frame full of r-values, also because it is not possible to have more than
one column named "r"). Select with numerical range, e.g., 1:3.

col.format.ci Applies 95% confidence interval formatting to selected columns (e.g., when re-
porting more than one interval).

format.custom Applies custom formatting to columns selected via the col.format.custom ar-
gument. This is useful if one wants custom formatting other than for p- or
r-values. It can also be used to transform (e.g., multiply) certain values or print
a specific symbol along the values for instance.

col.format.custom

Which columns to apply the custom function to. Select with numerical range,
e.g., 1:3.

width Width of the table, in percentage of the total width, when exported e.g., to Word.

broom If providing a tidy table produced with the broom package, which model type to
use if one wants automatic formatting (options are "t.test", "lm", "cor.test", and
"wilcox.test").

report If providing an object produced with the report package, which model type to
use if one wants automatic formatting (options are "t.test", "lm", and "cor.test").

short Logical. Whether to return an abbreviated version of the tables made by the
report package.

title Optional, to add a table header, if desired.

footnote Optional, to add a table footnote (or more), if desired.
separate.header

Logical, whether to separate headers based on name delimiters (i.e., periods ".").

Value

An APA-formatted table of class "flextable" (and "nice_table").

See Also

Tutorial: https://rempsyc.remi-theriault.com/articles/table

Examples

Make the basic table
my_table <- nice_table(mtcars[1:3,],

title = "Motor Trend Car Road Tests",
footnote = "1974 Motor Trend US magazine."

)
my_table

Save table to word
mypath <- tempfile(fileext = ".docx")
save_as_docx(my_table, path = mypath)

https://rempsyc.remi-theriault.com/articles/table

30 nice_table

Publication-ready tables
mtcars.std <- lapply(mtcars, scale)
model <- lm(mpg ~ cyl + wt * hp, mtcars.std)
stats.table <- as.data.frame(summary(model)$coefficients)
CI <- confint(model)
stats.table <- cbind(

row.names(stats.table),
stats.table, CI

)
names(stats.table) <- c(

"Term", "B", "SE", "t", "p",
"CI_lower", "CI_upper"

)
nice_table(stats.table, highlight = TRUE)

Test different column names
test <- head(mtcars)
names(test) <- c(

"dR", "N", "M", "SD", "b", "np2",
"ges", "p", "r", "R2", "sr2"

)
test[, 10:11] <- test[, 10:11] / 10
nice_table(test)

Custom cell formatting (such as p or r)
nice_table(test[8:11], col.format.p = 2:4, highlight = .001)

nice_table(test[8:11], col.format.r = 1:4)

Apply custom functions to cells
fun <- function(x) {

x + 11.1
}
nice_table(test[8:11], col.format.custom = 2:4, format.custom = "fun")

fun <- function(x) {
paste("x", x)

}
nice_table(test[8:11], col.format.custom = 2:4, format.custom = "fun")

Separate headers based on periods
header.data <- structure(list(

Variable = c(
"Sepal.Length",
"Sepal.Width", "Petal.Length"

), setosa.M = c(
5.01, 3.43,
1.46

), setosa.SD = c(0.35, 0.38, 0.17), versicolor.M =
c(5.94, 2.77, 4.26), versicolor.SD = c(0.52, 0.31, 0.47)

),
row.names = c(NA, -3L), class = "data.frame"

nice_t_test 31

)
nice_table(header.data,

separate.header = TRUE,
italics = 2:4

)

nice_t_test Easy t-tests

Description

Easily compute t-test analyses, with effect sizes, and format in publication-ready format. The 95%
confidence interval is for the effect size, Cohen’s d, both provided by the effectsize package.

This function relies on the base R t.test function, which uses the Welch t-test per default (see why
here: https://daniellakens.blogspot.com/2015/01/always-use-welchs-t-test-instead-of.
html). To use the Student t-test, simply add the following argument: var.equal = TRUE.

Usage

nice_t_test(
data,
response,
group = NULL,
correction = "none",
warning = TRUE,
...

)

Arguments

data The data frame.

response The dependent variable.

group The group for the comparison.

correction What correction for multiple comparison to apply, if any. Default is "none" and
the only other option (for now) is "bonferroni".

warning Whether to display the Welch test warning or not.

... Further arguments to be passed to the t.test function (e.g., to use Student
instead of Welch test, to change from two-tail to one-tail, or to do a paired-
sample t-test instead of independent samples).

Value

A formatted dataframe of the specified model, with DV, degrees of freedom, t-value, p-value, the
effect size, Cohen’s d, and its 95% confidence interval lower and upper bounds.

https://daniellakens.blogspot.com/2015/01/always-use-welchs-t-test-instead-of.html
https://daniellakens.blogspot.com/2015/01/always-use-welchs-t-test-instead-of.html

32 nice_t_test

See Also

Tutorial: https://rempsyc.remi-theriault.com/articles/t-test

Examples

Make the basic table
nice_t_test(

data = mtcars,
response = "mpg",
group = "am"

)

Multiple dependent variables at once
nice_t_test(

data = mtcars,
response = names(mtcars)[1:7],
group = "am"

)

Can be passed some of the regular arguments
of base `t.test()`

Student t-test (instead of Welch)
nice_t_test(

data = mtcars,
response = "mpg",
group = "am",
var.equal = TRUE

)

One-sided instead of two-sided
nice_t_test(

data = mtcars,
response = "mpg",
group = "am",
alternative = "less"

)

One-sample t-test
nice_t_test(

data = mtcars,
response = "mpg",
mu = 10

)

Paired t-test instead of independent samples
nice_t_test(

data = ToothGrowth,
response = "len",
group = "supp",
paired = TRUE

)

https://rempsyc.remi-theriault.com/articles/t-test

nice_var 33

Make sure cases appear in the same order for
both levels of the grouping factor

nice_var Obtain variance per group

Description

Obtain variance per group as well as check for the rule of thumb of one group having variance four
times bigger than any of the other groups. Variance ratio is calculated as Max / Min.

Usage

nice_var(data, variable, group, criteria = 4)

Arguments

data The data frame
variable The dependent variable to be plotted.
group The group by which to plot the variable.
criteria Desired threshold if one wants something different than four times the variance.

Value

A dataframe, with the values of the selected variables for each group, their max variance ratio
(maximum variance divided by the minimum variance), the selected decision criterion, and whether
the data are considered heteroscedastic according to the decision criterion.

See Also

Other functions useful in assumption testing: nice_assumptions, nice_density, nice_normality,
nice_qq, nice_varplot. Tutorial: https://rempsyc.remi-theriault.com/articles/assumptions

Examples

Make the basic table
nice_var(

data = iris,
variable = "Sepal.Length",
group = "Species"

)

Try on multiple variables
DV <- names(iris[1:4])
var.table <- do.call("rbind", lapply(DV, nice_var,

data = iris, group = "Species"
))
var.table

https://rempsyc.remi-theriault.com/articles/assumptions

34 nice_varplot

nice_varplot Attempt to visualize variance per group

Description

Attempt to visualize variance per group.

Usage

nice_varplot(
data,
variable,
group,
colours,
groups.labels,
grid = TRUE,
shapiro = FALSE,
ytitle = variable

)

Arguments

data The data frame

variable The dependent variable to be plotted.

group The group by which to plot the variable.

colours Desired colours for the plot, if desired.

groups.labels How to label the groups.

grid Logical, whether to keep the default background grid or not. APA style suggests
not using a grid in the background, though in this case some may find it useful
to more easily estimate the slopes of the different groups.

shapiro Logical, whether to include the p-value from the Shapiro-Wilk test on the plot.

ytitle An optional y-axis label, if desired.

Value

A scatter plot of class ggplot attempting to display the group variances. Also includes the max
variance ratio (maximum variance divided by the minimum variance).

See Also

Other functions useful in assumption testing: nice_assumptions, nice_density, nice_normality,
nice_qq, nice_var. Tutorial: https://rempsyc.remi-theriault.com/articles/assumptions

https://rempsyc.remi-theriault.com/articles/assumptions

nice_violin 35

Examples

Make the basic plot
nice_varplot(

data = iris,
variable = "Sepal.Length",
group = "Species"

)

Further customization
nice_varplot(

data = iris,
variable = "Sepal.Length",
group = "Species",
colours = c(
"#00BA38",
"#619CFF",
"#F8766D"

),
ytitle = "Sepal Length",
groups.labels = c(

"(a) Setosa",
"(b) Versicolor",
"(c) Virginica"

)
)

nice_violin Easy violin plots

Description

Make nice violin plots easily with 95% (possibly bootstrapped) confidence intervals.

Usage

nice_violin(
data,
group,
response,
boot = FALSE,
bootstraps = 2000,
colours,
xlabels = NULL,
ytitle = response,
xtitle = NULL,
has.ylabels = TRUE,
has.xlabels = TRUE,

36 nice_violin

comp1 = 1,
comp2 = 2,
signif_annotation = NULL,
signif_yposition = NULL,
signif_xmin = NULL,
signif_xmax = NULL,
ymin,
ymax,
yby = 1,
CIcap.width = 0.1,
obs = FALSE,
alpha = 1,
border.colour = "black",
border.size = 2,
has.d = FALSE,
d.x = mean(c(comp1, comp2)) * 1.1,
d.y = mean(data[[response]]) * 1.3

)

Arguments

data The data frame.

group The group by which to plot the variable.

response The dependent variable to be plotted.

boot Logical, whether to use bootstrapping for the confidence interval or not.

bootstraps How many bootstraps to use.

colours Desired colours for the plot, if desired.

xlabels The individual group labels on the x-axis.

ytitle An optional y-axis label, if desired.

xtitle An optional x-axis label, if desired.

has.ylabels Logical, whether the x-axis should have labels or not.

has.xlabels Logical, whether the y-axis should have labels or not.

comp1 The first unit of a pairwise comparison, if the goal is to compare two groups.
Automatically displays *, **, or *** depending on significance of the difference.
Can take either a numeric value (based on the group number) or the name of the
group directly. Must be provided along with argument comp2.

comp2 The second unit of a pairwise comparison, if the goal is to compare two groups.
Automatically displays "", "", or "" depending on significance of the difference.
Can take either a numeric value (based on the group number) or the name of the
group directly. Must be provided along with argument comp1.

signif_annotation

Manually provide the required annotations/numbers of stars (as character strings).
Useful if the automatic pairwise comparison annotation does not work as ex-
pected, or yet if one wants more than one pairwise comparison. Must be pro-
vided along with arguments signif_yposition, signif_xmin, and signif_xmax.

nice_violin 37

signif_yposition

Manually provide the vertical position of the annotations/stars, based on the y-
scale.

signif_xmin Manually provide the first part of the horizontal position of the annotations/stars
(start of the left-sided bracket), based on the x-scale.

signif_xmax Manually provide the second part of the horizontal position of the annotations/stars
(end of the right-sided bracket), based on the x-scale.

ymin The minimum score on the y-axis scale.

ymax The maximum score on the y-axis scale.

yby How much to increase on each "tick" on the y-axis scale.

CIcap.width The width of the confidence interval cap.

obs Logical, whether to plot individual observations or not.

alpha The transparency of the plot.

border.colour The colour of the violins border.

border.size The size of the violins border.

has.d Whether to display the d-value.

d.x The x-axis coordinates for the d-value.

d.y The y-axis coordinates for the d-value.

Details

Using boot = TRUE uses bootstrapping (for the confidence intervals only) with the BCa method,
using the rcompanion_groupwiseMean function.

Value

A violin plot of class ggplot, by group.

See Also

Visualize group differences via scatter plots: nice_scatter. Tutorial: https://rempsyc.remi-theriault.
com/articles/violin

Examples

Make the basic plot
nice_violin(

data = ToothGrowth,
group = "dose",
response = "len"

)

Save a high-resolution image file to specified directory
ggplot2::ggsave("niceviolinplothere.pdf", width = 7,

height = 7, unit = "in", dpi = 300

https://rempsyc.remi-theriault.com/articles/violin
https://rempsyc.remi-theriault.com/articles/violin

38 nice_violin

) # change for your own desired path

Change x- and y- axes labels
nice_violin(

data = ToothGrowth,
group = "dose",
response = "len",
ytitle = "Length of Tooth",
xtitle = "Vitamin C Dosage"

)

See difference between two groups
nice_violin(

data = ToothGrowth,
group = "dose",
response = "len",
comp1 = "0.5",
comp2 = "2"

)

nice_violin(
data = ToothGrowth,
group = "dose",
response = "len",
comp1 = 2,
comp2 = 3

)

Compare all three groups
nice_violin(

data = ToothGrowth,
group = "dose",
response = "len",
signif_annotation = c("*", "**", "***"),
manually enter the number of stars
signif_yposition = c(30, 35, 40),
What height (y) should the stars appear
signif_xmin = c(1, 2, 1),
Where should the left-sided brackets start (x)
signif_xmax = c(2, 3, 3)

)
Where should the right-sided brackets end (x)

Set the colours manually
nice_violin(

data = ToothGrowth,
group = "dose",
response = "len",
colours = c("darkseagreen", "cadetblue", "darkslateblue")

)

Changing the names of the x-axis labels
nice_violin(

nice_violin 39

data = ToothGrowth,
group = "dose",
response = "len",
xlabels = c("Low", "Medium", "High")

)

Removing the x-axis or y-axis titles
nice_violin(

data = ToothGrowth,
group = "dose",
response = "len",
ytitle = NULL,
xtitle = NULL

)

Removing the x-axis or y-axis labels (for whatever purpose)
nice_violin(

data = ToothGrowth,
group = "dose",
response = "len",
has.ylabels = FALSE,
has.xlabels = FALSE

)

Set y-scale manually
nice_violin(

data = ToothGrowth,
group = "dose",
response = "len",
ymin = 5,
ymax = 35,
yby = 5

)

Plotting individual observations
nice_violin(

data = ToothGrowth,
group = "dose",
response = "len",
obs = TRUE

)

Micro-customizations
nice_violin(

data = ToothGrowth,
group = "dose",
response = "len",
CIcap.width = 0,
alpha = .70,
border.size = 1,
border.colour = "white",
comp1 = 1,
comp2 = 2,

40 overlap_circle

has.d = TRUE
)

overlap_circle Interpolate the Inclusion of the Other in the Self Scale

Description

Interpolating the Inclusion of the Other in the Self Scale (self-other merging) easily.

Usage

overlap_circle(response, categories = c("Self", "Other"))

Arguments

response The variable to plot.
categories The desired categories of the two overlapping circles.

Value

A plot of class gList, displaying overlapping circles relative to the selected score.

See Also

Tutorial: https://rempsyc.remi-theriault.com/articles/circles

Examples

Score of 1 (0% overlap)
overlap_circle(1)

Score of 3.5 (25% overlap)
overlap_circle(3.5)

Score of 6.84 (81.8% overlap)
overlap_circle(6.84)

Changing labels
overlap_circle(3.12, categories = c("Humans", "Animals"))

Saving to file (PDF or PNG)
mypath <- tempfile(fileext = ".pdf")
plot <- overlap_circle(3.5)
ggplot2::ggsave(plot, file = mypath, width = 7,

height = 7, unit = 'in', dpi = 300)
Change for your own desired path

https://rempsyc.remi-theriault.com/articles/circles

scale_mad 41

scale_mad Standardize based on the absolute median deviation

Description

Scale and center ("standardize") data based on the median absolute deviation.

Usage

scale_mad(x)

Arguments

x The vector to be scaled.

Value

A numeric vector of standardized data.

Author(s)

Hugues Leduc, Charles-Étienne Lavoie

References

Leys, C., Ley, C., Klein, O., Bernard, P., & Licata, L. (2013). Detecting outliers: Do not use stan-
dard deviation around the mean, use absolute deviation around the median. Journal of Experimental
Social Psychology, 49(4), 764–766. https://doi.org/10.1016/j.jesp.2013.03.013

Examples

scale_mad(mtcars$mpg)

sr2 Semi-Partial Correlation Squared (Delta R2)

Description

Compute the semi-partial correlation squared (also known as the delta R2), for a lm model.

Usage

sr2(model, ...)

42 winsorize_mad

Arguments

model An lm model.

... Arguments passed to lm. these can be subset and na.action.

Value

A data frame with the effect size.

Examples

m <- lm(mpg ~ cyl + disp + hp * drat, data = mtcars)
sr2(m)

winsorize_mad Winsorize based on the absolute median deviation

Description

Winsorize (bring extreme observations to usually +/- 3 standard deviations) data based on median
absolute deviations instead of standard deviations.

Usage

winsorize_mad(x, criteria = 3)

Arguments

x The vector to be winsorized based on the MAD.

criteria How many MAD to use as threshold (similar to standard deviations)

Value

A numeric vector of winsorized data.

Author(s)

Hugues Leduc, Charles-Étienne Lavoie

References

Leys, C., Ley, C., Klein, O., Bernard, P., & Licata, L. (2013). Detecting outliers: Do not use stan-
dard deviation around the mean, use absolute deviation around the median. Journal of Experimental
Social Psychology, 49(4), 764–766. https://doi.org/10.1016/j.jesp.2013.03.013

Examples

winsorize_mad(mtcars$qsec, criteria = 2)

Index

∗ APA
nice_table, 28

∗ Excel
cormatrix_excel, 3

∗ MAD
find_mad, 5
scale_mad, 41
winsorize_mad, 42

∗ NA
nice_na, 13

∗ QQ
nice_normality, 15
nice_qq, 17

∗ Venn
overlap_circle, 40

∗ allocation
nice_randomize, 18

∗ assumptions
nice_assumptions, 7

∗ conditions
nice_randomize, 18

∗ correlation
cormatrix_excel, 3
format_value, 6

∗ density
nice_density, 8
nice_normality, 15

∗ design
nice_randomize, 18

∗ diagrams
overlap_circle, 40

∗ differences
nice_t_test, 31

∗ distribution
nice_normality, 15
nice_qq, 17

∗ duplicates
best_duplicate, 2
extract_duplicates, 4

∗ effect size correlation
sr2, 41

∗ experimental
nice_randomize, 18

∗ formatting
format_value, 6

∗ group
nice_t_test, 31

∗ guidelines
nice_na, 13

∗ interaction
nice_lm, 10
nice_lm_slopes, 11
nice_mod, 12
nice_slopes, 26

∗ linear
nice_assumptions, 7

∗ matrix
cormatrix_excel, 3

∗ mean
find_mad, 5
scale_mad, 41
winsorize_mad, 42

∗ median
find_mad, 5
scale_mad, 41
winsorize_mad, 42

∗ merging
overlap_circle, 40

∗ missing
nice_na, 13

∗ moderation
nice_lm, 10
nice_lm_slopes, 11
nice_mod, 12
nice_slopes, 26

∗ normality
nice_density, 8
nice_normality, 15

43

44 INDEX

nice_qq, 17
∗ normalization

find_mad, 5
scale_mad, 41
winsorize_mad, 42

∗ outliers
find_mad, 5
scale_mad, 41
winsorize_mad, 42

∗ overlap
overlap_circle, 40

∗ p-value
format_value, 6

∗ plots
nice_normality, 15
nice_qq, 17
nice_scatter, 20
nice_violin, 35

∗ psychology
overlap_circle, 40

∗ r-value
format_value, 6

∗ randomization
nice_randomize, 18

∗ random
nice_randomize, 18

∗ regression
nice_assumptions, 7
nice_lm, 10
nice_lm_slopes, 11
nice_mod, 12
nice_slopes, 26

∗ reverse
nice_reverse, 19

∗ scatter
nice_scatter, 20

∗ scoring
nice_reverse, 19

∗ self-other
overlap_circle, 40

∗ simple
nice_slopes, 26

∗ slopes
nice_slopes, 26

∗ social
overlap_circle, 40

∗ standardization
find_mad, 5

scale_mad, 41
winsorize_mad, 42

∗ statistical
nice_assumptions, 7

∗ style
nice_table, 28

∗ t-test
nice_t_test, 31

∗ table
nice_table, 28

∗ values
nice_na, 13

∗ variance
nice_var, 33
nice_varplot, 34

∗ violations
nice_assumptions, 7

∗ violin
nice_violin, 35

best_duplicate, 2

cormatrix_excel, 3

extract_duplicates, 4

find_mad, 5
format_d (format_value), 6
format_p (format_value), 6
format_r (format_value), 6
format_value, 6

nice_assumptions, 7, 9, 16, 17, 33, 34
nice_density, 7, 8, 16, 17, 33, 34
nice_lm, 10, 11, 12, 27
nice_lm_slopes, 10, 11, 12, 27
nice_mod, 10, 11, 12, 27
nice_na, 13
nice_normality, 7, 9, 15, 17, 33, 34
nice_qq, 7, 9, 16, 17, 33, 34
nice_randomize, 18
nice_reverse, 19
nice_scatter, 20, 37
nice_slopes, 10–12, 26
nice_t_test, 31
nice_table, 28
nice_var, 7, 9, 16, 17, 33, 34
nice_varplot, 7, 9, 16, 17, 33, 34
nice_violin, 22, 35

INDEX 45

overlap_circle, 40

scale_mad, 41
sr2, 41

winsorize_mad, 42

	best_duplicate
	cormatrix_excel
	extract_duplicates
	find_mad
	format_value
	nice_assumptions
	nice_density
	nice_lm
	nice_lm_slopes
	nice_mod
	nice_na
	nice_normality
	nice_qq
	nice_randomize
	nice_reverse
	nice_scatter
	nice_slopes
	nice_table
	nice_t_test
	nice_var
	nice_varplot
	nice_violin
	overlap_circle
	scale_mad
	sr2
	winsorize_mad
	Index

