reportRmd

Lifecycle: Stable CRAN status metacran downloads

The goal of reportRmd is to automate the reporting of clinical data in Rmarkdown environments. Functions include table one-style summary statistics, compilation of multiple univariate models, tidy output of multivariable models and side by side comparisons of univariate and multivariable models. Plotting functions include customisable survival curves, forest plots, and automated bivariate plots.

Installation

Installing from CRAN:

install.packages('reportRmd')

You can install the development version of reportRmd from GitHub with:

# install.packages("devtools")
devtools::install_github("biostatsPMH/reportRmd")

Documentation

Online Documentation

Examples

Summary statistics by Sex

library(reportRmd)
data("pembrolizumab")
rm_covsum(data=pembrolizumab, maincov = 'sex',
covs=c('age','pdl1','change_ctdna_group'),
show.tests=TRUE)
Full Sample (n=94) Female (n=58) Male (n=36) p-value Effect Size StatTest
age 0.30 0.008 Wilcoxon Rank Sum, Eta sq
Mean (sd) 57.9 (12.8) 56.9 (12.6) 59.3 (13.1)
Median (Min,Max) 59.1 (21.1, 81.8) 56.6 (34.1, 78.2) 61.2 (21.1, 81.8)
pdl1 0.76 0.002 Wilcoxon Rank Sum, Eta sq
Mean (sd) 13.9 (29.2) 15.0 (30.5) 12.1 (27.3)
Median (Min,Max) 0 (0, 100) 0.5 (0.0, 100.0) 0 (0, 100)
Missing 1 0 1
change ctdna group 0.81 0.02 Fisher Exact, Cramer
Decrease from baseline 33 (45) 19 (48) 14 (42)
Increase from baseline 40 (55) 21 (52) 19 (58)
Missing 21 18 3

Multiple Univariate Regression Analyses

rm_uvsum(data=pembrolizumab, response='orr',
covs=c('age','pdl1','change_ctdna_group'))
#> Waiting for profiling to be done...
#> Waiting for profiling to be done...
#> Waiting for profiling to be done...
OR(95%CI) p-value N
age 0.96 (0.91, 1.00) 0.09 94
pdl1 0.97 (0.95, 0.98) <0.001 93
change ctdna group 0.002 73
Decrease from baseline Reference 33
Increase from baseline 28.74 (5.20, 540.18) 40

Tidy multivariable analysis

glm_fit <- glm(orr~change_ctdna_group+pdl1+cohort,
               family='binomial',
               data = pembrolizumab)
rm_mvsum(glm_fit,showN=T)
OR(95%CI) p-value Global p-value N VIF
change ctdna group 0.009 73 1.00
Decrease from baseline Reference 33
Increase from baseline 19.99 (2.08, 191.60) 40
pdl1 0.97 (0.95, 1.00) 0.07 73 1.18
cohort 0.004 73 1.04
A Reference 14
B 2.6e+07 (0e+00, Inf) 1.00 11
C 4.2e+07 (0e+00, Inf) 1.00 10
D 0.07 (4.2e-03, 1.09) 0.06 10
E 0.44 (0.04, 5.10) 0.51 28

Combining univariate and multivariable models

uvsumTable <- rm_uvsum(data=pembrolizumab, response='orr',
covs=c('age','sex','pdl1','change_ctdna_group'),tableOnly = TRUE)
#> Waiting for profiling to be done...
#> Waiting for profiling to be done...
#> Waiting for profiling to be done...
#> Waiting for profiling to be done...

glm_fit <- glm(orr~change_ctdna_group+pdl1,
               family='binomial',
               data = pembrolizumab)
mvsumTable <- rm_mvsum(glm_fit,tableOnly = TRUE)

rm_uv_mv(uvsumTable,mvsumTable)
Unadjusted OR(95%CI) N p Adjusted OR(95%CI) p (adj)
age 0.96 (0.91, 1.00) 94 0.09
sex 94 0.11
Female Reference 58
Male 0.41 (0.13, 1.22) 36
pdl1 0.97 (0.95, 0.98) 93 <0.001 0.98 (0.96, 1.00) 0.02
change ctdna group 73 0.002 0.004
Decrease from baseline Reference 33 Reference
Increase from baseline 28.74 (5.20, 540.18) 40 24.71 (2.87, 212.70)

Simple survival summary table

Shows events, median survival, survival rates at different times and the log rank test. Does not allow for covariates or strata, just simple tests between groups

 rm_survsum(data=pembrolizumab,time='os_time',status='os_status',
 group="cohort",survtimes=c(12,24),
# group="cohort",survtimes=seq(12,36,12),
# survtimesLbls=seq(1,3,1),
 survtimesLbls=c(1,2),
 survtimeunit='yr')
cohort Events/Total Median (95%CI) 1yr (95% CI) 2yr (95% CI)
A 12/16 8.30 (4.24, NA) 0.38 (0.20, 0.71) 0.23 (0.09, 0.59)
B 16/18 8.82 (4.67, 20.73) 0.32 (0.16, 0.64) 0.06 (9.6e-03, 0.42)
C 12/18 17.56 (7.95, NA) 0.61 (0.42, 0.88) 0.44 (0.27, 0.74)
D 4/12 NA (6.44, NA) 0.67 (0.45, 0.99) 0.67 (0.45, 0.99)
E 20/30 14.26 (9.69, NA) 0.63 (0.48, 0.83) 0.34 (0.20, 0.57)
Log Rank Test ChiSq 11.3 on 4 df
p-value 0.02

Plotting survival curves

ggkmcif(response = c('os_time','os_status'),
cov='cohort',
data=pembrolizumab)

Plotting odds ratios

require(ggplot2)
#> Loading required package: ggplot2
#> Warning: package 'ggplot2' was built under R version 4.2.2
forestplot2(glm_fit)
#> Warning: Vectorized input to `element_text()` is not officially supported.
#> ℹ Results may be unexpected or may change in future versions of ggplot2.

Plotting bivariate relationships

These plots are designed for quick inspection of many variables, not for publication.

require(ggplot2)
plotuv(data=pembrolizumab, response='orr',
covs=c('age','cohort','pdl1','change_ctdna_group'))
#> Boxplots not shown for categories with fewer than 20 observations.
#> Boxplots not shown for categories with fewer than 20 observations.