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AffinityPropagation Performs clustering according to the affinity propagation algorithm

Description

This is a wrapper around the Python class sklearn.cluster.AffinityPropagation.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::BaseClustering -> AffinityPropagation

Methods

Public methods:
• AffinityPropagation$new()

• AffinityPropagation$clone()

Method new(): The AffinityPropagation class constructor.

Usage:
AffinityPropagation$new(
damping = 0.5,
max_iter = 200L,
convergence_iter = 15L,
copy = TRUE,
preference = NULL,
affinity = c("euclidean", "precomputed"),
verbose = FALSE,
random_state = NULL

)

Arguments:
damping A numeric value specifying the damping factor in the range [0.5, 1.0) which is the

extent to which the current value is maintained relative to incoming values (weighted 1
- damping). This avoids numerical oscillations when updating these values (messages).
Defaults to 0.5.

max_iter An integer value specifying the maximum number of iterations. Defaults to 200L.
convergence_iter An integer value specifying the number of iterations with no change in the

number of estimated clusters that stops the convergence. Defaults to 15L.

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AffinityPropagation.html#sklearn.cluster.AffinityPropagation
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copy A boolean value specifying whether to make a copy of input data. Defaults to TRUE.
preference A numeric value or numeric vector specifying the preferences for each point.

Points with larger values of preferences are more likely to be chosen as exemplars. The
number of exemplars, i.e. of clusters, is influenced by the input preferences value. If the
preferences are not passed as arguments, they will be set to the median of the input similar-
ities. Defaults to NULL.

affinity A string specifying the affinity to use. At the moment "precomputed" and "euclidean"
are supported. "euclidean" uses the negative squared euclidean distance between points.
Defaults to "euclidean".

verbose A boolean value specifying whether to be verbose. Defaults to FALSE.
random_state An integer value specifying the seed of the random generator. Defaults to NULL

which uses current time. Set it to a fixed integer for reproducible results across function
calls.

Returns: An object of class AffinityPropagation.

Method clone(): The objects of this class are cloneable with this method.

Usage:
AffinityPropagation$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

• Brendan J. Frey and Delbert Dueck (2007). Clustering by Passing Messages Between Data
Points, Science.

Examples

cl <- AffinityPropagation$new()

AgglomerativeClustering

Performs clustering according to the agglomerative algorithm

Description

Recursively merges pair of clusters of sample data; uses linkage distance. This is a wrapper around
the Python class sklearn.cluster.AgglomerativeClustering.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::BaseClustering -> AgglomerativeClustering

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html#sklearn.cluster.AgglomerativeClustering
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Methods

Public methods:

• AgglomerativeClustering$new()

• AgglomerativeClustering$clone()

Method new(): The AgglomerativeClustering class constructor.

Usage:
AgglomerativeClustering$new(
n_clusters = 2L,
affinity = c("euclidean", "l1", "l2", "manhattan", "cosine", "precomputed"),
memory = NULL,
connectivity = NULL,
compute_full_tree = "auto",
linkage = c("ward", "complete", "average", "single"),
distance_threshold = NULL,
compute_distances = FALSE

)

Arguments:

n_clusters An integer value specifying the number of clusters to find. It must be NULL if
distance_threshold is not NULL. Defaults to 2L.

affinity A string specifying the metric used to compute the linkage. Can be "euclidean",
"l1", "l2", "manhattan", "cosine" or "precomputed". If linkage is "ward", only
"euclidean" is accepted. If "precomputed", a distance matrix (instead of a similarity
matrix) is needed as input for the $fit() method. Defaults to "euclidean".

memory A string specifying the path to the caching directory. Defaults to NULL in which case
no caching is done.

connectivity Either a numeric matrix or an object of class stats::dist or an object coercible
into a function by rlang::as_function() specifying for each sample the neighboring
samples following a given structure of the data. This can be a connectivity matrix itself or
a function that transforms the data into a connectivity matrix. Defaults to NULL, i.e., the
hierarchical clustering algorithm is unstructured.

compute_full_tree Either a boolean value or the "auto" string specifying whether to prema-
turely stop the construction of the tree at n_clusters. This is useful to decrease computa-
tion time if the number of clusters is not small compared to the number of samples. This
option is useful only when specifying a connectivity matrix. Note also that when varying
the number of clusters and using caching, it may be advantageous to compute the full tree.
It must be TRUE if distance_threshold is not NULL. Defaults to "auto", which is equiva-
lent to TRUE when distance_threshold is not NULL or that n_clusters is inferior to the
maximum between 100 and 0.02 * n_samples. Otherwise, "auto" is equivalent to FALSE.

linkage A string specifying which linkage criterion to use. The linkage criterion determines
which distance to use between sets of observation. The algorithm will merge the pairs of
cluster that minimize this criterion.
• ward: minimizes the variance of the clusters being merged;
• average: uses the average of the distances of each observation of the two sets;
• complete: uses the maximum of the distances between all observations of the two sets.
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• single: uses the minimum of the distances between all observations of the two sets.
Defaults to "ward".

distance_threshold A numeric value specifying the linkage distance threshold above which
clusters will not be merged. If not NULL, n_clusters must be NULL and compute_full_tree
must be TRUE. Defaults to NULL.

compute_distances A boolean value specifying whether to compute distances between clus-
ters even if distance_threshold is not used. This can be used to make dendrogram visu-
alization, but introduces a computational and memory overhead. Defaults to FALSE.

Returns: An object of class AgglomerativeClustering.

Method clone(): The objects of this class are cloneable with this method.

Usage:

AgglomerativeClustering$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

cl <- AgglomerativeClustering$new()

AlphaComplex R6 Class for Alpha Complex

Description

AlphaComplex is a simplicial complex constructed from the finite cells of a Delaunay Triangulation.

Details

The filtration value of each simplex is computed as the square of the circumradius of the simplex
if the circumsphere is empty (the simplex is then said to be Gabriel), and as the minimum of the
filtration values of the codimension 1 cofaces that make it not Gabriel otherwise. All simplices
that have a filtration value strictly greater than a given alpha squared value are not inserted into the
complex.

Super class

rgudhi::PythonClass -> AlphaComplex
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Methods

Public methods:
• AlphaComplex$new()

• AlphaComplex$create_simplex_tree()

• AlphaComplex$get_point()

• AlphaComplex$clone()

Method new(): AlphaComplex constructor.
Usage:
AlphaComplex$new(points, precision = "safe")

Arguments:
points Either a n x d matrix or a length-n list of d-dimensional vectors or a file with extension

.off.
precision A string specifying the alpha complex precision. Can be one of "fast", "safe" or

"exact". Defaults to "safe".

Returns: A AlphaComplex object storing the Alpha complex.

Method create_simplex_tree(): Generates a simplex tree from the Delaunay triangulation.
Usage:
AlphaComplex$create_simplex_tree(
max_alpha_square = Inf,
default_filtration_value = FALSE

)

Arguments:
max_alpha_square A numeric value specifying the maximum alpha square threshold the sim-

plices shall not exceed. Default is set to Inf, and there is very little point using anything
else since it does not save time.

default_filtration_value A boolean specifying whether filtration values should not be
computed and will be set to NaN (default_filtration_value = TRUE). Defaults to FALSE
(which means compute the filtration values).

Returns: A SimplexTree object storing the computed simplex tree.

Method get_point(): This function returns the point corresponding to a given vertex from the
SimplexTree.

Usage:
AlphaComplex$get_point(vertex)

Arguments:
vertex An integer value specifying the desired vertex.

Returns: A numeric vector storing the point corresponding to the input vertex.

Method clone(): The objects of this class are cloneable with this method.
Usage:
AlphaComplex$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.
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Author(s)

Vincent Rouvreau

See Also

Other filtrations and reconstructions: RipsComplex, TangentialComplex, WitnessComplex

Examples

Xl <- seq_circle(10)
Xm <- Reduce(rbind, Xl, init = numeric())
acm <- AlphaComplex$new(points = Xm)
acl <- AlphaComplex$new(points = Xl)
acl

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
ac$get_point(1)

Atol Vector Representation: Atol

Description

Computes measure vectorization (e.g. point clouds, persistence diagrams, etc.) after a quantisation
step according to the Atol algorithm (Royer et al. 2021).

References:
Royer M, Chazal F, Levrard C, Umeda Y, Ike Y (2021). “ATOL: measure vectorization for auto-
matic topologically-oriented learning.” In International Conference on Artificial Intelligence and
Statistics, 1000–1008. PMLR.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::VectorRepresentationStep ->
Atol
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Methods

Public methods:
• Atol$new()

• Atol$clone()

Method new(): The Atol constructor.

Usage:
Atol$new(
quantiser,
weighting_method = c("cloud", "iidproba"),
contrast = c("gaussian", "laplacian", "indicator")

)

Arguments:

quantiser An object of class BaseClustering specifying any clustering algorithm from the
sklearn.cluster module. It will be fitted when the $fit() method is called.

weighting_method A string specifying the constant generic function for weighting the mea-
sure points. Choices are either "cloud" or "iidproba". Defaults to "cloud", i.e. the
measure is seen as a point cloud. This will have no impact if weights are provided along
with measures all the way, i.e. at $fit() and $transform() calls, through the optional
argument sample_weight.

contrast A string specifying the constant function for evaluating proximity of a measure with
respect to centers. Choices are either "gaussian" or "laplacian" or "indicator". De-
faults to "gaussian" (see page 3 in Royer et al. (2021)).

Returns: An object of class Atol.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Atol$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Mathieu Carrière

Examples

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
km <- KMeans$new(n_clusters = 2, random_state = 202006)
vr <- Atol$new(quantiser = km)

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.cluster
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# vr$apply(dgm) # TODO: needs fix in python
vr$fit_transform(list(dgm))

BettiCurve Vector Representation: Betti Curve

Description

Computes Betti curves from persistence diagrams. There are several modes of operation: with a
given resolution (with or without a sample_range), with a predefined grid, and with none of the
previous. With a predefined grid, the class computes the Betti numbers at those grid points. Without
a predefined grid, if the resolution is set to NULL, it can be fit to a list of persistence diagrams and
produce a grid that consists of (at least) the filtration values at which at least one of those persistence
diagrams changes Betti numbers, and then compute the Betti numbers at those grid points. In the
latter mode, the exact Betti curve is computed for the entire real line. Otherwise, if the resolution is
given, the Betti curve is obtained by sampling evenly using either the given sample_range or based
on the persistence diagrams.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::VectorRepresentationStep ->
BettiCurve

Methods

Public methods:

• BettiCurve$new()

• BettiCurve$clone()

Method new(): The BettiCurve constructor.

Usage:
BettiCurve$new(
resolution = 100,
sample_range = rep(NA, 2),
predefined_grid = NULL

)

Arguments:

resolution An integer value specifying the number of sample for the piecewise constant func-
tion. Defaults to 100L.

sample_range A length-2 numeric vector specifying the minimum and maximum of the piece-
wise constant function domain, of the form [xmin, xmax]. Defaults to rep(NA, 2). It is
the interval on which samples will be drawn evenly. If one of the values is NA, it can be
computed from the persistence diagrams with the $fit() method.
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predefined_grid A numeric vector specifying a predefined grid of points at which to com-
pute the Betti curves. Must be strictly ordered. Infinities are ok. If set to NULL (default),
and resolution is given, the grid will be uniform from xmin to xmax in resolution steps,
otherwise a grid will be computed that captures all changes in Betti numbers in the provided
data.

Returns: An object of class BettiCurve.

Method clone(): The objects of this class are cloneable with this method.

Usage:
BettiCurve$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Mathieu Carrière

Examples

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
bc <- BettiCurve$new()
bc$apply(dgm)
bc$fit_transform(list(dgm))

Birch Performs clustering according to the Birch algorithm

Description

It is a memory-efficient, online-learning algorithm provided as an alternative to MiniBatchKMeans.
It constructs a tree data structure with the cluster centroids being read off the leaf. These can be
either the final cluster centroids or can be provided as input to another clustering algorithm such as
AgglomerativeClustering. This is a wrapper around the Python class sklearn.cluster.Birch.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::BaseClustering -> Birch

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.Birch.html#sklearn.cluster.Birch
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Methods

Public methods:

• Birch$new()

• Birch$clone()

Method new(): The Birch class constructor.

Usage:
Birch$new(
threshold = 0.5,
branching_factor = 50L,
n_clusters = 3L,
compute_labels = TRUE,
copy = TRUE

)

Arguments:

threshold A numeric value specifying the upper bound of the radius of the subcluster obtained
by merging a new sample and the closest subcluster. Otherwise a new subcluster is started.
Setting this value to be very low promotes splitting and vice-versa. Defaults to 0.5.

branching_factor An integer value specifying the maximum number of CF subclusters in
each node. If a new sample enters such that the number of subclusters exceeds the branching_factor
then that node is splitted into two nodes with the subclusters redistributed in each. The par-
ent subcluster of that node is removed and two new subclusters are added as parents of the
2 split nodes.

n_clusters Either an integer value or an object of class BaseClustering specifying the number
of clusters after the final clustering step, which treats the subclusters from the leaves as new
samples.
• NULL: the final clustering step is not performed and the subclusters are returned as they

are;
• an object of class BaseClustering: the model is fit treating the subclusters as new samples

and the initial data is mapped to the label of the closest subcluster;
• integer value: the model fit is AgglomerativeClustering with n_clusters set to be equal

to the integer value. Defaults to 3L.
compute_labels A boolean value specifying whether to compute labels for each fit. Defaults

to TRUE.
copy A boolean value specifying whether to make a copy of the given data. If set to FALSE, the

initial data will be overwritten. Defaults to TRUE.

Returns: An object of class Birch.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Birch$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.
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References

• Tian Zhang, Raghu Ramakrishnan, Maron Livny (1996). BIRCH: An efficient data clustering
method for large databases, https://www.cs.sfu.ca/CourseCentral/459/han/papers/
zhang96.pdf.

• Roberto Perdisci J. Birch - Java implementation of BIRCH clustering algorithm, https://
code.google.com/archive/p/jbirch.

Examples

cl <- Birch$new()

BirthPersistenceTransform

Preprocessing: Birth Persistence Transform

Description

This is a class for the affine transformation (x, y) 7→ (x, y − x) to be applied on persistence dia-
grams.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::PreprocessingStep -> BirthPersistenceTransform

Methods

Public methods:
• BirthPersistenceTransform$new()

• BirthPersistenceTransform$clone()

Method new(): The BirthPersistenceTransform constructor.

Usage:
BirthPersistenceTransform$new()

Returns: An object of class BirthPersistenceTransform.

Method clone(): The objects of this class are cloneable with this method.

Usage:
BirthPersistenceTransform$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Mathieu Carrière

https://www.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf
https://www.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf
https://code.google.com/archive/p/jbirch
https://code.google.com/archive/p/jbirch
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Examples

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
bpt <- BirthPersistenceTransform$new()
bpt$apply(dgm)
bpt$fit_transform(list(dgm))

BisectingKMeans Performs clustering according to the bisecting k-means algorithm

Description

This is a wrapper around the Python class sklearn.cluster.BisectingKMeans.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::BaseClustering -> BisectingKMeans

Methods

Public methods:

• BisectingKMeans$new()

• BisectingKMeans$clone()

Method new(): The BisectingKMeans class constructor.

Usage:
BisectingKMeans$new(
n_clusters = 2L,
init = c("k-means++", "random"),
n_init = 10L,
max_iter = 300L,
tol = 1e-04,
verbose = 0L,
random_state = NULL,
copy_x = TRUE,
algorithm = c("lloyd", "elkan"),
bisecting_strategy = c("biggest_inertia", "largest_cluster")

)

Arguments:

n_clusters An integer value specifying the number of clusters to form as well as the number
of centroids to generate. Defaults to 2L.

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.BisectingKMeans.html#sklearn.cluster.BisectingKMeans
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init Either a string or a numeric matrix of shape nclusters×nfeatures specifying the method
for initialization. If a string, choices are:
• "k-means++": selects initial cluster centroids using sampling based on an empirical prob-

ability distribution of the points’ contribution to the overall inertia. This technique speeds
up convergence, and is theoretically proven to beO(log(k))-optimal. See the description
of n_init for more details;

• "random": chooses n_clusters observations (rows) at random from data for the initial
centroids. Defaults to "k-means++".

n_init An integer value specifying the number of times the k-means algorithm will be run with
different centroid seeds. The final results will be the best output of n_init consecutive runs
in terms of inertia. Defaults to 10L.

max_iter An integer value specifying the maximum number of iterations of the k-means algo-
rithm for a single run. Defaults to 300L.

tol A numeric value specifying the relative tolerance with regards to Frobenius norm of the dif-
ference in the cluster centers of two consecutive iterations to declare convergence. Defaults
to 1e-4.

verbose An integer value specifying the level of verbosity. Defaults to 0L which is equivalent
to no verbose.

random_state An integer value specifying the initial seed of the random number generator.
Defaults to NULL which uses the current timestamp.

copy_x A boolean value specifying whether the original data is to be modified. When pre-
computing distances it is more numerically accurate to center the data first. If copy_x
is TRUE, then the original data is not modified. If copy_x is FALSE, the original data is
modified, and put back before the function returns, but small numerical differences may be
introduced by subtracting and then adding the data mean. Note that if the original data is not
C-contiguous, a copy will be made even if copy_x is FALSE. If the original data is sparse,
but not in CSR format, a copy will be made even if copy_x is FALSE. Defaults to TRUE.

algorithm A string specifying the k-means algorithm to use. The classical EM-style algorithm
is "lloyd". The "elkan" variation can be more efficient on some datasets with well-defined
clusters, by using the triangle inequality. However it’s more memory-intensive due to the
allocation of an extra array of shape nsamples× nclusters. Defaults to "lloyd".

bisecting_strategy A string specifying how bisection should be performed. Choices are:
• "biggest_inertia": means that it will always check all calculated cluster for cluster

with biggest SSE (Sum of squared errors) and bisect it. This approach concentrates on
precision, but may be costly in terms of execution time (especially for larger amount of
data points).

• "largest_cluster": means that it will always split cluster with largest amount of points
assigned to it from all clusters previously calculated. That should work faster than picking
by SSE and may produce similar results in most cases. Defaults to "biggest_inertia".

Returns: An object of class BisectingKMeans.

Method clone(): The objects of this class are cloneable with this method.

Usage:
BisectingKMeans$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.
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Examples

cl <- BisectingKMeans$new()

BottleneckDistance Metrics: Bottleneck Distance

Description

Computes the bottleneck distance matrix from a list of persistence diagrams.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::MetricStep -> BottleneckDistance

Methods

Public methods:

• BottleneckDistance$new()

• BottleneckDistance$clone()

Method new(): The BottleneckDistance constructor.

Usage:
BottleneckDistance$new(epsilon = NULL, n_jobs = 1)

Arguments:

epsilon A numeric value specifying the absolute (additive) error tolerated on the distance.
Defaults to NULL, in which case the smallest positive float is used.

n_jobs An integer value specifying the number of jobs to use for the computation. Defaults to
1L.

Returns: An object of class BottleneckDistance.

Method clone(): The objects of this class are cloneable with this method.

Usage:
BottleneckDistance$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Mathieu Carrière
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Examples

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
dis <- BottleneckDistance$new()
dis$apply(dgm, dgm)
dis$fit_transform(list(dgm))

ComplexPolynomial Vector Representation: Complex Polynomial

Description

Computes complex polynomials from a list of persistence diagrams. The persistence diagram points
are seen as the roots of some complex polynomial, whose coefficients are returned in a complex
vector. See https://link.springer.com/chapter/10.1007%2F978-3-319-23231-7_27 for more details.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::VectorRepresentationStep ->
ComplexPolynomial

Methods

Public methods:
• ComplexPolynomial$new()

• ComplexPolynomial$clone()

Method new(): The ComplexPolynomial constructor.

Usage:
ComplexPolynomial$new(polynomial_type = c("R", "S", "T"), threshold = 10)

Arguments:
polynomial_type A string specifying the Type of complex polynomial that is going to be com-

puted (explained in https://link.springer.com/chapter/10.1007%2F978-3-319-23231-7_27).
Choices are c("R", "S", "T"). Defaults to "R".

threshold An integer value specifying the number of coefficients. This is the dimension of the
complex vector of coefficients, i.e. the number of coefficients corresponding to the largest
degree terms of the polynomial. If -1, this threshold is computed from the list of persistence
diagrams by considering the one with the largest number of points and using the dimension
of its corresponding complex vector of coefficients as threshold. Defaults to 10L.

Returns: An object of class ComplexPolynomial.
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Method clone(): The objects of this class are cloneable with this method.

Usage:
ComplexPolynomial$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Mathieu Carrière

Examples

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
cp <- ComplexPolynomial$new()
cp$apply(dgm)
cp$fit_transform(list(dgm))

CubicalComplex R6 Class for Cubical Complex

Description

The CubicalComplex is an example of a structured complex useful in computational mathematics
(specially rigorous numerics) and image analysis.

Super class

rgudhi::PythonClass -> CubicalComplex

Methods

Public methods:
• CubicalComplex$new()

• CubicalComplex$betti_numbers()

• CubicalComplex$cofaces_of_persistence_pairs()

• CubicalComplex$compute_persistence()

• CubicalComplex$dimension()

• CubicalComplex$num_simplices()

• CubicalComplex$persistence()



CubicalComplex 19

• CubicalComplex$persistence_intervals_in_dimension()

• CubicalComplex$persistent_betti_numbers()

• CubicalComplex$clone()

Method new(): Constructor from either top_dimensional_cells (and possibly dimensions)
or from a Perseus-style file name.

Usage:
CubicalComplex$new(
perseus_file,
top_dimensional_cells,
dimensions = NULL,
py_class = NULL

)

Arguments:
perseus_file A character string specifying the path to a Perseus-style file name.
top_dimensional_cells Either a numeric vector (in which case, dimensions should be pro-

vided as well) or a multidimensional array specifying cell filtration values.
dimensions An integer vector specifying the number of top dimensional cells. Defaults to

NULL.
py_class An existing CubicalComplex Python class. Defaults to NULL which uses the Python

class constructor instead.

Returns: A new CubicalComplex object.

Method betti_numbers(): This function returns the Betti numbers of the complex.

Usage:
CubicalComplex$betti_numbers()

Details: The $betti_numbers() method always returns [1, 0, 0, ...] as infinity filtration
cubes are not removed from the complex.

Returns: An integer vector storing the Betti numbers.

Method cofaces_of_persistence_pairs(): A persistence interval is described by a pair of
cells, one that creates the feature and one that kills it. The filtration values of those 2 cells give
coordinates for a point in a persistence diagram, or a bar in a barcode. Structurally, in the cubical
complexes provided here, the filtration value of any cell is the minimum of the filtration values
of the maximal cells that contain it. Connecting persistence diagram coordinates to the corre-
sponding value in the input (i.e. the filtration values of the top-dimensional cells) is useful for
differentiation purposes.

Usage:
CubicalComplex$cofaces_of_persistence_pairs()

Details: This function returns a list of pairs of top-dimensional cells corresponding to the
persistence birth and death cells of the filtration. The cells are represented by their indices in
the input list of top-dimensional cells (and not their indices in the internal data structure that
includes non-maximal cells). Note that when two adjacent top-dimensional cells have the same
filtration value, we arbitrarily return one of the two when calling the function on one of their
common faces.
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Returns: The top-dimensional cells/cofaces of the positive and negative cells, together with
the corresponding homological dimension, in two lists of integer arrays. The first list con-
tains the regular persistence pairs, grouped by dimension. It contains numpy arrays of shape
[number_of_persistence_points, 2]. The indices of the arrays in the list correspond to the
homological dimensions, and the integers of each row in each array correspond to: (index of positive top-dimensional cell, index of negative top-dimensional cell).
The second list contains the essential features, grouped by dimension. It contains numpy arrays
of shape [number_of_persistence_points, 1]. The indices of the arrays in the list corre-
spond to the homological dimensions, and the integers of each row in each array correspond to:
(index of positive top-dimensional cell).

Method compute_persistence(): This method computes the persistence of the complex, so it
can be accessed through $persistent_betti_numbers(), $persistence_intervals_in_dimension(),
etc. It is equivalent to the $persistence() method when you do not want the list $persistence()
returns.

Usage:
CubicalComplex$compute_persistence(
homology_coeff_field = 11,
min_persistence = 0

)

Arguments:
homology_coeff_field An integer value specifying the homology coefficient field. Must be

a prime number. Defaults to 11L. Maximum is 46337L.
min_persistence A numeric value specifying the minimum persistence value to take into ac-

count (strictly greater than min_persistence). Defaults to 0.0. Set min_persistence =
-1.0 to see all values.

Returns: The updated CubicalComplex class itself invisibly.

Method dimension(): This function returns the dimension of the complex.

Usage:
CubicalComplex$dimension()

Returns: An integer value giving the complex dimension.

Method num_simplices(): This function returns the number of all cubes in the complex.

Usage:
CubicalComplex$num_simplices()

Returns: An integer value giving the number of all cubes in the complex.

Method persistence(): This function computes and returns the persistence of the complex.

Usage:
CubicalComplex$persistence(homology_coeff_field = 11, min_persistence = 0)

Arguments:
homology_coeff_field An integer value specifying the homology coefficient field. Must be

a prime number. Defaults to 11L. Maximum is 46337L.
min_persistence A numeric value specifying the minimum persistence value to take into ac-

count (strictly greater than min_persistence). Defaults to 0.0. Set min_persistence =
-1.0 to see all values.
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Returns: A tibble listing all persistence feature summarised by 3 variables: dimension,
birth and death.

Method persistence_intervals_in_dimension(): This function returns the persistence in-
tervals of the complex in a specific dimension.

Usage:
CubicalComplex$persistence_intervals_in_dimension(dimension)

Arguments:

dimension An integer value specifying the desired dimension.

Returns: A tibble storing the persistence intervals by row.

Method persistent_betti_numbers(): This function returns the persistent Betti numbers of
the complex.

Usage:
CubicalComplex$persistent_betti_numbers(from_value, to_value)

Arguments:

from_value A numeric value specifying the persistence birth limit to be added in the numbers
(persistent birth <= from_value).

to_value A numeric value specifying the persistence death limit to be added in the numbers
(persistent death > to_value).

Returns: An integer vector storing the persistent Betti numbers.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CubicalComplex$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Pawel Dlotko

See Also

Other data structures for cell complexes: PeriodicCubicalComplex, SimplexTree

Examples

n <- 10
X <- cbind(seq(0, 1, len = n), seq(0, 1, len = n))
cc <- CubicalComplex$new(top_dimensional_cells = X)
cc

n <- 10
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X <- cbind(seq(0, 1, len = n), seq(0, 1, len = n))
cc <- CubicalComplex$new(top_dimensional_cells = X)
cc$compute_persistence()$betti_numbers()

n <- 10
X <- cbind(seq(0, 1, len = n), seq(0, 1, len = n))
cc <- CubicalComplex$new(top_dimensional_cells = X)
cc$compute_persistence()$cofaces_of_persistence_pairs()

n <- 10
X <- cbind(seq(0, 1, len = n), seq(0, 1, len = n))
cc <- CubicalComplex$new(top_dimensional_cells = X)
cc$dimension()

n <- 10
X <- cbind(seq(0, 1, len = n), seq(0, 1, len = n))
cc <- CubicalComplex$new(top_dimensional_cells = X)
cc$num_simplices()

n <- 10
X <- cbind(seq(0, 1, len = n), seq(0, 1, len = n))
cc <- CubicalComplex$new(top_dimensional_cells = X)
cc$persistence()

n <- 10
X <- cbind(seq(0, 1, len = n), seq(0, 1, len = n))
cc <- CubicalComplex$new(top_dimensional_cells = X)
cc$compute_persistence()$persistence_intervals_in_dimension(0)

n <- 10
X <- cbind(seq(0, 1, len = n), seq(0, 1, len = n))
cc <- CubicalComplex$new(top_dimensional_cells = X)
cc$compute_persistence()$persistent_betti_numbers(0, 1)

DBSCAN Performs clustering according to the DBSCAN algorithm

Description

DBSCAN - Density-Based Spatial Clustering of Applications with Noise. Finds core samples of
high density and expands clusters from them. Good for data which contains clusters of similar
density. This is a wrapper around the Python class sklearn.cluster.DBSCAN.

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN
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Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::BaseClustering -> DBSCAN

Methods

Public methods:
• DBSCAN$new()

• DBSCAN$clone()

Method new(): The DBSCAN class constructor.

Usage:
DBSCAN$new(
eps = 0.5,
min_samples = 5L,
metric = "euclidean",
metric_params = NULL,
algorithm = c("auto", "ball_tree", "kd_tree", "brute"),
leaf_size = 30L,
p = 2L,
n_jobs = 1L

)

Arguments:

eps A numeric value specifying the maximum distance between two samples for one to be
considered as in the neighborhood of the other. This is not a maximum bound on the dis-
tances of points within a cluster. This is the most important DBSCAN parameter to choose
appropriately for your data set and distance function. Defaults to 0.5.

min_samples An integer value specifying the number of samples (or total weight) in a neigh-
borhood for a point to be considered as a core point. This includes the point itself. Defaults
to 5L.

metric Either a string or an object coercible into a function via rlang::as_function() spec-
ifying the metric to use when calculating distance between instances in a feature array. If
metric is a string, it must be one of the options allowed by sklearn.metrics.pairwise_distances
for its metric parameter. If metric is "precomputed", X is assumed to be a distance matrix
and must be square. X may be a sparse graph, in which case only nonzero elements may be
considered neighbors for DBSCAN. Defaults to "euclidean".

metric_params A named list specifying additional parameters to be passed on to the metric
function. Defaults to NULL.

algorithm A string specifying the algorithm to be used by the sklearn.neighbors.NearestNeighbors
module to compute pointwise distances and find nearest neighbors. Choices are "auto",
"ball_tree", "kd_tree" or "brute". Defaults to "auto".

leaf_size An integer value specifying the leaf size passed to sklearn.neighbors.BallTree or
sklearn.neighbors.KDTree. This can affect the speed of the construction and query, as well
as the memory required to store the tree. The optimal value depends on the nature of the
problem. Defaults to 30L.

p An integer value specifying the power of the Minkowski metric to be used to calculate dis-
tance between points. Defaults to 2L.

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise_distances.html#sklearn.metrics.pairwise_distances
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.neighbors
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.BallTree.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KDTree.html#sklearn.neighbors.KDTree
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n_jobs An integer value specifying the number of parallel jobs to run. Defaults to 1L.

Returns: An object of class DBSCAN.

Method clone(): The objects of this class are cloneable with this method.

Usage:
DBSCAN$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

• Ester, M., H. P. Kriegel, J. Sander, and X. Xu (1996). A Density-Based Algorithm for Discov-
ering Clusters in Large Spatial Databases with Noise, In: Proceedings of the 2nd International
Conference on Knowledge Discovery and Data Mining, Portland, OR, AAAI Press, pp. 226-
231.

• Schubert, E., Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (2017). DBSCAN revisited, revis-
ited: why and how you should (still) use DBSCAN, ACM Transactions on Database Systems
(TODS), 42(3), p. 19.

Examples

cl <- DBSCAN$new()

DiagramScaler Preprocessing: Diagram Scaler

Description

This is a class for preprocessing persistence diagrams with a given list of scalers, such as those
included in scikit-learn.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::PreprocessingStep -> DiagramScaler

Methods

Public methods:
• DiagramScaler$new()

• DiagramScaler$clone()

Method new(): The DiagramScaler constructor.

Usage:
DiagramScaler$new(use = FALSE, scalers = list())
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Arguments:

use A boolean value specifying whether to use the class. Defaults to FALSE.
scalers A list of scalers to be fit on the persistence diagrams. Defaults to list() which is an

empty list. Each element of the list is a length-2 base::list with two elements:
• the first one is a list of coordinates;
• the second one is an instantiated scaler class. Choices are MaxAbsScaler, MinMaxScaler,

RobustScaler or StandardScaler.

Returns: An object of class DiagramScaler.

Method clone(): The objects of this class are cloneable with this method.

Usage:
DiagramScaler$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Mathieu Carrière

Examples

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramScaler$new()
ds$apply(dgm)
ds$fit_transform(list(dgm))

DiagramSelector Preprocessing: Diagram Selector

Description

This is a class for extracting finite or essential points in persistence diagrams.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::PreprocessingStep -> DiagramSelector
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Methods

Public methods:

• DiagramSelector$new()

• DiagramSelector$clone()

Method new(): The DiagramSelector constructor.

Usage:
DiagramSelector$new(
use = FALSE,
limit = Inf,
point_type = c("finite", "essential")

)

Arguments:

use A boolean value specifying whether to use the class. Defaults to FALSE.
limit A numeric value specifying the second coordinate value which is the criterion for being

an essential point. Defaults to∞.
point_type A string specifying the type of the points that are going to be extracted. Choices

are either “finite” or “essential”. Defaults to “finite”.

Returns: An object of class DiagramSelector.

Method clone(): The objects of this class are cloneable with this method.

Usage:
DiagramSelector$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Mathieu Carrière

Examples

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new()
ds$apply(dgm)
ds$fit_transform(list(dgm))
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Entropy Vector Representation: Entropy

Description

Computes persistence entropy. Persistence entropy is a statistic for persistence diagrams inspired
from Shannon entropy. This statistic can also be used to compute a feature vector, called the entropy
summary function. See https://arxiv.org/pdf/1803.08304.pdf for more details. Note that a previous
implementation was contributed by Manuel Soriano-Trigueros.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::VectorRepresentationStep ->
Entropy

Methods

Public methods:
• Entropy$new()

• Entropy$clone()

Method new(): The Entropy constructor.
Usage:
Entropy$new(
mode = c("scalar", "vector"),
normalized = TRUE,
resolution = 100,
sample_range = rep(NA_real_, 2)

)

Arguments:
mode A string specifying which entropy to compute: either "scalar" for computing the entropy

statistic, or "vector" for computing the entropy summary function. Defaults to "scalar".
normalized A boolean value specifying whether to normalize the entropy summary function.

Defaults to TRUE. Used only if mode == "vector".
resolution An integer value specifying the grid size for the entropy summary function. De-

faults to 100L. Used only if mode == "vector".
sample_range A length-2 numeric vector specifying the domain for the entropy summary func-

tion, of the form [xmin, xmax]. Defaults to rep(NA, 2). It is the interval on which samples
will be drawn evenly. If one of the values is NA, it can be computed from the persistence
diagrams with the $fit() method. Used only if mode == "vector".

Returns: An object of class Entropy.

Method clone(): The objects of this class are cloneable with this method.
Usage:
Entropy$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.
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Author(s)

Mathieu Carrière

Examples

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
ent <- Entropy$new()
ent$apply(dgm)
ent$fit_transform(list(dgm))

FeatureAgglomeration Performs clustering according to the feature agglomeration algorithm

Description

Recursively merges pair of clusters of features. This is a wrapper around the Python class sklearn.cluster.FeatureAgglomeration.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::BaseClustering -> FeatureAgglomeration

Methods

Public methods:
• FeatureAgglomeration$new()

• FeatureAgglomeration$clone()

Method new(): The FeatureAgglomeration class constructor.

Usage:
FeatureAgglomeration$new(
n_clusters = 2L,
affinity = c("euclidean", "l1", "l2", "manhattan", "cosine", "precomputed"),
memory = NULL,
connectivity = NULL,
compute_full_tree = "auto",
linkage = c("ward", "complete", "average", "single"),
pooling_func = rowMeans,
distance_threshold = NULL,
compute_distances = FALSE

)

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.FeatureAgglomeration.html#sklearn.cluster.FeatureAgglomeration
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Arguments:
n_clusters An integer value specifying the number of clusters to find. Defaults to 2L.
affinity A string or an object coercible into a function via rlang::as_function() speci-

fying the metric used to compute the linkage. If a string, choices are "euclidean", "l1",
"l2", "manhattan", "cosine" or "precomputed". If linkage is "ward", only "euclidean"
is accepted. Defaults to "euclidean".

memory A string specifying path to the caching directory for storing the computation of the tree.
Defaults to NULL in which case no caching is done.

connectivity A numeric matrix or an object coercible into a function via rlang::as_function()
specifying the connectivity matrix. Defines for each feature the neighboring features fol-
lowing a given structure of the data. This can be a connectivity matrix itself or a function that
transforms the data into a connectivity matrix, such as derived from sklearn.neighbors.kneighbors_graph().
Defaults to NULL in which case the hierarchical clustering algorithm is unstructured.

compute_full_tree The string "auto" or a boolean value specifying whether to stop early
the construction of the tree at n_clusters. This is useful to decrease computation time
if the number of clusters is not small compared to the number of features. This option is
useful only when specifying a connectivity matrix. Note also that when varying the number
of clusters and using caching, it may be advantageous to compute the full tree. It must be
TRUE if distance_threshold is not NULL. Defaults to "auto", which is equivalent to TRUE
when distance_threshold is not NULL or when n_clusters is inferior to max(100, 0.02
* n_samples) and to FALSE otherwise.

linkage A string specifying which linkage criterion to use. The linkage criterion determines
which distance to use between sets of features. The algorithm will merge the pairs of cluster
that minimize this criterion:
• "ward": minimizes the variance of the clusters being merged;
• "complete": maximum linkage uses the maximum distances between all features of the

two sets;
• "average": uses the average of the distances of each feature of the two sets;
• "single": uses the minimum of the distances between all features of the two sets.

pooling_func An object coercible into a function via rlang::as_function() specifying the
aggregation method to combine the values of agglomerated features into a single value. It
should take as input an array of shape M × N and the optional argument axis = 1, and
reduce it to an array of shape M . Defaults to base::rowMeans.

distance_threshold A numeric value specifying the linkage distance threshold above which
clusters will not be merged. If not NULL, n_clusters must be NULL and compute_full_tree
must be TRUE. Defaults to NULL.

compute_distances A boolean value specifying whether to compute distances between clus-
ters even if distance_threshold is not used. This can be used to make dendrogram visu-
alization, but introduces a computational and memory overhead. Defaults to FALSE.

Returns: An object of class FeatureAgglomeration.

Method clone(): The objects of this class are cloneable with this method.

Usage:
FeatureAgglomeration$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.kneighbors_graph.html#sklearn.neighbors.kneighbors_graph
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Examples

cl <- FeatureAgglomeration$new()

fetch Remote Data Sets

Description

A collection of function for fetching famous remote data sets.

Usage

fetch_bunny(data_folder, accept_license = FALSE)

fetch_spiral_2d(data_folder)

clear_data_home(data_folder)

Arguments

data_folder A string specifying a location for storing data ot be used with GUDHI.

accept_license A boolean specifying whether the user accepts the file LICENSE and prevents
from printing the corresponding license terms. Defaults to FALSE.

Value

A numeric array storing the points of the corresponding data set.

Stanford bunny dataset

The fetch_bunny() function returns a numeric array of shape 35947× 3.

spiral_2d dataset

The fetch_spiral_2d() function returns a numeric array of shape 114, 562× 2.

Examples

b <- withr::with_tempdir({fetch_bunny(getwd())})
s <- withr::with_tempdir({fetch_spiral_2d(getwd())})
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KMeans Performs clustering according to the k-means algorithm

Description

This is a wrapper around the Python class sklearn.cluster.KMeans.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::BaseClustering -> KMeans

Methods

Public methods:
• KMeans$new()

• KMeans$clone()

Method new(): The KMeans class constructor.

Usage:
KMeans$new(
n_clusters = 2L,
init = c("k-means++", "random"),
n_init = 10L,
max_iter = 300L,
tol = 1e-04,
verbose = 0L,
random_state = NULL,
copy_x = TRUE,
algorithm = c("lloyd", "elkan")

)

Arguments:
n_clusters An integer value specifying the number of clusters to form as well as the number

of centroids to generate. Defaults to 2L.
init Either a string or a numeric matrix of shape nclusters×nfeatures specifying the method for

initialization. If a string, choices are:
• "k-means++": selects initial cluster centroids using sampling based on an empirical prob-

ability distribution of the points’ contribution to the overall inertia. This technique speeds
up convergence, and is theoretically proven to beO(log(k))-optimal. See the description
of n_init for more details;

• "random": chooses n_clusters observations (rows) at random from data for the initial
centroids.

Defaults to "k-means++".
n_init An integer value specifying the number of times the k-means algorithm will be run with

different centroid seeds. The final results will be the best output of n_init consecutive runs
in terms of inertia. Defaults to 10L.

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans
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max_iter An integer value specifying the maximum number of iterations of the k-means algo-
rithm for a single run. Defaults to 300L.

tol A numeric value specifying the relative tolerance with regards to Frobenius norm of the dif-
ference in the cluster centers of two consecutive iterations to declare convergence. Defaults
to 1e-4.

verbose An integer value specifying the level of verbosity. Defaults to 0L which is equivalent
to no verbose.

random_state An integer value specifying the initial seed of the random number generator.
Defaults to NULL which uses the current timestamp.

copy_x A boolean value specifying whether the original data is to be modified. When pre-
computing distances it is more numerically accurate to center the data first. If copy_x
is TRUE, then the original data is not modified. If copy_x is FALSE, the original data is
modified, and put back before the function returns, but small numerical differences may be
introduced by subtracting and then adding the data mean. Note that if the original data is not
C-contiguous, a copy will be made even if copy_x is FALSE. If the original data is sparse,
but not in CSR format, a copy will be made even if copy_x is FALSE. Defaults to TRUE.

algorithm A string specifying the k-means algorithm to use. The classical EM-style algorithm
is "lloyd". The "elkan" variation can be more efficient on some datasets with well-defined
clusters, by using the triangle inequality. However it’s more memory-intensive due to the
allocation of an extra array of shape nsamples × nclusters. Defaults to "lloyd".

Returns: An object of class KMeans.

Method clone(): The objects of this class are cloneable with this method.

Usage:
KMeans$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

cl <- KMeans$new()

Landscape Vector Representation: Landscape

Description

Computes persistence landscapes from a list of persistence diagrams. A persistence landscape is a
collection of 1D piecewise-linear functions computed from the rank function associated to the per-
sistence diagram. These piecewise-linear functions are then sampled evenly on a given range and the
corresponding vectors of samples are concatenated and returned. See http://jmlr.org/papers/v16/bubenik15a.html
for more details.
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Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::VectorRepresentationStep ->
Landscape

Methods

Public methods:
• Landscape$new()

• Landscape$clone()

Method new(): The Landscape constructor.

Usage:
Landscape$new(
num_landscapes = 5,
resolution = 100,
sample_range = rep(NA_real_, 2)

)

Arguments:

num_landscapes An integer value specifying the number of piecewise linear functions to out-
put. Defaults to 5L.

resolution An integer value specifying the grid size for the landscapes. Defaults to 100L.
sample_range A length-2 numeric vector specifying the domain for the entropy summary func-

tion, of the form [xmin, xmax]. Defaults to rep(NA, 2). It is the interval on which samples
will be drawn evenly. If one of the values is NA, it can be computed from the persistence
diagrams with the $fit() method.

Returns: An object of class Landscape.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Landscape$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Mathieu Carrière

Examples

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
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lds <- Landscape$new()
lds$apply(dgm)
lds$fit_transform(list(dgm))

MaxAbsScaler Scales each feature by its maximum absolute value

Description

This estimator scales and translates each feature individually such that the maximal absolute value
of each feature in the training set will be 1.0. It does not shift/center the data, and thus does not
destroy any sparsity.

This scaler can also be applied to sparse CSR or CSC matrices.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::BaseScaler -> MaxAbsScaler

Methods

Public methods:
• MaxAbsScaler$new()

• MaxAbsScaler$clone()

Method new(): The MaxAbsScaler class constructor.

Usage:
MaxAbsScaler$new(copy = TRUE)

Arguments:
copy A boolean value specifying whether to perform in-place scaling and avoid a copy (if the

input is already a numpy array). Defaults to TRUE.

Returns: An object of class MaxAbsScaler.

Method clone(): The objects of this class are cloneable with this method.

Usage:
MaxAbsScaler$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

mas <- MaxAbsScaler$new()
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MeanShift Performs clustering according to the mean shift algorithm

Description

This is a wrapper around the Python class sklearn.cluster.MeanShift.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::BaseClustering -> MeanShift

Methods

Public methods:

• MeanShift$new()

• MeanShift$clone()

Method new(): The MeanShift class constructor.

Usage:
MeanShift$new(
bandwidth = NULL,
seeds = NULL,
bin_seeding = FALSE,
min_bin_freq = 1L,
cluster_all = TRUE,
n_jobs = 1L,
max_iter = 300L

)

Arguments:

bandwidth A numeric value specifying the bandwidth used in the RBF kernel. If NULL, the
bandwidth is estimated using sklearn.cluster.estimate_bandwidth(). Defaults to NULL.

seeds A numeric matrix of shape nsamples × nfeatures specifying the seeds used to initialize
kernels. If NULL, the seeds are calculated by sklearn.cluster.get_bin_seeds() with
bandwidth as the grid size and default values for other parameters. Defaults to NULL.

bin_seeding A boolean value specifying whether initial kernel locations are not locations of
all points, but rather the location of the discretized version of points, where points are binned
onto a grid whose coarseness corresponds to the bandwidth. Setting this option to TRUE will
speed up the algorithm because fewer seeds will be initialized. Defaults to FALSE. Ignored
if seeds is not NULL.

min_bin_freq An integer value specifying the minimal size of bins. To speed up the algorithm,
accept only those bins with at least min_bin_freq points as seeds. Defaults to 1L.

cluster_all A boolean value specifying whether all points are clustered, even those orphans
that are not within any kernel. Orphans are assigned to the nearest kernel. If FALSE, then
orphans are given cluster label -1. Defaults to TRUE.

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html#sklearn.cluster.MeanShift
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.estimate_bandwidth.html
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n_jobs An integer value specifying the number of jobs to use for the computation. This works
by computing each of the n_init runs in parallel. Defaults to 1L.

max_iter An integer value specifying the maximum number of iterations per seed point before
the clustering operation terminates (for that seed point) if it has not yet converged. Defaults
to 300L.

Returns: An object of class MeanShift.

Method clone(): The objects of this class are cloneable with this method.

Usage:
MeanShift$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

cl <- MeanShift$new()

MiniBatchKMeans Performs clustering according to the mini-batch k-means algorithm

Description

This is a wrapper around the Python class sklearn.cluster.MiniBatchKMeans.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::BaseClustering -> MiniBatchKMeans

Methods

Public methods:
• MiniBatchKMeans$new()

• MiniBatchKMeans$clone()

Method new(): The MiniBatchKMeans class constructor.

Usage:
MiniBatchKMeans$new(
n_clusters = 2L,
init = c("k-means++", "random"),
n_init = 10L,
max_iter = 300L,
tol = 1e-04,
verbose = 0L,

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html#sklearn.cluster.MiniBatchKMeans


MiniBatchKMeans 37

random_state = NULL,
batch_size = 1024L,
compute_labels = TRUE,
max_no_improvement = 10L,
init_size = NULL,
reassignment_ratio = 0.01

)

Arguments:
n_clusters An integer value specifying the number of clusters to form as well as the number

of centroids to generate. Defaults to 2L.
init Either a string or a numeric matrix of shape nclusters×nfeatures specifying the method

for initialization. If a string, choices are:
• "k-means++": selects initial cluster centroids using sampling based on an empirical prob-

ability distribution of the points’ contribution to the overall inertia. This technique speeds
up convergence, and is theoretically proven to beO(log(k))-optimal. See the description
of n_init for more details;

• "random": chooses n_clusters observations (rows) at random from data for the initial
centroids. Defaults to "k-means++".

n_init An integer value specifying the number of times the k-means algorithm will be run with
different centroid seeds. The final results will be the best output of n_init consecutive runs
in terms of inertia. Defaults to 10L.

max_iter An integer value specifying the maximum number of iterations of the k-means algo-
rithm for a single run. Defaults to 300L.

tol A numeric value specifying the relative tolerance with regards to Frobenius norm of the dif-
ference in the cluster centers of two consecutive iterations to declare convergence. Defaults
to 1e-4.

verbose An integer value specifying the level of verbosity. Defaults to 0L which is equivalent
to no verbose.

random_state An integer value specifying the initial seed of the random number generator.
Defaults to NULL which uses the current timestamp.

batch_size An integer value specifying the size of the mini-batches. For faster computations,
you can set the batch_size greater than 256 * number of cores to enable parallelism on all
cores. Defaults to 1024L.

compute_labels A boolean value specifying whether to compute label assignment and inertia
for the complete dataset once the minibatch optimization has converged in fit. Defaults to
TRUE.

max_no_improvement An integer value specifying how many consecutive mini batches that
does not yield an improvement on the smoothed inertia should be used to call off the al-
gorithm. To disable convergence detection based on inertia, set max_no_improvement to
NULL. Defaults to 10L.

init_size An integer value specifying the number of samples to randomly sample for speeding
up the initialization (sometimes at the expense of accuracy): the only algorithm is initialized
by running a batch KMeans on a random subset of the data. This needs to be larger than
n_clusters. If NULL, the heuristic is init_size = 3 * batch_size if 3 * batch_size <
n_clusters, else init_size = 3 * n_clusters. Defaults to NULL.

reassignment_ratio A numeric value specifying the fraction of the maximum number of
counts for a center to be reassigned. A higher value means that low count centers are more
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easily reassigned, which means that the model will take longer to converge, but should
converge in a better clustering. However, too high a value may cause convergence issues,
especially with a small batch size. Defaults to 0.01.

Returns: An object of class MiniBatchKMeans.

Method clone(): The objects of this class are cloneable with this method.

Usage:
MiniBatchKMeans$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

cl <- MiniBatchKMeans$new()

MinMaxScaler Transforms features by scaling each feature to a given range

Description

This estimator scales and translates each feature individually such that it is in the given range on the
training set, e.g. between zero and one.

The transformation is given by:

X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
X_scaled = X_std * (max - min) + min

where min, max = feature_range.

This transformation is often used as an alternative to zero mean, unit variance scaling.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::BaseScaler -> MinMaxScaler

Methods

Public methods:
• MinMaxScaler$new()

• MinMaxScaler$clone()

Method new(): The MinMaxScaler class constructor.

Usage:
MinMaxScaler$new(feature_range = c(0, 1), copy = TRUE, clip = FALSE)
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Arguments:

feature_range A length-2 numeric vector specifying the desired range of transformed data.
Defaults to c(0, 1).

copy A boolean value specifying whether to perform in-place scaling and avoid a copy (if the
input is already a numpy array). Defaults to TRUE.

clip A boolean value specifying whether to clip transformed values of held-out data to pro-
vided feature_range. Defaults to FALSE.

Returns: An object of class MinMaxScaler.

Method clone(): The objects of this class are cloneable with this method.

Usage:
MinMaxScaler$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

mms <- MinMaxScaler$new()

OPTICS Performs clustering according to the OPTICS algorithm

Description

This is a wrapper around the Python class sklearn.cluster.OPTICS.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::BaseClustering -> OPTICS

Methods

Public methods:
• OPTICS$new()

• OPTICS$clone()

Method new(): The OPTICS class constructor.

Usage:
OPTICS$new(
min_samples = 5L,
max_eps = Inf,
metric = c("minkowski", "cityblock", "cosine", "euclidean", "l1", "l2", "manhattan",
"braycurtis", "canberra", "chebyshev", "correlation", "dice", "hamming", "jaccard",

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.OPTICS.html#sklearn.cluster.OPTICS
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"kulsinski", "mahalanobis", "rogerstanimoto", "russellrao", "seuclidean",
"sokalmichener", "sokalsneath", "sqeuclidean", "yule"),

p = 2L,
metric_params = NULL,
cluster_method = c("xi", "dbscan"),
eps = NULL,
xi = 0.05,
predecessor_correction = TRUE,
min_cluster_size = NULL,
algorithm = c("auto", "ball_tree", "kd_tree", "brute"),
leaf_size = 30L,
memory = NULL,
n_jobs = 1L

)

Arguments:
min_samples Either an integer value greater than 1 or a numeric value between 0 and 1 speci-

fying the number of samples in a neighborhood for a point to be considered as a core point.
Also, up and down steep regions can’t have more than min_samples consecutive non-steep
points. Expressed as an absolute number or a fraction of the number of samples (rounded
to be at least 2). Defaults to 5L.

max_eps A numeric value specifying the maximum distance between two samples for one to
be considered as in the neighborhood of the other. Reducing max_eps will result in shorter
run times. Defaults to Inf.

metric Either a string or an object coercible into a function via rlang::as_function() spec-
ifying the metric to use for distance computation. If metric is a function, it is called on
each pair of instances (rows) and the resulting value recorded. The function should take
two numeric vectors as input and return one numeric value indicating the distance between
them. This works for Scipy’s metrics, but is less efficient than passing the metric name as
a string. If metric is "precomputed", X is assumed to be a distance matrix and must be
square. Valid string values for metric are:
• from sklearn.metrics: "cityblock", "cosine", "euclidean", "l1", "l2", "manhattan";
• from scipy.spatial.distance: "braycurtis", "canberra", "chebyshev", "correlation",
"dice", "hamming", "jaccard", "kulsinski", "mahalanobis", "minkowski", "rogerstanimoto",
"russellrao", "seuclidean", "sokalmichener", "sokalsneath", "sqeuclidean",
"yule".

Defaults to "minkowski".
p An integer value specifying the power for the Minkowski metric. When p = 1, this is equiv-

alent to using the Manhattan distance (`1). When p = 2, this is equivalent to using the
Euclidean distance (`2). For arbitrary p, the Minkowski distance (`p) is used. Defaults to
2L.

metric_params A named list specifying additional arguments for the metric function. Defaults
to NULL.

cluster_method A string specifying the extraction method used to extract clusters using the
calculated reachability and ordering. Possible values are "xi" and "dbscan". Defaults to
"xi".

eps A numeric value specifying the maximum distance between two samples for one to be
considered as in the neighborhood of the other. Defaults to max_eps. Used only when

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
https://docs.scipy.org/doc/scipy/reference/spatial.distance.html


OPTICS 41

cluster_method == "dbscan".

xi A numeric value in [0, 1] specifying the minimum steepness on the reachability plot that
constitutes a cluster boundary. For example, an upwards point in the reachability plot is
defined by the ratio from one point to its successor being at most 1 - xi. Used only when
cluster_method == "xi". Defaults to 0.05.

predecessor_correction A boolean value specifying whether to correct clusters according
to the predecessors calculated by OPTICS (Schubert and Gertz 2018). This parameter has
minimal effect on most data sets. Used only when cluster_method == "xi". Defaults to
TRUE.

min_cluster_size Either an integer value > 1 or a numeric value in [0, 1] specifying the min-
imum number of samples in an OPTICS cluster, expressed as an absolute number or a frac-
tion of the number of samples (rounded to be at least 2). If NULL, the value of min_samples
is used instead. Used only when cluster_method == "xi". Defaults to NULL.

algorithm A string specifying the algorithm used to compute the nearest neighbors. Choices
are c("auto", "ball_tree", "kd_tree", "brute"). Defaults to "auto" which will at-
tempt to decide the most appropriate algorithm based on the values passed to fit method.
Note: fitting on sparse input will override the setting of this parameter, using algorithm ==
"brute".

leaf_size An integer value specifying the leaf size passed to BallTree or KDTree. This can
affect the speed of the construction and query, as well as the memory required to store the
tree. The optimal value depends on the nature of the problem. Defaults to 30L

memory A string specifying the path to the caching directory into which caching the output of
the computation of the tree. Defaults to NULL in which case no caching is done.

n_jobs An integer value specifying the number of parallel jobs to run for neighbors search.
Defaults to 1L. A value of -1L means using all processors.

Returns: An object of class OPTICS.

References:
Schubert E, Gertz M (2018). “Improving the cluster structure extracted from optics plots.” In
LWDA.

Method clone(): The objects of this class are cloneable with this method.

Usage:

OPTICS$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

cl <- OPTICS$new()
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Padding Preprocessing: Padding

Description

This is a class for padding a list of persistence diagrams with dummy points, so that all persistence
diagrams end up with the same number of points.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::PreprocessingStep -> Padding

Methods

Public methods:
• Padding$new()

• Padding$clone()

Method new(): The Padding constructor.

Usage:
Padding$new(use = FALSE)

Arguments:
use A boolean value specifying whether to use the class. Defaults to FALSE.

Returns: An object of class Padding.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Padding$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Mathieu Carrière

Examples

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
pad <- Padding$new()
pad$apply(dgm)
pad$fit_transform(list(dgm))
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PeriodicCubicalComplex

R6 Class for Periodic Cubical Complex

Description

The PeriodicCubicalComplex class is an example of a structured complex useful in computational
mathematics (specially rigorous numerics) and image analysis.

Super classes

rgudhi::PythonClass -> rgudhi::CubicalComplex -> PeriodicCubicalComplex

Methods

Public methods:
• PeriodicCubicalComplex$new()

• PeriodicCubicalComplex$clone()

Method new(): Constructor from either top_dimensional_cells (and possibly dimensions)
or from a Perseus-style file name.

Usage:
PeriodicCubicalComplex$new(
perseus_file,
top_dimensional_cells,
periodic_dimensions,
dimensions = NULL,
py_class = NULL

)

Arguments:
perseus_file A character string specifying the path to a Perseus-style file name.
top_dimensional_cells Either a numeric vector (in which case, dimensions should be pro-

vided as well) or a multidimensional array specifying cell filtration values.
periodic_dimensions A logical vector specifying the periodicity value of the top dimensional

cells.
dimensions An integer vector specifying the number of top dimensional cells. Defaults to

NULL.
py_class An existing PeriodicCubicalComplex Python class. Defaults to NULL which uses

the Python class constructor instead.
Returns: A new PeriodicCubicalComplex object.

Method clone(): The objects of this class are cloneable with this method.
Usage:
PeriodicCubicalComplex$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.
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Author(s)

Pawel Dlotko

See Also

Other data structures for cell complexes: CubicalComplex, SimplexTree

Examples

n <- 10
X <- cbind(seq(0, 1, len = n), seq(0, 1, len = n))
pcc <- PeriodicCubicalComplex$new(

top_dimensional_cells = X,
periodic_dimensions = c(TRUE, FALSE)

)
pcc

PersistenceFisherDistance

Metrics: Persistence Fisher Distance

Description

Computes the persistence Fisher distance matrix from a list of persistence diagrams. The persis-
tence Fisher distance is obtained by computing the original Fisher distance between the probability
distributions associated to the persistence diagrams given by convolving them with a Gaussian ker-
nel. See http://papers.nips.cc/paper/8205-persistence-fisher-kernel-a-riemannian-manifold-kernel-
for-persistence-diagrams for more details.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::MetricStep -> PersistenceFisherDistance

Methods

Public methods:
• PersistenceFisherDistance$new()

• PersistenceFisherDistance$clone()

Method new(): The PersistenceFisherDistance constructor.

Usage:
PersistenceFisherDistance$new(bandwidth = 1, kernel_approx = NULL, n_jobs = 1)

Arguments:
bandwidth A numeric value specifying the bandwidth of the Gaussian kernel applied to the

persistence Fisher distance. Defaults to 1.0.
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kernel_approx A Python class specifying the kernel approximation class used to speed up
computation. Defaults to NULL. Common kernel approximations classes can be found in the
scikit-learn library (such as RBFSampler for instance).

n_jobs An integer value specifying the number of jobs to use for the computation. Defaults to
1L.

Returns: An object of class PersistenceFisherDistance.

Method clone(): The objects of this class are cloneable with this method.

Usage:
PersistenceFisherDistance$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Mathieu Carrière

Examples

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
dis <- PersistenceFisherDistance$new()
dis$apply(dgm, dgm)
dis$fit_transform(list(dgm))

PersistenceFisherKernel

Kernel Representation: Persistence Fisher Kernel

Description

Computes the persistence Fisher kernel matrix from a list of persistence diagrams. The persistence
Fisher kernel is computed by exponentiating the corresponding persistence Fisher distance with a
Gaussian kernel. See papers.nips.cc/paper/8205-persistence-fisher-kernel-a-riemannian-manifold-
kernel-for-persistence-diagrams for more details.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::KernelRepresentationStep ->
PersistenceFisherKernel
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Methods

Public methods:
• PersistenceFisherKernel$new()

• PersistenceFisherKernel$clone()

Method new(): The PersistenceFisherKernel constructor.

Usage:
PersistenceFisherKernel$new(
bandwidth_fisher = 1,
bandwidth = 1,
kernel_approx = NULL,
n_jobs = 1

)

Arguments:

bandwidth_fisher A numeric value specifying the bandwidth of the Gaussian kernel used to
turn persistence diagrams into probability distributions by the PersistenceFisherDistance
class. Defaults to 1.0.

bandwidth A numeric value specifying the bandwidth of the Gaussian kernel applied to the
persistence Fisher distance. Defaults to 1.0.

kernel_approx A Python class specifying the kernel approximation class used to speed up
computation. Defaults to NULL. Common kernel approximations classes can be found in the
scikit-learn library (such as RBFSampler for instance).

n_jobs An integer value specifying the number of jobs to use for the computation. Defaults to
1.

Returns: An object of class PersistenceFisherKernel.

Method clone(): The objects of this class are cloneable with this method.

Usage:
PersistenceFisherKernel$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Mathieu Carrière

Examples

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
pfk <- PersistenceFisherKernel$new()
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pfk$apply(dgm, dgm)
pfk$fit_transform(list(dgm))

PersistenceImage Vector Representation: Persistence Image

Description

Computes persistence images from a list of persistence diagrams. A persistence image is a 2D
function computed from a persistence diagram by convolving the diagram points with a weighted
Gaussian kernel. The plane is then discretized into an image with pixels, which is flattened and
returned as a vector. See http://jmlr.org/papers/v18/16-337.html for more details.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::VectorRepresentationStep ->
PersistenceImage

Methods

Public methods:
• PersistenceImage$new()

• PersistenceImage$clone()

Method new(): The PersistenceImage constructor.

Usage:
PersistenceImage$new(
bandwidth = 1,
weight = ~1,
resolution = c(20, 20),
im_range = rep(NA_real_, 4)

)

Arguments:
bandwidth A numeric value specifying the bandwidth of the Gaussian kernel. Defaults to 1.0.
weight A function or a formula coercible into a function via rlang::as_function() specify-

ing the weight function for the persistence diagram points. Defaults to the constant function
~ 1. This function must be defined on 2D points, i.e. lists or arrays of the form [px, py].

resolution An length-1 integer vector specifying the size (in pixels) of the persistence image.
Defaults to rep(20L, 2).

im_range A length-4 numeric vector specifying the two-dimensional domain for the persis-
tence image, of the form [xmin, ymin, xmax, ymax]. Defaults to rep(NA, 4). If one of the
values is NA, it can be computed from the persistence diagrams with the $fit() method.

Returns: An object of class PersistenceImage.

Method clone(): The objects of this class are cloneable with this method.
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Usage:
PersistenceImage$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Mathieu Carrière

Examples

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
pei <- PersistenceImage$new()
pei$apply(dgm)
pei$fit_transform(list(dgm))

PersistenceScaleSpaceKernel

Kernel Representation: Persistence Scale-Space Kernel

Description

Computes the persistence scale space kernel matrix from a list of persistence diagrams. The persis-
tence scale space kernel is computed by adding the symmetric to the diagonal of each point in each
persistence diagram, with negative weight, and then convolving the points with a Gaussian kernel.
See https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Reininghaus_A_Stable_Multi-
Scale_2015_CVPR_paper.pdf for more details.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::KernelRepresentationStep ->
PersistenceScaleSpaceKernel

Methods

Public methods:
• PersistenceScaleSpaceKernel$new()

• PersistenceScaleSpaceKernel$clone()

Method new(): The PersistenceScaleSpaceKernel constructor.
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Usage:

PersistenceScaleSpaceKernel$new(
bandwidth = 1,
kernel_approx = NULL,
n_jobs = 1

)

Arguments:

bandwidth A numeric value specifying the bandwidth of the Gaussian kernel with which per-
sistence diagrams will be convolved. Defaults to 1.0.

kernel_approx A Python class specifying the kernel approximation class used to speed up
computation. Defaults to NULL. Common kernel approximations classes can be found in the
scikit-learn library (such as RBFSampler for instance).

n_jobs An integer value specifying the number of jobs to use for the computation. Defaults to
1.

Returns: An object of class PersistenceScaleSpaceKernel.

Method clone(): The objects of this class are cloneable with this method.

Usage:

PersistenceScaleSpaceKernel$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Mathieu Carrière

Examples

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
pssk <- PersistenceScaleSpaceKernel$new()
pssk$apply(dgm, dgm)
pssk$fit_transform(list(dgm))
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PersistenceSlicedWassersteinKernel

Kernel Representation: Persistence Sliced Wasserstein Kernel

Description

Computes the sliced Wasserstein kernel matrix from a list of persistence diagrams. The sliced
Wasserstein kernel is computed by exponentiating the corresponding sliced Wasserstein distance
with a Gaussian kernel. See http://proceedings.mlr.press/v70/carriere17a.html for more details.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::KernelRepresentationStep ->
PersistenceSlicedWassersteinKernel

Methods

Public methods:

• PersistenceSlicedWassersteinKernel$new()

• PersistenceSlicedWassersteinKernel$clone()

Method new(): The PersistenceSlicedWassersteinKernel constructor.

Usage:
PersistenceSlicedWassersteinKernel$new(
num_directions = 10,
bandwidth = 1,
n_jobs = 1

)

Arguments:

num_directions An integer value specifying the number of lines evenly sampled from [−π/2, π/2]
in order to approximate and speed up the kernel computation. Defaults to 10L.

bandwidth A numeric value specifying the bandwidth of the Gaussian kernel with which per-
sistence diagrams will be convolved. Defaults to 1.0.

n_jobs An integer value specifying the number of jobs to use for the computation. Defaults to
1.

Returns: An object of class PersistenceSlicedWassersteinKernel.

Method clone(): The objects of this class are cloneable with this method.

Usage:
PersistenceSlicedWassersteinKernel$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.
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Author(s)

Mathieu Carrière

Examples

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
pswk <- PersistenceSlicedWassersteinKernel$new()
pswk$apply(dgm, dgm)
pswk$fit_transform(list(dgm))

PersistenceWeightedGaussianKernel

Kernel Representation: Persistence Weighted Gaussian Kernel

Description

Computes the persistence weighted Gaussian kernel matrix from a list of persistence diagrams. The
persistence weighted Gaussian kernel is computed by convolving the persistence diagram points
with weighted Gaussian kernels. See http://proceedings.mlr.press/v48/kusano16.html for more de-
tails.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::KernelRepresentationStep ->
PersistenceWeightedGaussianKernel

Methods

Public methods:
• PersistenceWeightedGaussianKernel$new()

• PersistenceWeightedGaussianKernel$clone()

Method new(): The PersistenceWeightedGaussianKernel constructor.

Usage:
PersistenceWeightedGaussianKernel$new(
bandwidth = 1,
weight = ~1,
kernel_approx = NULL,
n_jobs = 1

)
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Arguments:

bandwidth A numeric value specifying the bandwidth of the Gaussian kernel with which per-
sistence diagrams will be convolved. Defaults to 1.0.

weight A function or a formula coercible into a function via rlang::as_function() specify-
ing the weight function for the persistence diagram points. Defaults to the constant function
~ 1. This function must be defined on 2D points, i.e. lists or arrays of the form [px, py].

kernel_approx A Python class specifying the kernel approximation class used to speed up
computation. Defaults to NULL. Common kernel approximations classes can be found in the
scikit-learn library (such as RBFSampler for instance).

n_jobs An integer value specifying the number of jobs to use for the computation. Defaults to
1.

Returns: An object of class PersistenceWeightedGaussianKernel.

Method clone(): The objects of this class are cloneable with this method.

Usage:
PersistenceWeightedGaussianKernel$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Mathieu Carrière

Examples

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
pwgk <- PersistenceWeightedGaussianKernel$new()
pwgk$apply(dgm, dgm)
pwgk$fit_transform(list(dgm))

persistence_diagram Persistence Diagram

Description

A collection of function to manipulate a persistence diagram as an object of class persistence_diagram.
A persistence_diagram is a tibble::tibble with a birth variable and at least one of death or lifetime
variables.
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Usage

as_persistence_diagram(x)

is_persistence_diagram(x)

Arguments

x An object coercible into a persistence_diagram object.

Value

An object of class persistence_diagram.

plot Visualization of persistence diagrams

Description

The plot.persistence_diagram() function only displays the plot while the autoplot.persistence_diagram()
in addition outputs the ggplot2::ggplot object. If one wishes to control graphical properties, it is rec-
ommended to use the latter to retrieve the ggplot2::ggplot object and modify and/or add layers as
desired.

Usage

## S3 method for class 'persistence_diagram'
plot(
x,
dimension = NULL,
alpha = 0.6,
max_intervals = 20000,
legend = FALSE,
greyblock = TRUE,
type = c("barcode", "diagram"),
...

)

## S3 method for class 'persistence_diagram'
autoplot(
x,
dimension = NULL,
alpha = 0.6,
max_intervals = 20000,
legend = FALSE,
greyblock = TRUE,
n = 10L,
type = c("barcode", "diagram", "density"),
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...
)

Arguments

x An object of class persistence_diagram.

dimension An integer value specifying the homology dimension to visualize. Defaults to
NULL in which case the dimension is retrieved directly in the persistence_diagram
object.

alpha A numeric value between 0 and 1 specifying the transparency of points and lines
in the plot. Defaults to 0.6.

max_intervals An integer value specifying the maximal number of intervals to display. Selected
intervals are those with the longest lifetime. Set it to 0 to see them all. Defaults
20000L.

legend A boolean value specifying whether to display the legend about the homology
dimension(s). Defaults to FALSE.

greyblock A boolean value specifying whether to display a grey lower triangle in the dia-
gram representation for nicer output. Defaults to TRUE.

type A string specifyfing the type of representation. Choices are "barcode", "diagram"
or "density". Defaults to "barcode".

... Other parameters to be passed on to next methods.

n An integer value specifying the number of bins for plotting the diagram as a
density. Defaults to 10L.

Value

For plot.persistence_diagram(), NULL. Otherwise a ggplot2::ggplot object.

ProminentPoints Preprocessing: Prominent Points

Description

This is a class or removing points that are close or far from the diagonal in persistence diagrams. If
persistence diagrams are 2-column tibble::tibbles (i.e. persistence diagrams with ordinary features),
points are ordered and thresholded by distance-to-diagonal. If persistence diagrams are 1-column
tibble::tibbles (i.e. persistence diagrams with essential features), points are not ordered and thresh-
olded by first coordinate.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::PreprocessingStep -> ProminentPoints
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Methods

Public methods:
• ProminentPoints$new()

• ProminentPoints$clone()

Method new(): The ProminentPoints constructor.
Usage:
ProminentPoints$new(
use = FALSE,
num_pts = 10,
threshold = -1,
location = c("upper", "lower")

)

Arguments:
use A boolean value specifying whether to use the class. Defaults to FALSE.
num_pts An integer value specifying the cardinality threshold. Defaults to 10L. If location

== "upper", keeps the top num_pts points that are the farthest away from the diagonal. If
location == "lower", keeps the top num_pts points that are the closest to the diagonal.

threshold A numeric value specifying the distance-to-diagonal threshold. Defaults to -1.0.
If location == "upper", keeps the points that are at least at a distance threshold from the
diagonal. If location == "lower", keeps the points that are at most at a distance threshold
from the diagonal.

location A string specifying whether to keep the points that are far away ("upper") or close
("lower") to the diagonal. Defaults to "upper".

Returns: An object of class ProminentPoints.

Method clone(): The objects of this class are cloneable with this method.
Usage:
ProminentPoints$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Mathieu Carrière

Examples

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
pp <- ProminentPoints$new()
pp$apply(dgm)
pp$fit_transform(list(dgm))
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RipsComplex R6 Class for Rips Complex

Description

The data structure is a one skeleton graph, or Rips graph, containing edges when the edge length
is less or equal to a given threshold. Edge length is computed from a user given point cloud with a
given distance function, or a distance matrix.

Super class

rgudhi::PythonClass -> RipsComplex

Methods

Public methods:
• RipsComplex$new()

• RipsComplex$create_simplex_tree()

• RipsComplex$clone()

Method new(): RipsComplex constructor.

Usage:
RipsComplex$new(data, max_edge_length = NULL, sparse = NULL)

Arguments:
data Either a n x d matrix or a length-n list of d-dimensional vectors or a distance matrix

stored as a dist object.
max_edge_length A numeric value specifying the Rips value.
sparse A numeric value specifying the approximation parameter epsilon for buidling a sparse

Rips complex. Defaults to NULL which builds an exact Rips complex.

Returns: A RipsComplex object storing the Rips complex.

Method create_simplex_tree():
Usage:
RipsComplex$create_simplex_tree(max_dimension)

Arguments:
max_dimension An integer value specifying the maximal dimension which the Rips complex

will be expanded to.

Returns: A SimplexTree object storing the computed simplex tree.

Method clone(): The objects of this class are cloneable with this method.

Usage:
RipsComplex$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.
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Author(s)

Clément Maria, Pawel Dlotko, Vincent Rouvreau, Marc Glisse, Yuichi Ike

See Also

Other filtrations and reconstructions: AlphaComplex, TangentialComplex, WitnessComplex

Examples

X <- seq_circle(10)
rc1 <- RipsComplex$new(data = X, max_edge_length = 1)
Xm <- Reduce(rbind, X, init = numeric())
rc2 <- RipsComplex$new(data = Xm, max_edge_length = 1)
D <- dist(Xm)
rc3 <- RipsComplex$new(data = D)

X <- seq_circle(10)
rc <- RipsComplex$new(data = X, max_edge_length = 1)
st <- rc$create_simplex_tree(1)

RobustScaler Scales features using statistics that are robust to outliers

Description

This scaler removes the median and scales the data according to the quantile range (defaults to
IQR: Interquartile Range). The IQR is the range between the 1st quartile (25th quantile) and the
3rd quartile (75th quantile).

Centering and scaling happen independently on each feature by computing the relevant statistics on
the samples in the training set. Median and interquartile range are then stored to be used on later
data using the $transform() method.

Standardization of a dataset is a common requirement for many machine learning estimators. Typ-
ically this is done by removing the mean and scaling to unit variance. However, outliers can often
influence the sample mean / variance in a negative way. In such cases, the median and the interquar-
tile range often give better results.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::BaseScaler -> RobustScaler
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Methods

Public methods:

• RobustScaler$new()

• RobustScaler$clone()

Method new(): The RobustScaler class constructor.

Usage:
RobustScaler$new(
with_centering = TRUE,
with_scaling = TRUE,
quantile_range = c(25, 75),
copy = TRUE,
unit_variance = FALSE

)

Arguments:

with_centering A boolean value specifying whether to center the data before scaling. This
will cause transform to raise an exception when attempted on sparse matrices, because
centering them entails building a dense matrix which in common use cases is likely to be
too large to fit in memory. Defaults to TRUE.

with_scaling A boolean value specifying whether to scale the data to interquartile range.
Defaults to TRUE.

quantile_range A length-2 numeric vector specifying the quantile range used to calculate
scale_. Defaults to c(25.0, 75.0).

copy A boolean value specifying whether to perform in-place scaling and avoid a copy (if the
input is already a numpy array). Defaults to TRUE.

unit_variance A boolean value specifying whether to scale data so that normally distributed
features have a variance of 1. In general, if the difference between the x-values of qmax and
qmin for a standard normal distribution is greater than 1, the data set will be scaled down. If
less than 1, the data set will be scaled up. Defaults to FALSE.

Returns: An object of class RobustScaler.

Method clone(): The objects of this class are cloneable with this method.

Usage:
RobustScaler$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

rs <- RobustScaler$new()
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seq_circle Circular Sequence Generation

Description

Generates a sequence of 2D points evenly spaced on the unit circle.

Usage

seq_circle(n)

Arguments

n An integer value specifying the number of points in the sequence.

Value

A base::list of length-2 numeric vectors storing 2D points evenly spaced on the unit circle.

Examples

seq_circle(10)

Silhouette Vector Representation: Silhouette

Description

Computes persistence silhouettes from a list of persistence diagrams. A persistence silhouette is
computed by taking a weighted average of the collection of 1D piecewise-linear functions given by
the persistence landscapes, and then by evenly sampling this average on a given range. Finally, the
corresponding vector of samples is returned. See https://arxiv.org/abs/1312.0308 for more details.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::VectorRepresentationStep ->
Silhouette

Methods

Public methods:
• Silhouette$new()

• Silhouette$clone()

Method new(): The Silhouette constructor.

Usage:
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Silhouette$new(weight = ~1, resolution = 100, sample_range = rep(NA_real_, 2))

Arguments:

weight A function or a formula coercible into a function via rlang::as_function() specify-
ing the weight function for the persistence diagram points. Defaults to the constant function
~ 1. This function must be defined on 2D points, i.e. lists or arrays of the form [px, py].

resolution An length-1 integer vector specifying the size (in pixels) of the persistence image.
Defaults to rep(20L, 2).

sample_range A length-2 numeric vector specifying the domain for the entropy summary func-
tion, of the form [xmin, xmax]. Defaults to rep(NA, 2). It is the interval on which samples
will be drawn evenly. If one of the values is NA, it can be computed from the persistence
diagrams with the $fit() method.

Returns: An object of class Silhouette.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Silhouette$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Mathieu Carrière

Examples

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
sil <- Silhouette$new()
sil$apply(dgm) # TO DO: fix gd because it does not set sample_range automatically
sil$fit_transform(list(dgm))

SimplexTree R6 Class for Simplex Tree

Description

The simplex tree is an efficient and flexible data structure for representing general (filtered) simpli-
cial complexes. The data structure is described in Boissonnat and Maria (2014).
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Details

This class is a filtered, with keys, and non contiguous vertices version of the simplex tree.

References:
Boissonnat J, Maria C (2014). “The simplex tree: An efficient data structure for general simplicial
complexes.” Algorithmica, 70(3), 406–427.

Super class

rgudhi::PythonClass -> SimplexTree

Methods

Public methods:
• SimplexTree$new()

• SimplexTree$set_is_flag()

• SimplexTree$assign_filtration()

• SimplexTree$betti_numbers()

• SimplexTree$collapse_edges()

• SimplexTree$compute_persistence()

• SimplexTree$dimension()

• SimplexTree$expansion()

• SimplexTree$extend_filtration()

• SimplexTree$extended_persistence()

• SimplexTree$filtration()

• SimplexTree$find()

• SimplexTree$flag_persistence_generators()

• SimplexTree$get_boundaries()

• SimplexTree$get_cofaces()

• SimplexTree$get_filtration()

• SimplexTree$get_simplices()

• SimplexTree$get_skeleton()

• SimplexTree$get_star()

• SimplexTree$insert()

• SimplexTree$lower_star_persistence_generators()

• SimplexTree$make_filtration_non_decreasing()

• SimplexTree$num_simplices()

• SimplexTree$num_vertices()

• SimplexTree$persistence()

• SimplexTree$persistence_intervals_in_dimension()

• SimplexTree$persistence_pairs()

• SimplexTree$persistent_betti_numbers()

• SimplexTree$prune_above_filtration()

• SimplexTree$remove_maximal_simplex()
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• SimplexTree$reset_filtration()

• SimplexTree$set_dimension()

• SimplexTree$upper_bound_dimension()

• SimplexTree$write_persistence_diagram()

• SimplexTree$clone()

Method new(): The SimplexTree class constructor.

Usage:
SimplexTree$new(py_class = NULL)

Arguments:

py_class A Python SimplexTree class object. Defaults to NULL which uses the Python class
constructor instead.

Returns: A new SimplexTree object.

Method set_is_flag(): This function sets the internal field m_IsFlag which records whether
the simplex tree is a flag complex (i.e. has been generated by a Rips complex).

Usage:
SimplexTree$set_is_flag(val)

Arguments:

val A boolean specifying whether the simplex tree is a flag complex.

Details: The SimplexTree class initializes the m_IsFlag field to FALSE by default and this
method specifically allows to overwrite this default value.

Returns: The updated SimplexTree class itself invisibly.

Method assign_filtration(): This function assigns a new filtration value to a given N-
simplex.

Usage:
SimplexTree$assign_filtration(simplex, filtration)

Arguments:

simplex An integer vector representing the N-simplex in the form of a list of vertices.
filtration A numeric value specifying the new filtration value.

Details: Beware that after this operation, the structure may not be a valid filtration any-
more, a simplex could have a lower filtration value than one of its faces. Callers are respon-
sible for fixing this (with more calls to the $assign_filtration() method or a call to the
$make_filtration_non_decreasing() method for instance) before calling any function that
relies on the filtration property, such as persistence().

Returns: The updated SimplexTree class itself invisibly.

Method betti_numbers(): This function returns the Betti numbers of the simplicial complex.

Usage:
SimplexTree$betti_numbers()

Returns: An integer vector storing the Betti numbers.
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Method collapse_edges(): Assuming the simplex tree is a 1-skeleton graph, this method
collapse edges (simplices of higher dimension are ignored) and resets the simplex tree from the
remaining edges. A good candidate is to build a simplex tree on top of a RipsComplex of dimen-
sion 1 before collapsing edges as done in this Python example. For implementation details, please
refer to Boissonnat and Pritam (2020).

Usage:
SimplexTree$collapse_edges(nb_iterations = 1)

Arguments:
nb_iterations An integer value specifying the number of edge collapse iterations to perform.

Defaults to 1L.

Details: It requires Eigen >= 3.1.0 and an exception is thrown if not available.
References:
Boissonnat J, Pritam S (2020). “Edge collapse and persistence of flag complexes.” In SoCG
2020-36th International Symposium on Computational Geometry.

Returns: The updated SimplexTree class itself invisibly.

Method compute_persistence(): This function computes the persistence of the simplicial
complex, so it can be accessed through $persistent_betti_numbers(), $persistence_pairs(),
etc. This function is equivalent to $persistence() when you do not want the list that $persistence()
returns.

Usage:
SimplexTree$compute_persistence(
homology_coeff_field = 11,
min_persistence = 0,
persistence_dim_max = FALSE

)

Arguments:
homology_coeff_field An integer value specifying the homology coefficient field. Must be

a prime number. Defaults to 11L. Maximum is 46337L.
min_persistence A numeric value specifying the minimum persistence value to take into ac-

count (strictly greater than min_persistence). Defaults to 0.0. Set min_persistence =
-1.0 to see all values.

persistence_dim_max A boolean specifying whether the persistent homology for the maxi-
mal dimension in the complex is computed (persistence_dim_max = TRUE). If FALSE, it is
ignored. Defaults to FALSE.

Returns: The updated SimplexTree class itself invisibly.

Method dimension(): This function returns the dimension of the simplicial complex.

Usage:
SimplexTree$dimension()

Details: This function is not constant time because it can recompute dimension if required (can
be triggered by $remove_maximal_simplex() or $prune_above_filtration() methods for
instance).

Returns: An integer value storing the simplicial complex dimension.

https://gudhi.inria.fr/python/latest/_downloads/c82779c19a4ebcf1f96e8e390fe8fdd4/rips_complex_edge_collapse_example.py
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Method expansion(): Expands the simplex tree containing only its one skeleton until dimen-
sion max_dim.

Usage:
SimplexTree$expansion(max_dim)

Arguments:
max_dim An integer value specifying the maximal dimension to expented the simplex tree to.

Details: The expanded simplicial complex until dimension d attached to a graph G is the
maximal simplicial complex of dimension at most d admitting the graph G as 1-skeleton. The
filtration value assigned to a simplex is the maximal filtration value of one of its edges.
The simplex tree must contain no simplex of dimension bigger than 1 when calling the method.

Returns: The updated SimplexTree class itself invisibly.

Method extend_filtration(): Extend filtration for computing extended persistence. This
function only uses the filtration values at the 0-dimensional simplices, and computes the extended
persistence diagram induced by the lower-star filtration computed with these values.

Usage:
SimplexTree$extend_filtration()

Details: Note that after calling this function, the filtration values are actually modified within
the simplex tree. The method $extended_persistence() retrieves the original values.
Note that this code creates an extra vertex internally, so you should make sure that the simplex
tree does not contain a vertex with the largest possible value (i.e., 4294967295).
This notebook explains how to compute an extension of persistence called extended persistence.

Returns: The updated SimplexTree class itself invisibly.

Method extended_persistence(): This function retrieves good values for extended persis-
tence, and separate the diagrams into the Ordinary, Relative, Extended+ and Extended- subdia-
grams.

Usage:
SimplexTree$extended_persistence(
homology_coeff_field = 11,
min_persistence = 0

)

Arguments:
homology_coeff_field An integer value specifying the homology coefficient field. Must be

a prime number. Defaults to 11L. Maximum is 46337L.
min_persistence A numeric value specifying the minimum persistence value to take into ac-

count (strictly greater than min_persistence). Defaults to 0.0. Set min_persistence =
-1.0 to see all values.

Details: The coordinates of the persistence diagram points might be a little different than the
original filtration values due to the internal transformation (scaling to [-2,-1]) that is performed
on these values during the computation of extended persistence.
This notebook explains how to compute an extension of persistence called extended persistence.

Returns: A list of four persistence diagrams in the format described in $persistence(). The
first one is Ordinary, the second one is Relative, the third one is Extended+ and the fourth
one is Extended-. See this article and/or Section 2.2 in this article for a description of these
subtypes.

https://github.com/GUDHI/TDA-tutorial/blob/master/Tuto-GUDHI-extended-persistence.ipynb
https://link.springer.com/article/10.1007/s10208-008-9027-z
https://link.springer.com/article/10.1007/s10208-017-9370-z
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Method filtration(): This function returns the filtration value for a given N-simplex in this
simplicial complex, or +infinity if it is not in the complex.

Usage:
SimplexTree$filtration(simplex)

Arguments:
simplex An integer vector representing the N-simplex in the form of a list of vertices.

Returns: A numeric value storing the filtration value for the input N-simplex.

Method find(): This function returns if the N-simplex was found in the simplicial complex or
not.

Usage:
SimplexTree$find(simplex)

Arguments:
simplex An integer vector representing the N-simplex in the form of a list of vertices.

Returns: A boolean storing whether the input N-simplex was found in the simplicial complex.

Method flag_persistence_generators(): Assuming this is a flag complex, this function
returns the persistence pairs, where each simplex is replaced with the vertices of the edges that
gave it its filtration value.

Usage:
SimplexTree$flag_persistence_generators()

Returns: A list with the following components:
• An n x 3 integer matrix containing the regular persistence pairs of dimension 0, with one

vertex for birth and two for death;
• A list of m x 4 integer matrices containing the other regular persistence pairs, grouped by

dimension, with 2 vertices per extremity;
• An l x ? integer matrix containing the connected components, with one vertex each;
• A list of k x 2 integer matrices containing the other essential features, grouped by dimen-

sion, with 2 vertices for birth.

Method get_boundaries(): For a given N-simplex, this function returns a list of simplices of
dimension N-1 corresponding to the boundaries of the N-simplex.

Usage:
SimplexTree$get_boundaries(simplex)

Arguments:
simplex An integer vector representing the N-simplex in the form of a list of vertices.

Returns: A tibble listing the (simplicies of the) boundary of the input N-simplex in column
simplex along with their corresponding filtration value in column filtration.

Method get_cofaces(): This function returns the cofaces of a given N-simplex with a given
codimension.

Usage:
SimplexTree$get_cofaces(simplex, codimension)
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Arguments:

simplex An integer vector representing the N-simplex in the form of a list of vertices.
codimension An integer value specifying the codimension. If codimension = 0, all cofaces

are returned (equivalent of $get_star() function).

Returns: A tibble listing the (simplicies of the) cofaces of the input N-simplex in column
simplex along with their corresponding filtration value in column filtration.

Method get_filtration(): This function retrieves the list of simplices and their given filtration
values sorted by increasing filtration values.

Usage:
SimplexTree$get_filtration()

Returns: A tibble listing the simplicies in column simplex along with their corresponding
filtration value in column filtration, in increasing order of filtration value.

Method get_simplices(): This function retrieves the list of simplices and their given filtration
values.

Usage:
SimplexTree$get_simplices()

Returns: A tibble listing the simplicies in column simplex along with their corresponding
filtration value in column filtration, in increasing order of filtration value.

Method get_skeleton(): This function returns a generator with the (simplices of the) skeleton
of a maximum given dimension.

Usage:
SimplexTree$get_skeleton(dimension)

Arguments:

dimension A integer value specifying the skeleton dimension value.

Returns: A tibble listing the (simplicies of the) skeleton of a maximum dimension in column
simplex along with their corresponding filtration value in column filtration.

Method get_star(): This function returns the star of a given N-simplex.

Usage:
SimplexTree$get_star(simplex)

Arguments:

simplex An integer vector representing the N-simplex in the form of a list of vertices.

Returns: A tibble listing the (simplicies of the) star of a simplex in column simplex along
with their corresponding filtration value in column filtration.

Method insert(): This function inserts the given N-simplex and its subfaces with the given
filtration value. If some of those simplices are already present with a higher filtration value, their
filtration value is lowered.

Usage:
SimplexTree$insert(simplex, filtration = 0, chainable = TRUE)
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Arguments:
simplex An integer vector representing the N-simplex in the form of a list of vertices.
filtration A numeric value specifying the filtration value of the simplex. Defaults to 0.0.
chainable A boolean specifying whether the method should return the class itself, hence al-

lowing its use in pipe chaining. Defaults to TRUE, which enables chaining.

Returns: The updated SimplexTree class itself invisibly if chainable is set to TRUE (default
behavior), or a boolean set to TRUE if the simplex was not yet in the complex or FALSE otherwise
(whatever its original filtration value).

Method lower_star_persistence_generators(): Assuming this is a lower-star filtration,
this function returns the persistence pairs, where each simplex is replaced with the vertex that
gave it its filtration value.

Usage:
SimplexTree$lower_star_persistence_generators()

Returns: A list with the following components:
• A list of n x 2 integer matrices containing the regular persistence pairs, grouped by dimen-

sion, with one vertex per extremity;
• A list of m x ? integer matrices containing the essential features, grouped by dimension,

with one vertex each.

Method make_filtration_non_decreasing(): This function ensures that each simplex has a
higher filtration value than its faces by increasing the filtration values.

Usage:
SimplexTree$make_filtration_non_decreasing(chainable = TRUE)

Arguments:
chainable A boolean specifying whether the method should return the class itself, hence al-

lowing its use in pipe chaining. Defaults to TRUE, which enables chaining.

Returns: The updated SimplexTree class itself invisibly if chainable is set to TRUE (default
behavior), or a boolean set to TRUE if any filtration value was modified or to FALSE if the filtration
was already non-decreasing.

Method num_simplices(): This function returns the number of simplices of the simplicial
complex.

Usage:
SimplexTree$num_simplices()

Returns: An integer value storing the number of simplices in the simplicial complex.

Method num_vertices(): This function returns the number of vertices of the simplicial com-
plex.

Usage:
SimplexTree$num_vertices()

Returns: An integer value storing the number of vertices in the simplicial complex.

Method persistence(): This function computes and returns the persistence of the simplicial
complex.



68 SimplexTree

Usage:
SimplexTree$persistence(
homology_coeff_field = 11,
min_persistence = 0,
persistence_dim_max = FALSE

)

Arguments:

homology_coeff_field An integer value specifying the homology coefficient field. Must be
a prime number. Defaults to 11L. Maximum is 46337L.

min_persistence A numeric value specifying the minimum persistence value to take into ac-
count (strictly greater than min_persistence). Defaults to 0.0. Set min_persistence =
-1.0 to see all values.

persistence_dim_max A boolean specifying whether the persistent homology for the maxi-
mal dimension in the complex is computed (persistence_dim_max = TRUE). If FALSE, it is
ignored. Defaults to FALSE.

Returns: A tibble listing all persistence feature summarised by 3 variables: dimension,
birth and death.

Method persistence_intervals_in_dimension(): This function returns the persistence in-
tervals of the simplicial complex in a specific dimension.

Usage:
SimplexTree$persistence_intervals_in_dimension(dimension)

Arguments:

dimension An integer value specifying the desired dimension.

Returns: A tibble storing the persistence intervals for the required dimension in two columns
birth and death.

Method persistence_pairs(): This function returns a list of persistence birth and death sim-
plices pairs.

Usage:
SimplexTree$persistence_pairs()

Returns: A list of pairs of integer vectors storing a list of persistence simplices intervals.

Method persistent_betti_numbers(): This function returns the persistent Betti numbers of
the simplicial complex.

Usage:
SimplexTree$persistent_betti_numbers(from_value, to_value)

Arguments:

from_value A numeric value specifying the persistence birth limit to be added in the numbers
(persistent birth <= from_value).

to_value A numeric value specifying the persistence death limit to be added in the numbers
(persistent death > to_value).

Returns: An integer vector storing the persistent Betti numbers.
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Method prune_above_filtration(): Prune above filtration value given as parameter.

Usage:
SimplexTree$prune_above_filtration(filtration, chainable = TRUE)

Arguments:
filtration A numeric value specifying the maximum threshold value.
chainable A boolean specifying whether the method should return the class itself, hence al-

lowing its use in pipe chaining. Defaults to TRUE, which enables chaining.

Details: Note that the dimension of the simplicial complex may be lower after calling prune_above_filtration()
than it was before. However, upper_bound_dimension() will return the old value, which re-
mains a valid upper bound. If you care, you can call dimension() method to recompute the
exact dimension.

Returns: The updated SimplexTree class itself invisibly if chainable is set to TRUE (default
behavior), or a boolean set to TRUE if the filtration has been modified or to FALSE otherwise.

Method remove_maximal_simplex(): This function removes a given maximal N-simplex from
the simplicial complex.

Usage:
SimplexTree$remove_maximal_simplex(simplex)

Arguments:
simplex An integer vector representing the N-simplex in the form of a list of vertices.

Details: The dimension of the simplicial complex may be lower after calling $remove_maximal_simplex()
than it was before. However, $upper_bound_dimension() method will return the old value,
which remains a valid upper bound. If you care, you can call $dimension() to recompute the
exact dimension.

Returns: The updated SimplexTree class itself invisibly.

Method reset_filtration(): This function resets the filtration value of all the simplices of
dimension at least min_dim. Resets all the simplex tree when min_dim = 0L. reset_filtration
may break the filtration property with min_dim > 0, and it is the user’s responsibility to make it a
valid filtration (using a large enough filtration value, or calling $make_filtration_non_decreasing()
afterwards for instance).

Usage:
SimplexTree$reset_filtration(filtration, min_dim = 0)

Arguments:
filtration A numeric value specyfing the filtration threshold.
min_dim An integer value specifying the minimal dimension. Defaults to 0L.

Returns: The updated SimplexTree class itself invisibly.

Method set_dimension(): This function sets the dimension of the simplicial complex.

Usage:
SimplexTree$set_dimension(dimension)

Arguments:
dimension An integer value specifying the dimension.
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Details: This function must be used with caution because it disables dimension recomputa-
tion when required (this recomputation can be triggered by $remove_maximal_simplex() or
$prune_above_filtration()).

Returns: The updated SimplexTree class itself invisibly.

Method upper_bound_dimension(): This function returns a valid dimension upper bound of
the simplicial complex.

Usage:
SimplexTree$upper_bound_dimension()

Returns: An integer value storing an upper bound on the dimension of the simplicial complex.

Method write_persistence_diagram(): This function writes the persistence intervals of the
simplicial complex in a user given file name.

Usage:
SimplexTree$write_persistence_diagram(persistence_file)

Arguments:

persistence_file A string specifying the name of the file.

Returns: The updated SimplexTree class itself invisibly.

Method clone(): The objects of this class are cloneable with this method.

Usage:
SimplexTree$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Clément Maria

See Also

Other data structures for cell complexes: CubicalComplex, PeriodicCubicalComplex

Examples

st <- SimplexTree$new()
st

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
st$set_is_flag(TRUE)

X <- seq_circle(10)
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ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
st$filtration(1)
st$assign_filtration(1, 0.8)
st$filtration(1)

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
st$compute_persistence()$betti_numbers()

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
st$collapse_edges()

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
st$dimension()

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
st$expansion(2)

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
st$extend_filtration()
st$extended_persistence()

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
st$filtration(0)
st$filtration(1:2)

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
st$find(0)

X <- seq_circle(10)
rc <- RipsComplex$new(data = X, max_edge_length = 1)
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st <- rc$create_simplex_tree(1)
st$compute_persistence()$flag_persistence_generators()

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
splx <- st$get_simplices()$simplex[[1]]
st$get_boundaries(splx)

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
st$get_cofaces(1:2, 0)

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
st$get_filtration()

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
st$get_simplices()

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
st$get_skeleton(0)

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
st$get_star(1:2)

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
st$insert(1:2)
st$insert(1:3, chainable = FALSE)

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
st$compute_persistence()$lower_star_persistence_generators()
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X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
st$make_filtration_non_decreasing()

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
st$num_simplices()

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
st$num_vertices()

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
st$persistence()

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
st$compute_persistence()$persistence_intervals_in_dimension(1)

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
st$compute_persistence()$persistence_pairs()

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
st$compute_persistence()$persistent_betti_numbers(0, 0.1)

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
st$prune_above_filtration(0.12)

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
st$remove_maximal_simplex(1:2)
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X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
st$reset_filtration(0.1)

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
st$set_dimension(1)

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
st$upper_bound_dimension()

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
f <- fs::file_temp(ext = ".dgm")
st$compute_persistence()$write_persistence_diagram(f)
fs::file_delete(f)

SlicedWassersteinDistance

Metrics: Sliced Wasserstein Distance

Description

Computes the sliced Wasserstein distance matrix from a list of persistence diagrams. The Sliced
Wasserstein distance is computed by projecting the persistence diagrams onto lines, comparing the
projections with the 1-norm, and finally integrating over all possible lines. See http://proceedings.mlr.press/v70/carriere17a.html
for more details.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::MetricStep -> SlicedWassersteinDistance

Methods

Public methods:

• SlicedWassersteinDistance$new()

• SlicedWassersteinDistance$clone()
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Method new(): The SlicedWassersteinDistance constructor.

Usage:
SlicedWassersteinDistance$new(num_directions = 10, n_jobs = 1)

Arguments:

num_directions An integer value specifying the number of lines evenly sampled from [−π/2, π/2]
in order to approximate and speed up the kernel computation. Defaults to 10L.

n_jobs An integer value specifying the number of jobs to use for the computation. Defaults to
1L.

Returns: An object of class SlicedWassersteinDistance.

Method clone(): The objects of this class are cloneable with this method.

Usage:
SlicedWassersteinDistance$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Mathieu Carrière

Examples

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
dis <- SlicedWassersteinDistance$new()
dis$apply(dgm, dgm)
dis$fit_transform(list(dgm))

SpectralBiclustering Performs clustering according to the spectral biclustering algorithm

Description

This is a wrapper around the Python class sklearn.cluster.SpectralBiclustering.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::BaseClustering -> SpectralBiclustering

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralBiclustering.html#sklearn.cluster.SpectralBiclustering
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Methods

Public methods:

• SpectralBiclustering$new()

• SpectralBiclustering$clone()

Method new(): The SpectralBiclustering class constructor.

Usage:
SpectralBiclustering$new(
n_clusters = 3L,
method = c("bistochastic", "scale", "log"),
n_components = 6L,
n_best = 3L,
svd_method = c("randomized", "arpack"),
n_svd_vecs = NULL,
mini_batch = FALSE,
init = c("k-means++", "random"),
n_init = 10L,
random_state = NULL

)

Arguments:

n_clusters An integer value or a length-2 vector specifying the number of row and column
clusters in the checkerboard structure. Defaults to 3L.

method A string specifying the method of normalizing and converting singular vectors into
biclusters. May be one of "scale", "bistochastic" or "log". The authors recommend
using "log". If the data is sparse, however, log-normalization will not work, which is why
the default is "bistochastic". Warning: if method == "log", the data must not be sparse.

n_components An integer value specifying the number of singular vectors to check. Defaults
to 6L.

n_best An integer value specifying the number of best singular vectors to which to project the
data for clustering. Defaults to 3L.

svd_method A string specifying the algorithm for finding singular vectors. May be "randomized"
or "arpack". If "randomized", uses randomized_svd(), which may be faster for large
matrices. If "arpack", uses scipy.sparse.linalg.svds(), which is more accurate, but
possibly slower in some cases. Defaults to "randomized".

n_svd_vecs An integer value specifying the number of vectors to use in calculating the SVD.
Corresponds to ncv when svd_method == "arpack" and n_oversamples when svd_method
== "randomized". Defaults to NULL.

mini_batch A boolean value specifying whether to use mini-batch k-means, which is faster
but may get different results. Defaults to FALSE.

init A string specifying the method for initialization of k-means algorithm. Choices are
"k-means++" or "random". Defaults to "k-means++".

n_init An integer value specifying the number of random initializations that are tried with the
k-means algorithm. If mini-batch k-means is used, the best initialization is chosen and the
algorithm runs once. Otherwise, the algorithm is run for each initialization and the best
solution chosen. Defaults to 10L.
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random_state An integer value specifying a pseudo random number generator used for the ini-
tialization of the lobpcg eigenvectors decomposition when eigen_solver == "amg", and
for the k-means initialization. Defaults to NULL which uses clock time.

Returns: An object of class SpectralBiclustering.

Method clone(): The objects of this class are cloneable with this method.

Usage:
SpectralBiclustering$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

cl <- SpectralBiclustering$new()

SpectralClustering Performs clustering according to the spectral clustering algorithm

Description

This is a wrapper around the Python class sklearn.cluster.SpectralClustering.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::BaseClustering -> SpectralClustering

Methods

Public methods:
• SpectralClustering$new()

• SpectralClustering$clone()

Method new(): The SpectralClustering class constructor.

Usage:
SpectralClustering$new(
n_clusters = 8L,
eigen_solver = c("arpack", "lobpcg", "amg"),
n_components = NULL,
random_state = NULL,
n_init = 10L,
gamma = 1,
affinity = c("rbf", "nearest_neighbors", "precomputed",
"precomputed_nearest_neighbors"),

n_neighbors = 10L,

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html#sklearn.cluster.SpectralClustering
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eigen_tol = "auto",
assign_labels = c("kmeans", "discretize", "cluster_qr"),
degree = 3L,
coef0 = 1,
kernel_params = NULL,
n_jobs = 1L,
verbose = FALSE

)

Arguments:

n_clusters An integer value specifying the dimension of the projection subspace. Defaults to
8L.

eigen_solver A string specifying the eigenvalue decomposition strategy to use. Choices are
c("arpack", "lobpcg", "amg"). AMG requires pyamg to be installed. It can be faster on
very large, sparse problems, but may also lead to instabilities. Defaults to "arpack".

n_components An integer value specifying the number of eigenvectors to use for the spectral
embedding. Defaults to NULL, in which case, n_clusters is used.

random_state An integer value specifying a pseudo random number generator used for the ini-
tialization of the lobpcg eigenvectors decomposition when eigen_solver == "amg", and
for the k-means initialization. Defaults to NULL which uses clock time.

n_init An integer value specifying the number of time the k-means algorithm will be run with
different centroid seeds. The final results will be the best output of n_init consecutive runs
in terms of inertia. Only used if assign_labels == "kmeans". Defaults to 10L.

gamma A numeric value specifying the kernel coefficient for rbf, poly, sigmoid, laplacian
and chi2 kernels. Ignored for affinity == "nearest_neighbors". Defaults to 1.0.

affinity Either a string or an object coercible to a function via rlang::as_function() spec-
ifying how to construct the affinity matrix:
• "nearest_neighbors": construct the affinity matrix by computing a graph of nearest

neighbors;
• "rbf": construct the affinity matrix using a radial basis function (RBF) kernel;
• "precomputed": interpret X as a precomputed affinity matrix, where larger values indi-

cate greater similarity between instances;
• "precomputed_nearest_neighbors": interpret X as a sparse graph of precomputed dis-

tances, and construct a binary affinity matrix from the n_neighbors nearest neighbors of
each instance;

• one of the kernels supported by pairwise_kernels.
Only kernels that produce similarity scores (non-negative values that increase with similar-
ity) should be used. This property is not checked by the clustering algorithm.
Defaults to "rbf".

n_neighbors An integer value specifying the number of neighbors to use when constructing
the affinity matrix using the nearest neighbors method. Ignored for affinity == "rbf".
Defaults to 10L.

eigen_tol A numeric value specifying the stopping criterion for the eigen-decomposition of
the Laplacian matrix. If eigen_tol == "auto", then the passed tolerance will depend on
the eigen_solver:
• If eigen_solver == "arpack", then eigen_tol = 0.0;

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.pairwise_kernels.html
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• If eigen_solver == "lobpcg" or eigen_solver == "amg", then eigen_tol == NULL which
configures the underlying lobpcg solver to automatically resolve the value according to
their heuristics.

Note that when using eigen_solver == "lobpcg" or eigen_solver == "amg" values of
tol < 1e-5 may lead to convergence issues and should be avoided.
Defaults to "auto".

assign_labels A string specifying the strategy for assigning labels in the embedding space.
There are two ways to assign labels after the Laplacian embedding. k-means is a popular
choice ("kmeans"), but it can be sensitive to initialization. Discretization is another ap-
proach which is less sensitive to random initialization ("discretize"). The cluster_qr
method directly extract clusters from eigenvectors in spectral clustering. In contrast to k-
means and discretization, cluster_qr has no tuning parameters and runs no iterations, yet
may outperform k-means and discretization in terms of both quality and speed. Defaults to
"kmeans".

degree An integer value specifying the degree of the polynomial kernel. Ignored by other
kernels. Defaults to 3L.

coef0 A numeric value specifying the value of the zero coefficient for polynomial and sigmoid
kernels. Ignored by other kernels. Defaults to 1.0.

kernel_params A named list specifying extra arguments to the kernels passed as functions.
Ignored by other kernels. Defaults to NULL.

n_jobs An integer value specifying the number of parallel jobs to run for neighbors search.
Defaults to 1L. A value of -1L means using all processors.

verbose A boolean value specifying the verbosity mode. Defaults to FALSE.

Returns: An object of class SpectralClustering.

Method clone(): The objects of this class are cloneable with this method.

Usage:
SpectralClustering$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

cl <- SpectralClustering$new()

SpectralCoclustering Performs clustering according to the spectral coclustering algorithm

Description

This is a wrapper around the Python class sklearn.cluster.SpectralCoclustering.

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralCoclustering.html#sklearn.cluster.SpectralCoclustering
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Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::BaseClustering -> SpectralCoclustering

Methods

Public methods:
• SpectralCoclustering$new()

• SpectralCoclustering$clone()

Method new(): The SpectralCoclustering class constructor.
Usage:
SpectralCoclustering$new(
n_clusters = 3L,
svd_method = c("randomized", "arpack"),
n_svd_vecs = NULL,
mini_batch = FALSE,
init = c("k-means++", "random"),
n_init = 10L,
random_state = NULL

)

Arguments:
n_clusters An integer value specifying the number of biclusters to find. Defaults to 3L.
svd_method A string specifying the algorithm for finding singular vectors. May be "randomized"

or "arpack". If "randomized", uses sklearn.utils.extmath.randomized_svd(), which
may be faster for large matrices. If "arpack", uses scipy.sparse.linalg.svds(), which
is more accurate, but possibly slower in some cases. Defaults to "randomized".

n_svd_vecs An integer value specifying the number of vectors to use in calculating the SVD.
Corresponds to ncv when svd_method == "arpack" and n_oversamples when svd_method
== "randomized". Defaults to NULL.

mini_batch A boolean value specifying whether to use mini-batch k-means, which is faster
but may get different results. Defaults to FALSE.

init A string specifying the method for initialization of k-means algorithm. Choices are
"k-means++" or "random". Defaults to "k-means++".

n_init An integer value specifying the number of random initializations that are tried with the
k-means algorithm. If mini-batch k-means is used, the best initialization is chosen and the
algorithm runs once. Otherwise, the algorithm is run for each initialization and the best
solution chosen. Defaults to 10L.

random_state An integer value specifying a pseudo random number generator used for the ini-
tialization of the lobpcg eigenvectors decomposition when eigen_solver == "amg", and
for the k-means initialization. Defaults to NULL which uses clock time.

Returns: An object of class SpectralCoclustering.

Method clone(): The objects of this class are cloneable with this method.
Usage:
SpectralCoclustering$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.
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Examples

cl <- SpectralCoclustering$new()

sphere Sampling on the Sphere

Description

The function sphere() enables uniform sampling of random i.i.d. points on a (d − 1)-sphere in
Rd. The user should provide the number of points n_samples to be generated on the sphere and the
ambient dimension ambient_dim. The radius of the sphere is optional and is equal to 1 by default.
Only random points generation is currently available.

Usage

sphere(n_samples, ambient_dim, radius = 1)

Arguments

n_samples An integer value specifying the sample size.

ambient_dim An integer value specifying the dimension of the ambient space.

radius A numeric value specifying the radius of the sphere. Defaults to 1.0.

Value

A numeric array of shape nsamples × ambient_dim storing n_samples points uniformly sampled
on the sphere of dimension ambient_dim - 1.

Examples

sphere(10, 2)
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StandardScaler Standardizes features by removing the mean and scaling to unit vari-
ance

Description

The standard score of a sample x is calculated as:

z =
(x− u)

s

where u is the mean of the training samples or 0 if with_mean = FALSE, and s is the standard
deviation of the training samples or 1 if with_std = FALSE.

Standardization of a dataset is a common requirement for many machine learning estimators: they
might behave badly if the individual features do not more or less look like standard normally dis-
tributed data (e.g. Gaussian with 0 mean and unit variance).

For instance many elements used in the objective function of a learning algorithm (such as the RBF
kernel of Support Vector Machines or the L1 and L2 regularizers of linear models) assume that all
features are centered around 0 and have variance in the same order. If a feature has a variance that
is orders of magnitude larger than others, it might dominate the objective function and make the
estimator unable to learn from other features correctly as expected.

This scaler can also be applied to sparse CSR or CSC matrices by passing with_mean = FALSE to
avoid breaking the sparsity structure of the data.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::BaseScaler -> StandardScaler

Methods

Public methods:
• StandardScaler$new()

• StandardScaler$clone()

Method new(): The StandardScaler class constructor.

Usage:
StandardScaler$new(copy = TRUE, with_mean = TRUE, with_std = TRUE)

Arguments:
copy A boolean value specifying whether to perform in-place scaling and avoid a copy (if the

input is already a numpy array). Defaults to TRUE.
with_mean A boolean value specifying whether to center the data before scaling. This does not

work (and will raise an exception) when attempted on sparse matrices, because centering
them entails building a dense matrix which in common use cases is likely to be too large to
fit in memory. Defaults to TRUE.

with_std A boolean value specifying whether to scale the data to unit variance (or equivalently,
unit standard deviation). Defaults to TRUE.
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Returns: An object of class StandardScaler.

Method clone(): The objects of this class are cloneable with this method.

Usage:
StandardScaler$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

ss <- StandardScaler$new()

StrongWitnessComplex R6 Class for Strong Witness Complex

Description

A Witness complex Wit(W,L) is a simplicial complex defined on two sets of points in RD. The
data structure is described in Boissonnat and Maria (2014).

Details

The class constructs a (strong) witness complex for a given table of nearest landmarks with respect
to witnesses.

Super classes

rgudhi::PythonClass -> rgudhi::WitnessComplex -> StrongWitnessComplex

Methods

Public methods:
• StrongWitnessComplex$new()

• StrongWitnessComplex$clone()

Method new(): StrongWitnessComplex constructor.

Usage:
StrongWitnessComplex$new(nearest_landmark_table)

Arguments:

nearest_landmark_table A list of tibbles specifying for each witness w, the ordered list
of nearest landmarks with id in column nearest_landmark and distance to w in column
distance.

Returns: A StrongWitnessComplex object storing the strong Witness complex.
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Method clone(): The objects of this class are cloneable with this method.

Usage:
StrongWitnessComplex$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

withr::with_seed(1234, {
l <- list(
tibble::tibble(

nearest_landmark = sample.int(10),
distance = sort(rexp(10))

),
tibble::tibble(

nearest_landmark = sample.int(10),
distance = sort(rexp(10))

)
)

})
wc <- StrongWitnessComplex$new(nearest_landmark_table = l)
wc

TangentialComplex R6 Class for Tangential Complex

Description

A Tangential Delaunay complex is a simplicial complex designed to reconstruct a k-dimensional
manifold embedded in d-dimensional Euclidean space. The input is a point sample coming from
an unknown manifold. The running time depends only linearly on the extrinsic dimension d and
exponentially on the intrinsic dimension k.

Details

The TangentialComplex class represents a tangential complex. After the computation of the com-
plex, an optional post-processing called perturbation can be run to attempt to remove inconsisten-
cies.

Super class

rgudhi::PythonClass -> TangentialComplex
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Methods

Public methods:
• TangentialComplex$new()

• TangentialComplex$compute_tangential_complex()

• TangentialComplex$create_simplex_tree()

• TangentialComplex$get_point()

• TangentialComplex$num_inconsistent_simplices()

• TangentialComplex$num_inconsistent_stars()

• TangentialComplex$num_simplices()

• TangentialComplex$num_vertices()

• TangentialComplex$set_max_squared_edge_length()

• TangentialComplex$clone()

Method new(): TangentialComplex constructor.

Usage:
TangentialComplex$new(points, intrinsic_dim = NULL)

Arguments:

points Either a character string specifying the path to an OFF file which the points can be read
from or a numeric matrix or list of numeric vectors specifying the points directly.

intrinsic_dim An integer value specifying the intrinsic dimension of the manifold. This is
nedded when points are provided as a numeric matrix or a list of numeric vectors. Defaults
to NULL.

Returns: A TangentialComplex object storing the tangential complex.

Method compute_tangential_complex(): This function computes the tangential complex.

Usage:
TangentialComplex$compute_tangential_complex()

Details: In debug mode, it may raise a ValueError if the computed star dimension is too low.
Try to set a bigger maximal edge length value via the $set_max_squared_edge_length()
method if this happens.

Returns: The updated TangentialComplex class itself invisibly.

Method create_simplex_tree(): Exports the complex into a simplex tree.

Usage:
TangentialComplex$create_simplex_tree()

Returns: A SimplexTree object storing the computed simplex tree.

Method get_point(): This function returns the point corresponding to a given vertex from the
SimplexTree.

Usage:
TangentialComplex$get_point(vertex)

Arguments:
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vertex An integer value specifying the desired vertex.

Returns: A numeric vector storing the point corresponding to the input vertex.

Method num_inconsistent_simplices():

Usage:
TangentialComplex$num_inconsistent_simplices()

Returns: An integer value storing the number of inconsistent simplicies.

Method num_inconsistent_stars():

Usage:
TangentialComplex$num_inconsistent_stars()

Returns: An integer value storing the number of stars containing at least one inconsistent
simplex.

Method num_simplices():

Usage:
TangentialComplex$num_simplices()

Returns: An integer value storing the total number of simplices in stars (including duplicates
that appear in several stars).

Method num_vertices():

Usage:
TangentialComplex$num_vertices()

Returns: An integer value storing the number of vertices.

Method set_max_squared_edge_length(): Sets the maximal possible squared edge length for
the edges in the triangulations.

Usage:
TangentialComplex$set_max_squared_edge_length(max_squared_edge_length)

Arguments:

max_squared_edge_length A numeric value specifying the maximal possible squared edge
length.

Details: If the maximal edge length value is too low, the $compute_tangential_complex()
method will throw an exception in debug mode.

Returns: The updated TangentialComplex class itself invisibly.

Method clone(): The objects of this class are cloneable with this method.

Usage:
TangentialComplex$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.
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Author(s)

Clément Jamin

See Also

Other filtrations and reconstructions: AlphaComplex, RipsComplex, WitnessComplex

Examples

X <- seq_circle(10)
tc <- TangentialComplex$new(points = X, intrinsic_dim = 1)
tc

X <- seq_circle(10)
tc <- TangentialComplex$new(points = X, intrinsic_dim = 1)
tc$compute_tangential_complex()

X <- seq_circle(10)
tc <- TangentialComplex$new(points = X, intrinsic_dim = 1)
st <- tc$compute_tangential_complex()$create_simplex_tree()

X <- seq_circle(10)
tc <- TangentialComplex$new(points = X, intrinsic_dim = 1)
st <- tc$compute_tangential_complex()$create_simplex_tree()
tc$get_point(1)

X <- seq_circle(10)
tc <- TangentialComplex$new(points = X, intrinsic_dim = 1)
tc$compute_tangential_complex()
tc$num_inconsistent_simplices()

X <- seq_circle(10)
tc <- TangentialComplex$new(points = X, intrinsic_dim = 1)
tc$compute_tangential_complex()
tc$num_inconsistent_stars()

X <- seq_circle(10)
tc <- TangentialComplex$new(points = X, intrinsic_dim = 1)
tc$compute_tangential_complex()
tc$num_simplices()

X <- seq_circle(10)
tc <- TangentialComplex$new(points = X, intrinsic_dim = 1)
tc$compute_tangential_complex()



88 Tomato

tc$num_vertices()

X <- seq_circle(10)
tc <- TangentialComplex$new(points = X, intrinsic_dim = 1)
tc$set_max_squared_edge_length(1)

Tomato Clustering: Tomato

Description

This clustering algorithm needs a neighborhood graph on the points, and an estimation of the den-
sity at each point. A few possible graph constructions and density estimators are provided for
convenience, but it is perfectly natural to provide your own.

Super class

rgudhi::PythonClass -> Tomato

Methods

Public methods:
• Tomato$new()

• Tomato$fit()

• Tomato$fit_predict()

• Tomato$set_n_clusters()

• Tomato$get_n_clusters()

• Tomato$set_merge_threshold()

• Tomato$get_merge_threshold()

• Tomato$get_labels()

• Tomato$plot_diagram()

• Tomato$clone()

Method new(): The Tomato constructor.

Usage:
Tomato$new(
graph_type = c("knn", "radius", "manual"),
density_type = c("logDTM", "DTM", "logKDE", "KDE", "manual"),
n_clusters = NULL,
merge_threshold = NULL,
...

)

Arguments:
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graph_type A string specifying the method to compute the neighboring graph. Choices are
"knn", "radius" or "manual". Defaults to "knn".

density_type A string specifying the choice of density estimator. Choicea are "logDTM",
"DTM", "logKDE" or "manual". When you have many points, "KDE" and "logKDE" tend to
be slower. Defaults to "logDTM"

n_clusters An integer value specifying the number of clusters. Defaults to NULL, i.e. no
merging occurs and we get the maximal number of clusters.

merge_threshold A numeric value specifying the minimum prominence of a cluster so it
doesn’t get merged. Defaults to NULL, i.e. no merging occurs and we get the maximal
number of clusters.

... Extra parameters passed to KNearestNeighbors and DTMDensity.

Returns: An object of class Tomato.

Method fit(): Runs the Tomato algorithm on the provided data.

Usage:
Tomato$fit(X, y = NULL, weights = NULL)

Arguments:

X Either a numeric matrix specifying the coordinates (in column) of each point (in row) or a
full distance matrix if metric == "precomputed" or a list of neighbors for each point if
graph_type == "manual". The number of points is currently limited to about 2 billion.

y Not used, present here for API consistency with scikit-learn by convention.
weights A numeric vector specifying a density estimate at each point. Used only if density_type

== "manual".

Returns: The updated Tomato class itself invisibly.

Method fit_predict(): Runs the Tomato algorithm on the provided data and returns the class
memberships.

Usage:
Tomato$fit_predict(X, y = NULL, weights = NULL)

Arguments:

X Either a numeric matrix specifying the coordinates (in column) of each point (in row) or a
full distance matrix if metric == "precomputed" or a list of neighbors for each point if
graph_type == "manual". The number of points is currently limited to about 2 billion.

y Not used, present here for API consistency with scikit-learn by convention.
weights A numeric vector specifying a density estimate at each point. Used only if density_type

== "manual".

Returns: An integer vector storing the class memberships.

Method set_n_clusters(): Sets the number of clusters which automatically adjusts class
memberships.

Usage:
Tomato$set_n_clusters(n_clusters)

Arguments:
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n_clusters An integer value specifying the number of clusters.

Returns: The updated Tomato class itself invisibly.

Method get_n_clusters(): Gets the number of clusters.

Usage:
Tomato$get_n_clusters()

Returns: The number of clusters.

Method set_merge_threshold(): Sets the threshold for merging clusters which automatically
adjusts class memberships.

Usage:
Tomato$set_merge_threshold(merge_threshold)

Arguments:

merge_threshold A numeric value specifying the threshold for merging clusters.

Returns: The updated Tomato class itself invisibly.

Method get_merge_threshold(): Gets the threshold for merging clusters.

Usage:
Tomato$get_merge_threshold()

Returns: The threshold for merging clusters.

Method get_labels(): Gets the class memberships.

Usage:
Tomato$get_labels()

Returns: An integer vector storing the class memberships.

Method plot_diagram(): Computes the persistence diagram of the merge tree of the initial
clusters. This is a convenient graphical tool to help decide how many clusters we want.

Usage:
Tomato$plot_diagram()

Method clone(): The objects of this class are cloneable with this method.

Usage:
Tomato$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Marc Glisse
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Examples

X <- seq_circle(100)
cl <- Tomato$new()
cl$fit_predict(X)
cl$set_n_clusters(2)
cl$get_labels()

TopologicalVector Vector Representation: Topological Vector

Description

Computes topological vectors from a list of persistence diagrams. The topological vector associated
to a persistence diagram is the sorted vector of a slight modification of the pairwise distances be-
tween the persistence diagram points. See https://diglib.eg.org/handle/10.1111/cgf12692 for more
details.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::VectorRepresentationStep ->
TopologicalVector

Methods

Public methods:
• TopologicalVector$new()

• TopologicalVector$clone()

Method new(): The TopologicalVector constructor.

Usage:
TopologicalVector$new(threshold = 10)

Arguments:
threshold An integer value specifying the number of distances to keep. Defaults to 10L. This

is the dimension of the topological vector. If -1, this threshold is computed from the list of
persistence diagrams by considering the one with the largest number of points and using the
dimension of its corresponding topological vector as threshold.

Returns: An object of class TopologicalVector.

Method clone(): The objects of this class are cloneable with this method.

Usage:
TopologicalVector$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.
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Author(s)

Mathieu Carrière

Examples

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
tv <- TopologicalVector$new()
tv$apply(dgm)
tv$fit_transform(list(dgm))

torus Sampling on the Torus

Description

The user should provide the number of points n_samples to be generated on the torus and the
dimension dim of the torus on which points would be generated in R2dim. The sample argument is
optional and is set to "random" by default. The generated points are returned as an array of shape
nsamples ×R2dim.

Usage

torus(n_samples, dim, sample = c("random", "grid"))

Arguments

n_samples An integer value specifying the sample size.

dim An integer value specifying the dimension R2dim of the torus.

sample A string specifying the sampling type. Choices are "random" or "grid". De-
faults to "random".

Value

A numeric array of shape nsamples ×R2dim storing the sampled points.

Examples

torus(10, 1)



WassersteinDistance 93

WassersteinDistance Metrics: Wasserstein Distance

Description

Computes the Wasserstein distance matrix from a list of persistence diagrams.

Super classes

rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::MetricStep -> WassersteinDistance

Methods

Public methods:

• WassersteinDistance$new()

• WassersteinDistance$clone()

Method new(): The WassersteinDistance constructor.

Usage:
WassersteinDistance$new(
order = 1,
internal_p = Inf,
mode = c("hera", "pot"),
delta = 0.01,
n_jobs = 1

)

Arguments:

order An integer value specifying the exponent of the Wasserstein distance. Defaults to 1.0.
internal_p An integer value specifying the ground metric on the (upper-half) plane (i.e. the

norm `p in R2). Defaults to Inf.
mode A string specifying the method for computing the Wasserstein distance. Choices are either

"pot" or "hera". Defaults to "hera".
delta A numeric value specifying the relative error 1+ δ. Defaults to 0.01. Used only if mode

== "hera".
n_jobs An integer value specifying the number of jobs to use for the computation. Defaults to

1L.

Returns: An object of class WassersteinDistance.

Method clone(): The objects of this class are cloneable with this method.

Usage:
WassersteinDistance$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.
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Author(s)

Mathieu Carrière

Examples

X <- seq_circle(10)
ac <- AlphaComplex$new(points = X)
st <- ac$create_simplex_tree()
dgm <- st$compute_persistence()$persistence_intervals_in_dimension(0)
ds <- DiagramSelector$new(use = TRUE)
dgm <- ds$apply(dgm)
dis <- WassersteinDistance$new()
dis$apply(dgm, dgm)
dis$fit_transform(list(dgm))

WitnessComplex R6 Class for Witness Complex

Description

A Witness complex Wit(W,L) is a simplicial complex defined on two sets of points in RD. The
data structure is described in Boissonnat and Maria (2014).

Details

The class constructs a (weak) witness complex for a given table of nearest landmarks with respect
to witnesses.

References:
Boissonnat J, Maria C (2014). “The simplex tree: An efficient data structure for general simplicial
complexes.” Algorithmica, 70(3), 406–427.

Super class

rgudhi::PythonClass -> WitnessComplex

Methods

Public methods:
• WitnessComplex$new()

• WitnessComplex$create_simplex_tree()

• WitnessComplex$clone()

Method new(): The WitnessComplex constructor.

Usage:
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WitnessComplex$new(nearest_landmark_table)

Arguments:

nearest_landmark_table A list of tibble::tibbles specifying for each witness w, the ordered
list of nearest landmarks with id in column nearest_landmark and distance to w in column
distance.

Returns: A WitnessComplex object storing the Witness complex.

Method create_simplex_tree():
Usage:
WitnessComplex$create_simplex_tree(max_alpha_square = Inf)

Arguments:

max_alpha_square The maximum relaxation parameter. Defaults to Inf.

Returns: A SimplexTree object storing the computed simplex tree created from the Delaunay
triangulation.

Method clone(): The objects of this class are cloneable with this method.

Usage:
WitnessComplex$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Siargey Kachanovich

See Also

Other filtrations and reconstructions: AlphaComplex, RipsComplex, TangentialComplex

Examples

withr::with_seed(1234, {
l <- list(
tibble::tibble(

nearest_landmark = sample.int(10),
distance = sort(rexp(10))

),
tibble::tibble(

nearest_landmark = sample.int(10),
distance = sort(rexp(10))

)
)

})
wc <- WitnessComplex$new(nearest_landmark_table = l)
wc
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withr::with_seed(1234, {
l <- list(
tibble::tibble(

nearest_landmark = sample.int(10),
distance = sort(rexp(10))

),
tibble::tibble(

nearest_landmark = sample.int(10),
distance = sort(rexp(10))

)
)

})
wc <- WitnessComplex$new(nearest_landmark_table = l)
st <- wc$create_simplex_tree()
st$num_vertices()
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