
Package ‘riAFTBART’
October 14, 2022

Type Package

Title A Flexible Approach for Causal Inference with Multiple
Treatments and Clustered Survival Outcomes

Version 0.3.2

Description Random-intercept accelerated failure time (AFT) model utilizing Bayesian additive re-
gression trees (BART) for drawing causal inferences about multiple treatments while account-
ing for the multilevel survival data structure. It also includes an interpretable sensitivity analy-
sis approach to evaluate how the drawn causal conclusions might be altered in re-
sponse to the potential magnitude of departure from the no unmeasured confounding assumption.

License MIT + file LICENSE

Encoding UTF-8

LazyData false

RoxygenNote 7.1.2

Imports MASS, MCMCpack, msm, dbarts, magrittr, foreach, doParallel,
dplyr, BART, stringr, tidyr, survival, cowplot, ggplot2, twang,
nnet, RRF, randomForest

NeedsCompilation no

Author Liangyuan Hu [aut],
Jiayi Ji [aut, cre]

Maintainer Jiayi Ji <jj869@sph.rutgers.edu>

Repository CRAN

Date/Publication 2022-05-16 23:20:02 UTC

R topics documented:
cal_PEHE . 2
cal_surv_prob . 4
dat_sim . 5
intree . 8
plot.riAFTBART_estimate . 9
plot.riAFTBART_survProb . 10

1

2 cal_PEHE

plot_gps . 11
riAFTBART . 12
riAFTBART_fit . 14
sa . 16
var_select . 18

Index 21

cal_PEHE Calculate the PEHE

Description

This function calculates the PEHE based on the survival probability from a fitted ri-AFTBART
model.

Usage

cal_PEHE(object, metric, time, LP, lambda, eta)

Arguments

object An object from cal_survprob() function.

metric A character string representing the metric to be calculated for PEHE. Only
"survival" is allowed.

time A numeric value representing the time point used to calculate PEHE.

LP A numeric vector corresponding to the true linear predictors for each treatment
from the simulated data.

lambda A numeric value representing the true follow up time for from the simulated
data.

eta A numeric value to induce proportional/non-proportional hazards assumption
from the simulated data.

Value

A list with the following three components:

true: A numeric vector representing the true survival or rmst for each individual.

predicted: A numeric vector representing the predicted survival or rmst for each individual.

pehe: A numeric vector representing the calculated pehe.

cal_PEHE 3

Examples

library(riAFTBART)
lp_w_all <-

c(".4*x1 + .1*x2 - .1*x4 + .1*x5", #' w = 1
".2 * x1 + .2 * x2 - .2 * x4 - .3 * x5") #' w = 2

nlp_w_all <-
c("-.5*x1*x4 - .1*x2*x5", #' w = 1

"-.3*x1*x4 + .2*x2*x5")#' w = 2
lp_y_all <- rep(".2*x1 + .3*x2 - .1*x3 - .1*x4 - .2*x5", 3)
nlp_y_all <- rep(".7*x1*x1 - .1*x2*x3", 3)
X_all <- c(

"rnorm(10, 0, 0.5)",#' x1
"rbeta(10, 2, .4)", #' x2
"runif(10, 0, 0.5)",#' x3
"rweibull(10,1,2)", #' x4
"rbinom(10, 1, .4)"#' x5

)
set.seed(111111)
data <- dat_sim(

nK = 2,
K = 5,
n_trt = 3,
X = X_all,
eta = 2,
lp_y = lp_y_all,
nlp_y = nlp_y_all,
align = FALSE,
lp_w = lp_w_all,
nlp_w = nlp_w_all,
lambda = c(1000,2000,3000),
delta = c(0.5,0.5),
psi = 1,
sigma_w = 1,
sigma_y = 2,
censor_rate = 0.1

)
data$LP_true[,1]
data$lambda
data$eta
res <- riAFTBART_fit(M.burnin = 10, M.keep = 10, M.thin = 1, status = data$delta,

y.train = data$Tobs, trt.train = data$w, trt.test = 1,
x.train = data$covariates,
x.test = data$covariates,
cluster.id = data$cluster)

res_cal_surv_prob <- cal_surv_prob(object = res,
time.points = 1:max(data$Tobs),
test.only = TRUE,
cluster.id = data$cluster)

res_cal_PEHE_survival <- cal_PEHE(object = res_cal_surv_prob,
metric = "survival", time = 40,

4 cal_surv_prob

LP = data$LP_true[,1], lambda = data$lambda[1],
eta = data$eta)

res_cal_PEHE_rmst <- cal_PEHE(object = res_cal_surv_prob,
metric = "rmst",
time = 40,
LP = data$LP_true[,1],
lambda = data$lambda[1],
eta = data$eta)

cal_surv_prob Calculate the survival probability from a fitted riAFT-BART model

Description

This function calculates the individual survival probability from a fitted riAFT-BART model at
desired values of times

Usage

cal_surv_prob(
object,
time.points,
test.only = FALSE,
train.only = FALSE,
cluster.id

)

Arguments

object A fitted object from riAFTBART_estimate() function.

time.points A numeric vector representing the points at which the survival probability is
computed.

test.only A logical indicating whether or not only data from the test set should be com-
puted. The default is FALSE.

train.only A logical indicating whether or not only data from the training set should be
computed. The default is FALSE.

cluster.id A vector of integers representing the cluster id. The cluster id should be an
integer and start from 1.

Value

A list with the following two components

Surv: A matrix of survival probabilities for each individual.

time.points: The time point entered.

dat_sim 5

Examples

library(riAFTBART)
set.seed(20181223)
n = 50 # number of clusters
k = 50 # cluster size
N = n*k # total sample size
cluster.id = rep(1:n, each=k)
tau.error = 0.8
b = stats::rnorm(n, 0, tau.error)
alpha = 2
beta1 = 1
beta2 = -1
sig.error = 0.5
censoring.rate = 0.02
x1 = stats::rnorm(N,0.5,1)
x2 = stats::rnorm(N,1.5,0.5)
trt.train = sample(c(1,2,3), N, prob = c(0.4,0.3,0.2), replace = TRUE)
trt.test = sample(c(1,2,3), N, prob = c(0.3,0.4,0.2), replace = TRUE)
error = stats::rnorm(N,0,sig.error)
logtime = alpha + beta1*x1 + beta2*x2 + b[cluster.id] + error
y = exp(logtime)
C = rexp(N, rate=censoring.rate) # censoring times
Y = pmin(y,C)
status = as.numeric(y<=C)
res <- riAFTBART_fit(M.burnin = 50, M.keep = 50, M.thin = 1, status = status,

y.train = Y, trt.train = trt.train, trt.test = trt.test,
x.train = cbind(x1,x2),
x.test = cbind(x1,x2),
cluster.id = cluster.id)

surv_prob_res <- cal_surv_prob(object = res, time.points = sort(exp(logtime)),
test.only = TRUE, cluster.id = cluster.id)

dat_sim Simulate data with multiple treatments and clustered survival out-
comes

Description

This function simulate data with multiple treatments and clustered survival outcomes. Users can
adjust the following 11 design factors: (1) The number of clusters, (2) the sample size in each
cluster, (3) ratio of units across treatment groups, (4) whether the treatment assignment model and
the outcome generating model are linear or nonlinear, (5) whether the covariates that best predict
the treatment also predict the outcome well, (6) whether the response surfaces are parallel across
treatment groups, (7) degree of covariate overlap, (8) Whether the proportional hazards assumption
is satisfied, (9) mean follow up time for each treatment group, (10) censoring proportion and (11)
Standard deviation for the cluster effect in the treatment assignment and outcome generating model.

6 dat_sim

Usage

dat_sim(
nK,
K,
n_trt,
X,
lp_y,
nlp_y,
align = TRUE,
eta,
lambda,
delta,
psi,
lp_w,
nlp_w,
sigma_w,
sigma_y,
censor_rate

)

Arguments

nK A numeric value indicating the number of clusters.

K A numeric value indicating the sample size in each cluster.

n_trt A numeric value indicating the number of treatments.

X A vector of characters representing covariates, with each covariate being gener-
ated from the standard probability distributions in the stats package.

lp_y A vector of characters of length n_trt, representing the linear effects in the
outcome generating model.

nlp_y A vector of characters of length n_trt, representing the nonlinear effects in the
outcome generating model.

align A logical indicating whether the predictors in the treatment assignment model
are the same as the predictors for the outcome generating model. The default
is TRUE. If the argument is set to FALSE, users need to specify additional two
arguments lp_w and nlp_w.

eta A numeric value to induce proportional hazards assumption or a character in-
cluding linear combination of Xs to induce nonproportional hazards assumption.

lambda A numeric vector of length n_trt inducing different follow up time across treat-
ment groups.

delta A numeric vector of length n_trt-1 inducing different ratio of units across treat-
ment groups.

psi A numeric value for the parameter governing the sparsity of covariate overlap.

lp_w A vector of characters of length n_trt - 1, representing the treatment assignment
model.

dat_sim 7

nlp_w A vector of characters of length n_trt - 1, representing the treatment assignment
model.

sigma_w A numeric value representing the standard deviation for the cluster effect in the
treatment assignment model.

sigma_y A numeric value representing the standard deviation for the cluster effect in the
outcome generating model.

censor_rate A numeric value for the rate parameter governing the proportion of censoring.

Value

A list with 7 elements for simulated data. It contains

covariates: X matrix

w: treatment indicators

Tobs: observed follow up time for the simulated right censored data

status: the censoring indicator

cluster: the clustering indicator

censor_prop: the censoring proportion

T_mean: mean observed follow up time
ratio_of_units:

the proportions of units in each treatment group

Examples

library(riAFTBART)
lp_w_all <-

c(".4*x1 + .1*x2 - .1*x4 + .1*x5", # w = 1
".2 * x1 + .2 * x2 - .2 * x4 - .3 * x5") # w = 2

nlp_w_all <-
c("-.5*x1*x4 - .1*x2*x5", # w = 1
"-.3*x1*x4 + .2*x2*x5")# w = 2

lp_y_all <- rep(".2*x1 + .3*x2 - .1*x3 - .1*x4 - .2*x5", 3)
nlp_y_all <- rep(".7*x1*x1 - .1*x2*x3", 3)
X_all <- c(

"rnorm(1000, 0, 0.5)",# x1
"rbeta(1000, 2, .4)", # x2
"runif(1000, 0, 0.5)",# x3
"rweibull(1000,1,2)", # x4
"rbinom(1000, 1, .4)"# x5

)
set.seed(111111)
data <- dat_sim(

nK = 20,
K = 50,
n_trt = 3,
X = X_all,
eta = 2,
lp_y = lp_y_all,

8 intree

nlp_y = nlp_y_all,
align = FALSE,
lp_w = lp_w_all,
nlp_w = nlp_w_all,
lambda = c(1000,2000,3000),
delta = c(0.5,0.5),
psi = 1,
sigma_w = 1,
sigma_y = 2,
censor_rate = 0.1

)

intree Interpreting Tree Ensembles with inTrees

Description

The inTrees (interpretable trees) framework that extracts, measures, prunes and selects rules from a
tree ensemble. All the codes we use are from the inTrees github repository to act as a work around
method since package inTrees was removed from the CRAN repository.

Usage

intree(X, Y, ntree, typeDecay = 2, digits, n_rule)

Arguments

X A matrix indicating the predictor variables.
Y A response vector. If a factor, classification is assumed, otherwise regression is

assumed.
ntree Number of trees to grow. This should not be set to too small a number, to ensure

that every input row gets predicted at least a few times.
typeDecay An integer of 1 or 2. 1 representing relative error and 2 representing error. The

default is set to 2.
digits An integer indicating the digits for rounding in Intrees.
n_rule An integer indicating the minimum number of rules to consider in Intrees.

Value

A matrix including a set of relevant and non-redundant rules, and their metrics

Examples

X <- within(iris,rm("Species")); Y <- iris[,"Species"]
intree_result <- intree(X, Y, ntree=100, digits = 3, n_rule = 2000)

plot.riAFTBART_estimate 9

plot.riAFTBART_estimate

Plot the trace plots for the parameters from a fitted riAFT-BART model

Description

This function creates the trace plots for the parameters from a fitted riAFT-BART model.

Usage

S3 method for class 'riAFTBART_estimate'
plot(x, focus = "sigma", id = NULL, ...)

Arguments

x A fitted object of from riAFTBART_fit function.

focus A character specifying which parameter to plot.

id A numeric vector indicating the subject or cluster index to plot, when the object
to plot is random intercepts or predicted log survival time.

... further arguments passed to or from other methods.

Value

A plot

Examples

library(riAFTBART)
set.seed(20181223)
n = 5 # number of clusters
k = 50 # cluster size
N = n*k # total sample size
cluster.id = rep(1:n, each=k)
tau.error = 0.8
b = stats::rnorm(n, 0, tau.error)
alpha = 2
beta1 = 1
beta2 = -1
sig.error = 0.5
censoring.rate = 0.02
x1 = stats::rnorm(N,0.5,1)
x2 = stats::rnorm(N,1.5,0.5)
trt.train = sample(c(1,2,3), N, prob = c(0.4,0.3,0.2), replace = TRUE)
trt.test = sample(c(1,2,3), N, prob = c(0.3,0.4,0.2), replace = TRUE)
error = stats::rnorm(N,0,sig.error)
logtime = alpha + beta1*x1 + beta2*x2 + b[cluster.id] + error
y = exp(logtime)

10 plot.riAFTBART_survProb

C = rexp(N, rate=censoring.rate) # censoring times
Y = pmin(y,C)
status = as.numeric(y<=C)
res <- riAFTBART_fit(M.burnin = 10, M.keep = 10, M.thin = 1, status = status,

y.train = Y, trt.train = trt.train, trt.test = trt.test,
x.train = cbind(x1,x2),
x.test = cbind(x1,x2),
cluster.id = cluster.id)

plot(x = res, focus = "sigma")

plot.riAFTBART_survProb

Plot the fitted survival curves from riAFT-BART model

Description

This function plot the mean/individual survival curves from a fitted riAFT-BART model

Usage

S3 method for class 'riAFTBART_survProb'
plot(x, test.only = FALSE, train.only = TRUE, id = NULL, ...)

Arguments

x An object from cal_surv_prob() function.

test.only A logical indicating whether or not only data from the test set should be com-
puted. The default is FALSE.

train.only A logical indicating whether or not only data from the training set should be
computed. The default is FALSE.

id A vector representing the IDs for the individual survival curves to plot. The
default is NULL and the mean survival curves will be plotted.

... further arguments passed to or from other methods.

Value

A plot

Examples

library(riAFTBART)
set.seed(20181223)
n = 5 # number of clusters
k = 50 # cluster size
N = n*k # total sample size
cluster.id = rep(1:n, each=k)

plot_gps 11

tau.error = 0.8
b = stats::rnorm(n, 0, tau.error)
alpha = 2
beta1 = 1
beta2 = -1
sig.error = 0.5
censoring.rate = 0.02
x1 = stats::rnorm(N,0.5,1)
x2 = stats::rnorm(N,1.5,0.5)
trt.train = sample(c(1,2,3), N, prob = c(0.4,0.3,0.2), replace = TRUE)
trt.test = sample(c(1,2,3), N, prob = c(0.3,0.4,0.2), replace = TRUE)
error = stats::rnorm(N,0,sig.error)
logtime = alpha + beta1*x1 + beta2*x2 + b[cluster.id] + error
y = exp(logtime)
C = rexp(N, rate=censoring.rate) # censoring times
Y = pmin(y,C)
status = as.numeric(y<=C)
res <- riAFTBART_fit(M.burnin = 10, M.keep = 10, M.thin = 1, status = status,

y.train = Y, trt.train = trt.train, trt.test = trt.test,
x.train = cbind(x1,x2),
x.test = cbind(x1,x2),
cluster.id = cluster.id)

surv_prob_res <- cal_surv_prob(object = res, time.points = sort(exp(logtime)),
test.only = TRUE, cluster.id = cluster.id)
plot(x = surv_prob_res, test.only = TRUE, train.only = FALSE)

plot_gps Plot the propensity score by treatment

Description

This function estimates the propensity score for each treatment group and then plot the propensity
score by each treatment to check covariate overlap.

Usage

plot_gps(trt, X, cluster.id, method = "Multinomial")

Arguments

trt A numeric vector representing the treatment groups.

X A dataframe or matrix, including all the covariates but not treatments, with rows
corresponding to observations and columns to variables.

cluster.id A vector of integers representing the clustering id. The cluster id should be an
integer and start from 1.

method A character indicating how to estimate the propensity score. The default is
"Multinomial", which uses multinomial regression to estimate the propensity
score.

12 riAFTBART

Value

A plot

Examples

library(riAFTBART)
set.seed(20181223)
n = 5 # number of clusters
k = 50 # cluster size
N = n*k # total sample size
cluster.id = rep(1:n, each=k)
tau.error = 0.8
b = stats::rnorm(n, 0, tau.error)
alpha = 2
beta1 = 1
beta2 = -1
sig.error = 0.5
censoring.rate = 0.02
x1 = stats::rnorm(N,0.5,1)
x2 = stats::rnorm(N,1.5,0.5)
trt.train = sample(c(1,2,3), N, prob = c(0.4,0.3,0.2), replace = TRUE)
plot_gps(trt = trt.train, X = cbind(x1, x2), cluster.id = cluster.id)

riAFTBART A flexible approach for causal inference with multiple treatments and
clustered survival outcomes

Description

This function implements the random effect accelerated failure time BART (riAFT-BART) for
causal inference with multiple treatments and clustered survival outcomes.

Usage

riAFTBART(
M.burnin,
M.keep,
M.thin = 1,
status,
y,
x,
trt,
cluster.id,
verbose = FALSE,
estimand = "ATE",
reference_trt = NULL

)

riAFTBART 13

Arguments

M.burnin A numeric value indicating the number of MCMC iterations to be treated as
burn in.

M.keep A numeric value indicating the number of MCMC posterior draws after burn in.

M.thin A numeric value indicating the thinning parameter.

status A vector of event indicators: status = 1 indicates that the event was observed
while status = 0 indicates the observation was right-censored.

y A vector of follow-up times.

x A dataframe or matrix, including all the covariates but not treatments with rows
corresponding to observations and columns to variables.

trt A numeric vector representing the treatment groups.

cluster.id A vector of integers representing the clustering id. The cluster id should be an
integer and start from 1.

verbose A logical indicating whether to show the progress bar for riAFT-BART. The
default is FALSE

estimand A character string representing the type of causal estimand. Only "ATT" or
"ATE" is allowed. When the estimand = "ATT", users also need to specify the
reference treatment group by setting the reference_trt argument.

reference_trt A numeric value indicating reference treatment group for ATT effect.

Value

A list of causal estimands in terms of log T between different treatment groups.

Examples

library(riAFTBART)
set.seed(20181223)
n = 5 # number of clusters
k = 50 # cluster size
N = n*k # total sample size
cluster.id = rep(1:n, each=k)
tau.error = 0.8
b = stats::rnorm(n, 0, tau.error)
alpha = 2
beta1 = 1
beta2 = -1
sig.error = 0.5
censoring.rate = 0.02
x1 = stats::rnorm(N,0.5,1)
x2 = stats::rnorm(N,1.5,0.5)
trt.train = sample(c(1,2,3), N, prob = c(0.4,0.3,0.2), replace = TRUE)
trt.test = sample(c(1,2,3), N, prob = c(0.3,0.4,0.2), replace = TRUE)
error = stats::rnorm(N,0,sig.error)
logtime = alpha + beta1*x1 + beta2*x2 + b[cluster.id] + error
y = exp(logtime)

14 riAFTBART_fit

C = rexp(N, rate=censoring.rate) # censoring times
Y = pmin(y,C)
status = as.numeric(y<=C)
res_ate <- riAFTBART(M.burnin = 10, M.keep = 10, M.thin = 1, status = status,

y = Y, trt = trt.train,
x = cbind(x1,x2),
cluster.id = cluster.id, estimand = "ATE")

riAFTBART_fit Fit a random effect accelerated failure time BART model

Description

This function implements the random effect accelerated failure time BART (riAFT-BART) algo-
rithm.

Usage

riAFTBART_fit(
M.burnin,
M.keep,
M.thin = 1,
status,
y.train,
x.train,
trt.train,
x.test,
trt.test,
cluster.id,
verbose = FALSE,
SA = FALSE,
prior_c_function_used = NULL,
gps = NULL

)

Arguments

M.burnin A numeric value indicating the number of MCMC iterations to be treated as
burn in.

M.keep A numeric value indicating the number of MCMC posterior draws after burn in.

M.thin A numeric value indicating the thinning parameter.

status A vector of event indicators: status = 1 indicates that the event was observed
while status = 0 indicates the observation was right-censored.

y.train A vector of follow-up times.

x.train A dataframe or matrix, including all the covariates but not treatments for training
data, with rows corresponding to observations and columns to variables.

riAFTBART_fit 15

trt.train A numeric vector representing the treatment groups for the training data. If
there’s no treatment indicator, then set to NULL.

x.test A dataframe or matrix, including all the covariates but not treatments for testing
data, with rows corresponding to observations and columns to variables.

trt.test A numeric vector representing the treatment groups for the testing data. If
there’s no treatment indicator, then set to NULL.

cluster.id A vector of integers representing the clustering id. The cluster id should be an
integer and start from 1.

verbose A logical indicating whether to show the progress bar. The default is FALSE

SA A logical indicating whether to conduct sensitivity analysis. The default is
FALSE.

prior_c_function_used

Prior confounding functions used for SA, which is inherited from the sa func-
tion. The default is NULL.

gps Generalized propensity score, which is inherited from the sa function. The de-
fault is NULL.

Value

A list with the following elements:

b: A matrix including samples from the posterior of the random effects.

tree: A matrix with M.keep rows and nrow(x.train) columns represnting the predicted
log survival time for x.train.

tree.pred: A matrix with M.keep rows and nrow(x.test) columns represnting the predicted
log survival time for x.test.

tau: A vector representing the posterior samples of tau, the standard deviation of the
random effects.

sigma: A vector representing the posterior samples of sigma, the residual/error standard
deviation.

vip: A matrix with M.keep rows and ncol(x.train) columns represnting the variable
inclusion proportions for each variable.

Examples

library(riAFTBART)
set.seed(20181223)
n = 5 # number of clusters
k = 50 # cluster size
N = n*k # total sample size
cluster.id = rep(1:n, each=k)
tau.error = 0.8
b = stats::rnorm(n, 0, tau.error)
alpha = 2
beta1 = 1
beta2 = -1

16 sa

sig.error = 0.5
censoring.rate = 0.02
x1 = stats::rnorm(N,0.5,1)
x2 = stats::rnorm(N,1.5,0.5)
trt.train = sample(c(1,2,3), N, prob = c(0.4,0.3,0.2), replace = TRUE)
trt.test = sample(c(1,2,3), N, prob = c(0.3,0.4,0.2), replace = TRUE)
error = stats::rnorm(N,0,sig.error)
logtime = alpha + beta1*x1 + beta2*x2 + b[cluster.id] + error
y = exp(logtime)
C = rexp(N, rate=censoring.rate) # censoring times
Y = pmin(y,C)
status = as.numeric(y<=C)
res <- riAFTBART_fit(M.burnin = 10, M.keep = 10, M.thin = 1, status = status,

y.train = Y, trt.train = trt.train, trt.test = trt.test,
x.train = cbind(x1,x2),
x.test = cbind(x1,x2),
cluster.id = cluster.id)

sa Flexible Monte Carlo sensitivity analysis for unmeasured confounding

Description

This function implements the flexible sensitivity analysis approach for unmeasured confounding
with multiple treatments from multilevel survival data.

Usage

sa(
M.burnin,
M.keep,
M.thin = 1,
status,
y.train,
x.train,
trt.train,
x.test,
trt.test,
cluster.id,
verbose = FALSE,
formula = NULL,
prior_c_function,
Q1,
Q2 = NULL,
nCores = 1,
...

)

sa 17

Arguments

M.burnin A numeric value indicating the number of MCMC iterations to be treated as
burn in.

M.keep A numeric value indicating the number of MCMC posterior draws after burn in.

M.thin A numeric value indicating the thinning parameter.

status A vector of event indicators: status = 1 indicates that the event was observed
while status = 0 indicates the observation was right-censored.

y.train A vector of follow-up times.

x.train A dataframe or matrix, including all the covariates but not treatments for training
data, with rows corresponding to observations and columns to variables.

trt.train A numeric vector representing the treatment groups for the training data.

x.test A dataframe, including all the covariates but not treatments for testing data, with
rows corresponding to observations and columns to variables.

trt.test A numeric vector representing the treatment groups for the testing data.

cluster.id A vector of integers representing the clustering id.

verbose A logical indicating whether to show the progress bar. The default is FALSE

formula A formula object for the analysis. The default is to use all terms specified in
x.train.

prior_c_function

1) A vector of characters indicating the prior distributions for the confounding
functions. Each character contains the random number generation code from
the standard probability distributions in the stats package. 2) A vector
of characters including the grid specifications for the confounding functions.
It should be used when users want to formulate the confounding functions as
scalar values. 3) A matrix indicating the point mass prior for the confounding
functions

Q1 A numeric value indicating the number of draws of the GPS from the posterior
predictive distribution

Q2 A numeric value indicating the number of draws from the prior distributions of
the confounding functions

nCores A numeric value indicating number of cores to use for parallel computing.

... Other parameters that can be passed to BART functions

Value

A list with the following elements:

result_riAFTBART:

Corrected log survival time for the test data from the riAFT-BART model.

c_functions: The confounding functions sampled from the specified distribution used in the
analysis.

18 var_select

Examples

set.seed(20181223)
n = 5 # number of clusters
k = 50 # cluster size
N = n*k # total sample size
cluster.id = rep(1:n, each=k)
tau.error = 0.8
b = rnorm(n, 0, tau.error)
alpha = 2
beta1 = 1
beta2 = -1
beta3 = -2
sig.error = 0.5
censoring.rate = 0.02
x1 = rnorm(N,0.5,1)
x2 = rnorm(N,1.5,0.5)
trt.train = sample(c(1,2,3), N, prob = c(0.4,0.3,0.2), replace = TRUE)
trt.test = sample(c(1,2,3), N, prob = c(0.3,0.4,0.2), replace = TRUE)
error = rnorm(N,0,sig.error)
logtime = alpha + beta1*x1 + beta2*x2 + b[cluster.id] + error
y = exp(logtime)
C = rexp(N, rate=censoring.rate) # censoring times
Y = pmin(y,C)
status = as.numeric(y<=C)
res_sa <- sa(M.burnin = 10, M.keep = 10, M.thin = 1, status = status,

y.train = Y,trt.train = trt.train,trt.test = trt.test,
x.train = cbind(x1,x2),
x.test = cbind(x1,x2),
cluster.id = cluster.id, verbose = F,prior_c_function = c(

"runif(-0.6, 0)",# c(1,2)
"runif(0, 0.6)",# c(2,1)
"runif(-0.6, 0)", # c(2,3)
"seq(-0.6, 0, by = 0.3)", # c(1,3)
"seq(0, 0.6, by = 0.3)", # c(3,1)
"runif(0, 0.6)" # c(3,2)

),Q1 = 1, nCores = 1)

var_select Perform Variable Selection using Three Threshold-based Procedures

Description

Performs variable selection with ri-AFTBART using the three thresholding methods introduced in
Bleich et al. (2013).

var_select 19

Usage

var_select(
M.burnin,
M.keep,
M.thin = 1,
status,
y.train,
x.train,
trt.train,
x.test,
trt.test,
cluster.id,
verbose = FALSE,
n_permuate,
alpha = 0.1

)

Arguments

M.burnin A numeric value indicating the number of MCMC iterations to be treated as
burn in.

M.keep A numeric value indicating the number of MCMC posterior draws after burn in.

M.thin A numeric value indicating the thinning parameter.

status A vector of event indicators: status = 1 indicates that the event was observed
while status = 0 indicates the observation was right-censored.

y.train A vector of follow-up times.

x.train A dataframe or matrix, including all the covariates but not treatments for training
data, with rows corresponding to observations and columns to variables.

trt.train A numeric vector representing the treatment groups for the training data.

x.test A dataframe or matrix, including all the covariates but not treatments for testing
data, with rows corresponding to observations and columns to variables.

trt.test A numeric vector representing the treatment groups for the testing data.

cluster.id A vector of integers representing the clustering id. The cluster id should be an
integer and start from 1.

verbose A logical indicating whether to show the progress bar. The default is FALSE.

n_permuate Number of permutations of the event time together with the censoring indicator
to generate the null permutation distribution.

alpha Cut-off level for the thresholds.

Value

A list with the following elements:

var_local_selected:

A character vector including all the variables selected using Local procedure.

20 var_select

var_max_selected:

A character vector including all the variables selected using Global Max proce-
dure.

var_global_se_selected:

A character vector including all the variables selected using Global SE proce-
dure.

vip_perm: The permutation distribution for the variable inclusion proportions generated by
permuting the event time together with the censoring indicator.

vip_obs: The variable inclusion proportions for the actual data.

Examples

set.seed(20181223)
n = 2
k = 50
N = n*k
cluster.id = rep(1:n, each=k)
tau.error = 0.8
b = rnorm(n, 0, tau.error)
alpha = 2
beta1 = 1
beta2 = -1
beta3 = -2
sig.error = 0.5
censoring.rate = 0.02
x1 = rnorm(N,0.5,1)
x2 = rnorm(N,1.5,0.5)
error = rnorm(N,0,sig.error)
logtime = alpha + beta1*x1 + beta2*x2 + b[cluster.id] + error
y = exp(logtime)
C = rexp(N, rate=censoring.rate)
Y = pmin(y,C)
status = as.numeric(y<=C)
trt.train = sample(c(1,2,3), N, prob = c(0.4,0.3,0.2), replace = TRUE)
trt.test = sample(c(1,2,3), N, prob = c(0.3,0.4,0.2), replace = TRUE)
res <- var_select(M.burnin = 10, M.keep = 10, M.thin = 1, status = status,

y.train = Y, trt.train = trt.train, trt.test = trt.test,
x.train = cbind(x1,x2),
x.test = cbind(x1,x2),
cluster.id = cluster.id,
n_permuate = 4,alpha = 0.1)

Index

cal_PEHE, 2
cal_surv_prob, 4

dat_sim, 5
distributions, 6, 17

formula, 17

intree, 8

plot.riAFTBART_estimate, 9
plot.riAFTBART_survProb, 10
plot_gps, 11

riAFTBART, 12
riAFTBART_fit, 14

sa, 16
stats, 6, 17

var_select, 18

21

	cal_PEHE
	cal_surv_prob
	dat_sim
	intree
	plot.riAFTBART_estimate
	plot.riAFTBART_survProb
	plot_gps
	riAFTBART
	riAFTBART_fit
	sa
	var_select
	Index

