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coeffTable Table of pairwise relatedness coefficients
Description

Creates a data frame containing various relatedness coefficients between all pairs of individuals in
a given pedigree.



coeffTable 3

Usage
coeffTable(
X ’
ids = labels(x),
coeff = c("f", "phi”, "deg”, "kappa", "identity", "detailed"),
self = FALSE,
Xchrom = FALSE
)
Arguments
X A pedigree in the form of a pedtools::ped object.
ids A character (or coercible to character) containing ID labels of two or more pedi-
gree members.
coeff A character vector containing one or more of the keywords "f", "phi", "deg",
"kappa", "identity", "detailed".
self A logical indicating if self-relationships should be included. Default: FALSE.
Xchrom A logical indicating if the coefficients should be autosomal (default) or X-chromosomal.
If Xchrom = NA, both sets are included.
Details

Available coefficients (indicated in coeff) include:

 f: The inbreeding coefficient of each pair member. Columns: f1 and 2.
* phi: The kinship coefficient. Column: phi.
* deg: The degree of relationship, as computed by kin2deg. Column: deg

* kappa: The IBD coefficients computed by kappalBD. (These are NA for pairs involving inbred
individuals.) Columns: ko, k1, k2.

* identity: The 9 condensed identity coefficients of Jacquard, computed by identityCoefs().
Columns: D1, ..., D9.

* detailed: The detailed identity coefficients of Jacquard, computed by identityCoefs(...,
detailed = TRUE). Columns: d1, ..., d15.

Value

A data frame with one row for each pair of individuals. The first two columns are characters
named id1 and id2, while remaining columns are numeric. Columns containing X-chromosomal
coefficients are suffixed with ".X".

If "f" (inbreeding) is the only coefficient, the data frame has one row per individual, and the first
column is named id.

Note: If x has members with unknown sex, all X-chromosomal coefficients are NA.
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Examples

# Uncle-nephew pedigree
x = addSon(nuclearPed(2), 4)

# Complete table
coeffTable(x)

# Only relevant coefficients
coeffTable(x, coeff = c("phi”, "deg", "kappa"))

# Only the uncle-nephew pair
coeffTable(x, ids = c(3, 6), coeff = c("phi”, "deg”, "kappa”))

# X-chromosomal coefficients
coeffTable(x, Xchrom = TRUE)

# Both autosomal and X
coeffTable(x, Xchrom = NA)
condensedIdentity Condensed identity coefficients

Description

Computes the 9 condensed identity coefficients of pairwise relationships in a pedigree. Founders of
the pedigree may be inbred; use pedtools: : founderInbreeding() to set this up.

Usage

condensedIdentity(
X,
ids,
sparse = NA,
simplify = TRUE,

self = FALSE,
verbose = FALSE
)
Arguments
X A pedigree in the form of a pedtools: : ped object
ids A character (or coercible to character) containing ID labels of two or more pedi-
gree members.
sparse A positive integer, indicating the pedigree size limit for using sparse arrays (as
implemented by the slam package) instead of ordinary arrays.
simplify Simplify the output (to a numeric of length 9) if ids has length 2. Default:

TRUE.


https://CRAN.R-project.org/package=slam
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self A logical indicating if self-relationships (i.e., between a pedigree member and
itself) should be included. FALSE by default.
verbose A logical
Details

The implementation is a modified version of Karigl’s recursive algorithm (1981).

Value

If ids has length 2 and simplify = TRUE: A vector of length 9, containing the condensed identity
coefficients.

Otherwise, a data frame with 11 columns and one row for each pair of individuals. The first two
columns contain the ID labels, and columns 3-11 contain the condensed identity coefficients.

References

G. Karigl (1981). A recursive algorithm for the calculation of identity coefficients. Annals of
Human Genetics, vol. 45.

See Also

kappa(), identityCoefs(), pedtools: : founderInbreeding()

Examples

# One generation of full sib mating.

# (One of the simplest examples with all 9 coefficients nonzero.)
x = fullSibMating(1)

j1 = condensedIdentity(x, ids = 5:6)

stopifnot(all.equal(j1, c(2, 1,4, 1, 4, 1, 7, 10, 2)/32))
# Recalculate the coefficients when the founders are 100% inbred

founderInbreeding(x, 1:2) =1
condensedIdentity(x, ids = 5:6)

condensedIdentityX Identity coefficients on X

Description

Computes the X chromosomal condensed identity coefficients of a pairwise relationship.

Usage

condensedIdentityX(x, ids, sparse = NA, simplify = TRUE, verbose = FALSE)
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Arguments
X A pedigree in the form of a pedtools: : ped object
ids A character (or coercible to character) containing ID labels of two or more pedi-
gree members.
sparse A positive integer, indicating the pedigree size limit for using sparse arrays (as
implemented by the slam package) instead of ordinary arrays.
simplify Simplify the output (to a numeric of length 9) if ids has length 2. Default:
TRUE.
verbose A logical
Details

The implementation is inspired by Karigl’s recursive algorithm (1981) for the autosomal case, mod-
ified to account for X-linked inheritance.

The X chromosomal pairwise identity states depend on the sexes of the two individuals. If both
are female, the states are the same as in the autosomal case. When males are involved, the two
individuals have less than 4 alleles, hence the states differ from the autosomal ones. However, to
avoid drawing (and learning) new pictures we re-use the autosomal states by using the following
simple rule: Replace any hemizygous male allele with a pair of autozygous alleles. In this way
each X state corresponds to a unique autosomal state.

For simplicity the output always contains 9 coefficients, but with NA’s in the positions of undefined
states (depending on the sex combination). The README file on the GitHub home page of ribd
has a table illustrating this.

Value

If ids has length 2 and simplify = TRUE: A vector of length 9, containing the condensed identity
coefficients. If any of the individuals are male, certain states are undefined, and the corresponding
coefficients are NA. (See Details.)

Otherwise, a data frame with 11 columns and one row for each pair of individuals. The first two
columns contain the ID labels, and columns 3-11 contain the condensed identity coefficients.

See Also

kinship(), identityCoefs(), pedtools::founderInbreeding()

Examples

x = fullSibMating(1)
X_sisters = swapSex(x, 5)
x_brothers = swapSex(x, 6)

condensedIdentityX(x, ids = 5:6)
condensedIdentityX(x_sisters, ids = 5:6)
condensedIdentityX(x_brothers, ids = 5:6)


https://CRAN.R-project.org/package=slam
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constructPedigree Pedigree construction

Description

Construct a pedigree yielding a prescribed set of IBD coefficients.

Usage

constructPedigree(kappa, describe = TRUE, verbose = FALSE)

Arguments
kappa A probability vector of length 3; (kappa0, kappal, kappa?2).
describe A logical. If TRUE, a textual description of the resulting relationship is printed.
verbose A logical. If TRUE, various details about the calculations are printed.

Details

The construction follows the method and formulae given in Vigeland (2020).

Value
A ped object containing a pair of double half cousins with inbred founders. (In corner cases the
relationship collapses into siblings.)

References
M. D. Vigeland (2020). Relatedness coefficients in pedigrees with inbred founders. Journal of
mathematical biology. doi:10.1007/s0028502001505x

Examples

# Full siblings
x = constructPedigree(kappa = c(0.25, 0.5, 0.25))
kappaIBD(x, leaves(x))

# A relationship halfway between parent-child and full sibs
kap = c(1/8, 6/8, 1/8)
showInTriangle(kap, label = " (1/8, 1/8)", pos = 4)

y = constructPedigree(kappa = kap)
plot(y)

stopifnot(all.equal (kappalBD(y, leaves(y)), kap))

# kappa = (0,1,0) does not give a parent-child relationship,


https://doi.org/10.1007/s00285-020-01505-x

8 ELR

# but half siblings whose shared parent is completely inbred.
z = constructPedigree(kappa = ¢(0,1,0))
plot(z)

ELR Expected LR of a pairwise kinship test

Description

Calculates the exact likelihood ratio of a pairwise kinship test, implementing formulas of Egeland
& Slooten (2016).

Usage
ELR(x, true = x, ids = leaves(x), L1, L2 = NULL, rho = NULL)

Arguments
X An hypothesised pedigree connecting two individuals.
true The true relationship between the two individuals.
ids A vector containing the names of the two individuals. Note: These must occur
in both x and true.
L1 The number of alleles at the first locus.
L2 The number of alleles at the second locus, or NULL (default).
rho (If L2 is not NULL.) A numeric vector of recombination fractions. Values out-
side the interval [0, 0.5] will raise an error.
Value

A single number, the expected LR.

References

Egeland, T. and Slooten, K. (2016). The likelihood ratio as a random variable for linked markers
in kinship analysis. Int J Legal Med.

Examples

SR
# Fig. 2 of Egeland & Slooten
HEHHHHHRHEEHHEHEEEHRHEHEHREEE

rhos = seq(@, 0.5, length = 11)

dat = cbind(
Grand = ELR(linearPed(2), ids = c(1,5), L1 =10, L2 = 30, rho = rhos),
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Half = ELR(halfSibPed(), ids = c(4,5), L1 = 10, L2 = 30, rho = rhos),
Uncle = ELR(avuncularPed(), ids = c(3,6), L1 = 10, L2 = 30, rho = rhos))

matplot(rhos, dat, type = "1", 1lwd = 2, ylab = "E[LR]", ylim = c(@, 8))
legend("bottomleft”, legend = colnames(dat), lty = 1:3, col = 1:3, 1lwd = 2)

external_coefs Relatedness coefficients by other programs

Description

Wrappers for functions in other packages or external programs.

Usage

kinship2_kinship(x, ids = NULL, Xchrom = FALSE)

kinship2_inbreeding(x, Xchrom = FALSE)

Arguments
X A pedigree, in the form of a pedtools: : ped object.
ids A integer vector of length 2.
Xchrom A logical, indicating if the autosomal (default) or X-chromosomal coefficients
should be computed.
Details

kinship2_kinship() and kinship2_inbreeding() both wrap kinship2: :kinship().

Value

For kinship2_inbreeding(), a numerical vector with inbreeding coefficients, named with ID la-
bels.

For kinship2_kinship(), either a single numeric (if ids is a pair of pedigree members) or the
whole kinship matrix, with the ID labels as dimnames.

See Also

kinship2: :kinship()
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Examples

# A random pedigree with 2 founders and 5 matings
p = randomPed(g = 5, founders = 2, seed = 123)

### Kinship matrix

# Autosomal: Check that ribd agrees with kinship2
stopifnot(identical(

kinship(p), # ribd

kinship2_kinship(p) # kinship2

)
# X chromosomal kinship
stopifnot(identical(
kinship(p, Xchrom = TRUE), # ribd
kinship2_kinship(p, Xchrom = TRUE) # kinship2
)

### Inbreeding coefficients

# Autosomal

stopifnot(identical(
inbreeding(p), # ribd
kinship2_inbreeding(p) # kinship2

)

# X chromosomal

stopifnot(identical(
inbreeding(p, Xchrom = TRUE), # ribd
kinship2_inbreeding(p, Xchrom = TRUE) # kinship2

))

gKinship Generalised kinship coefficients
Description

Computes single-locus generalised kinship coefficients of various kinds. These are fundamental
for computing identity coefficients (see identityCoefs()), but are also interesting in their own
right. Each generalised kinship coefficient is defined as the probability of observing a corresponding
generalised IBD pattern, as defined and discussed in the Details section below.
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Usage

gKinship(
X,
pattern,
distinct = TRUE,
Xchrom = FALSE,
method = c("auto”, "K", "WL", "LS", "GC"),
verbose = FALSE,
debug = FALSE,
mem = NULL,

)

gip(x, pattern, distinct = TRUE)

Arguments
X A ped object.
pattern A gip object, or a list of vectors to be passed onto gip(). Each vector should
contain members of x constituting an IBD block. (See Details and Examples.)
distinct A logical indicating if different blocks are required to be non-IBD. Default:
TRUE. (Irrelevant for single-block patterns.)
Xchrom A logical, by default FALSE.
method Either "auto", "K", "WL", "LS" or "GC".
verbose A logical, by default FALSE.
debug A logical, by default FALSE.
mem For internal use.
Further arguments.
Details

The starting point: standard kinship coefficients:

The classical kinship coefficient phi between two pedigree members A and B, is the probability
that two alleles sampled from A and B (one from each), at a random autosomal locus, are identical
by descent (IBD).

In the language and notation to be introduced shortly, we would write phi = Pr[(A,B)] where
(A,B) is an IBD pattern.

Generalised IBD patterns:

We define a generalised IBD pattern (GIP) to be a partition of a set of alleles drawn from members
of a pedigree, such that the alleles in each subset are IBD. Each subset (also referred to as a group
or a block) is written as a collection of pedigree members (A, B, ...), with the understanding that
each member represents one of its alleles at the given locus. A member may occur in multiple
blocks, and also more than once within a block.

Additional requirements give rise to different flavours of GIPs (and their corresponding coeffi-
cients):
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e Distinct (resp. non-distinct): alleles in different blocks are non-IBD (resp. may be IBD)
* Deterministic (resp. random): the parental origin (paternal or maternal) of each allele is
fixed (resp. unknown).

We may say that a GIP is partially (rather than fully) deterministic if the parental origin is fixed
for some, but not all alleles involved.

Notational examples:

Our notation distinguishes the different types of patterns, as exemplified below. Blocks are sep-
arated with "/" if they are distinct, and "&" otherwise. Deterministically sampled alleles are
suffixed by either ":p" (paternal) or ":m" (maternal).

* (A, B) & (A, C):4 alleles are sampled randomly; two from A, one from B and one from
C. The first from A is IBD with that from B, and the second from A is IBD with that from C.
All four alleles may be IBD. [Random, non-distinct]

* (A, B) / (A, C):Same as the previous, but the two allele pairs must be non-IBD. [Random,
distinct]

* (A:p, C:p) / (C:m): The paternal alleles of A and C are IBD, and different from the
maternal allele of C. [Deterministic, distinct]

e (A, C:p) & (B, C:m): The paternal and maternal alleles of C are IBD with random
alleles of from A and B, respectively. The two pairs are not necessarily different. [Partially
deterministic, non-distinct]

* (A:p, A, A):Here we have just one group, specifying that the paternal allele of A is IBD with
two other alleles sampled randomly from A. (If A is non-inbred, this must have probability
1/4.) [Partially deterministic, single-block]

n.n

In the gip () constructor, deterministic sampling is indicated by naming elements with "p" or "m",
e.g., c(p = A) produces (A:p). See Examples for how to create the example patterns listed above.

Internal structure of gip objects:

(Note: This section is included only for completeness; gip objects should not be directly manip-
ulated by end users.)

Internally, a GIP is stored as a list of integer vectors, each vector giving the indices of pedigree
members constituting an IBD block. In addition, the object has three attributes:

» labs: A character vector containing the names of all pedigree members

* deterministic: A logical, which is TRUE if the pattern is (partially or fully) deterministic

e distinct: A logical.
If deterministic = TRUE, the last digit of each integer encodes the parental origin of the allele
(0 = unknown; 1 = paternal; 2 = maternal). For example:

* 12 = the maternal origin of individual 1

* 231 = the paternal allele of individual 23

* 30 = arandom allele of individual 3

A brief history of generalised Kinship coefficients:

The notion of generalised kinship coefficients originated with Karigl (1981) who used a selection
of random, non-distinct patterns (in our terminology) to compute identity coefficients.

Weeks & Lange (1988), building on Karigl’s work, defined random, distinct patterns in full gen-
erality and gave an algorithm for computing the corresponding coefficients.
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In a follow-up paper, Lange & Sinsheimer (1992) introduced partially deterministic (distinct)
patterns, and used these to compute detailed identity coefficients.

In another follow-up, Weeks et al. (1995) extended the work on random, distinct patterns by
Weeks & Lange (1988) to X-chromosomal loci.

Garcia-Cortes (2015) gave an alternative algorithm for the detailed identity coefficients, based on
(in our terminology) fully deterministic, non-distinct patterns.

Implemented algorithms:

The following are valid options for the methods parameters, and what they implement.

* auto: Chooses method automatically, based on the pattern type.

* K: Karigl’s algorithm for random, non-distinct patterns. Only the cases considered by Karigl
are currently supported, namely single groups up to length 4, and two groups of length two.
The implementation in ribd includes an X-chromosomal version, and allows inbred founders.

* WL: Weeks & Lange’s algorithm for random, distinct patterns of any size. [TODO: Include
the extension to X by Weeks et al. (1995).]

¢ LS: Lange & Sinsheimer’s algorithm for partially deterministic, distinct patterns of any size.
Does not support X, nor patterns involving inbred founders.

* GC: Garcia-Cortes’ algorithm for fully deterministic, non-distinct patterns. The current im-
plementation only covers the patterns needed to compute identity coefficients, namely single
blocks and two blocks of length two. The original algorithm has been extended to an X-
chromosomal version, and to pedigrees with inbred founders.

Value

gKinship() returns a single number, the probability of the given IBD pattern.

gip() returns an object of class gip. This is internally a list of integer vectors, with attributes labs,
deterministic and distinct. (See also Details.)

References
* G. Karigl (1981). A recursive algorithm for the calculation of identity coefficients. Ann. Hum.

Genet.

* D.E. Weeks & K. Lange (1988). The affected-pedigree-member method of linkage analysis.
Am. J. Hum. Genet

* K. Lange & J.S. Sinsheimer (1992). Calculation of genetic identity coefficients. Ann. Hum.
Genet.

D.E. Weeks, T.I. Valappil, M. Schroeder, D.L. Brown (1995) An X-linked version of the
affected-pedigree-member method of linkage analysis. Hum Hered.

* L.A. Garcia-Cortés (2015). A novel recursive algorithm for the calculation of the detailed
identity coefficients. Gen Sel Evol.

See Also

kinship(), identityCoefs()
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Examples

### Trivial examples #it#
x = nuclearPed(father = "A", mother = "B", children = "C")

# Random, distinct
pattl = gip(x, list(c("A", "B"), c("A", "C")))
pattl

# Random, non-distinct
patt2 = gip(x, list(c("A", "B"), c("A", "C")), distinct = FALSE)
patt2

# Fully deterministic, distinct
patt3 = gip(x, list(c(p="A", p="C"), c(m="C")))
patt3

# Partially deterministic, non-distinct®
patt4 = gip(x, list(c("A", p="C"), c("B", m="C")), distinct = FALSE)
patt4

# Partially deterministic, single block
patts = gip(x, list(c(p="A", "A", "A")))
patt5h

stopifnot(
gKinship(x, pattl) == 0,
gKinship(x, patt2) == 0,
gKinship(x, patt3) == 0.5, (only uncertainty is which allele A gave to C)
gKinship(x, patt4) == 0.25, (distinct irrelevant)
gKinship(x, patt5) == 0.25 # (both random must hit the paternal)

(since A and B are unrelated)

#
# (same as previous)
#
#

### Kappa coefficients via generalised kinship ###
# NB: Much less efficient than ‘kappalIBD()‘; only for validation

kappa_from_gk = function(x, ids, method = "WL") {
fal = father(x, ids[1])
fa2 = father(x, ids[2])
mo1l mother(x, ids[1])
mo2 = mother(x, ids[2])

GK = function(...) gKinship(x, list(...), method = method)

ko = GK(fal, fa2, mol, mo2)

k1 = GK(c(fal, fa2), mol, mo2) + GK(c(fal, mo2), fa2, mol) +
GK(c(mol1, fa2), fal, mo2) + GK(c(mol, mo2), fal, fa2)

k2 = GK(c(fal, fa2), c(mol, mo2)) + GK(c(fal, mo2), c(mol, fa2))
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c(ko, k1, k2)
3

y1 = nuclearPed(2); ids = 3:4
stopifnot(kappa_from_gk(yl, ids) == kappalBD(y1, ids))

y2 = quadHalfFirstCousins(); ids = 9:10
stopifnot(kappa_from_gk(y2, ids) == kappalBD(y2, ids))

### Detailed outputs and debugging #i##
x = fullSibMating(1)

# Probability of sampling IBD alleles from 1, 5 and 6

pl = gip(x, list(c(1,5,6)))

p1

gKinship(x, p1, method = "K", verbose = TRUE, debug = TRUE)
gKinship(x, p1, method = "WL", verbose = TRUE, debug = TRUE)

# Probability that paternal of 5 is IBD with maternal of 6
p2 = gip(x, list(c(p=5, m=6)))

p2

gKinship(x, p2, method = "LS", verbose = TRUE, debug = TRUE)
gKinship(x, p2, method = "GC", verbose = TRUE, debug = TRUE)

# Probability that paternal of 5 is *not* IBD with maternal of 6
p3 = gip(x, list(c(p=5), c(m=6)), distinct = TRUE)

p3

gKinship(x, p3, method = "LS", verbose = TRUE, debug = TRUE)

ibdDraw Colourised IBD plot

Description

This is a pedagogical tools for illustrating the concept of identity-by-descent, by representing the
alleles in a pedigree by coloured points or letters. By default, the alleles are placed below each
pedigree symbols, but any positions are possible, including inside. (See examples.)

Usage

ibdDraw(
X,
alleles,
symbol = c("point”, "text"),
pos =1,
cols = NULL,
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cex = NA,
sep = NULL,
dist =1,
labs = FALSE,
checkFounders = TRUE,
checkParents = TRUE,
margin = c(1, 1, 1, 1),
)
Arguments
X A ped object.
alleles A list of length pedsize(x). Each element should consist of one or two integers,
representing different colours. Zeroes produce "greyed-out" alleles.
symbol Either "point" or "text".
pos A vector recycled to the length of labels(x), indicating allele placement rel-
ative to the pedigree symbols: 0 = inside; 1 = below; 2 = left; 3 = above; 4 =
right. By default, all are placed below.
cols A colour vector corresponding to the integers occurring in alleles.
cex An expansion factor for the allele points/letters. Default: 3 for points and 2 for
text.
sep The separation between haplotypes within a pair, given as a multiple of the width
of a pedigree symbol. Default: 0.5 when pos = @ and 1 otherwise.
dist The distance between pedigree symbols and the alleles, given as a multiple of
the height of a pedigree symbol. Default: 1. Ignored when pos = @.
labs A logical indicating if labels should be included.
checkFounders A logical. If TRUE (default), a warning is issued if a founder has two equal
alleles other than 0.
checkParents A logical. If TRUE (default), a warning is issued if someone’s alleles don’t
match those of the parents. This a superficial test and does not catch all Mendelian
errors.
margin Plot margins (bottom, left, top, right).
Further arguments passed on to plot.ped().
Value
The plot structure is returned invisibly.
See Also

pedtools::plot.ped(), ibdsim2: :haploDraw()
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Examples

op = par(no.readonly = TRUE)

HHHEHHHEHEHAEA A
# Example 1: A family quartet #
SHFHHEHHRHEHEHRE B RHRHERERH

X = nuclearPed(2)
als = list(1:2, 3:4, c(1,3), c(2,3))

# Default options
ibdDraw(x, als)

# Nicer colors
cols = c(7, 3, 2, 4)
ibdDraw(x, als, cols = cols)

# Inside the pedigree symbols
ibdDraw(x, als, cols = cols, pos = @, symbolsize = 2.5)

# Other placements (margins depend on device - may need adjustment)
ibdDraw(x, als, cols = cols, pos = c(2, 4, 1, 1),
margin = c(2, 6, 2, 6))

# Letters instead of points
ibdDraw(x, als, cols = cols, symbol = "text”, cex = 2)

# Further arguments (note that ‘col‘ is an argument of ‘ped.plot()‘)
ibdDraw(x, als, cols = cols, pos = @, symbolsize = 2,
labs = TRUE, hatched = 3:4, col = "blue")

# Mutations are warned about (unless ‘checkParents = FALSE")
ibdDraw(x, alleles = list(1:2, 3:4, 5, 6))

B s S S
# Example 2: Cousin pedigree #
HHHEHHEEEE A

X = swapSex(cousinPed(1), 3)
als = list(1:2, 3:4, NULL, c(1,3), c(2,3), NULL, 3, 3)

cols = c(7, 3, 2, 4)
ibdDraw(x, als, cols = cols, dist = 0.8)
ibdDraw(x, als, cols = cols, dist = 0.8, symbol = "text")

# Alternative: 0's give greyed-out alleles
als2 = list(1:2, 3:4, c(0,0), c(1,3), c(2,3), c(0,0), c(0,3), c(3,0))

ibdDraw(x, als2, cols = cols, dist = 0.8)
ibdDraw(x, als2, cols = cols, dist = 0.8, symbol = "text")
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HHHHHHAEHE
# Example 3: X inheritance #
HHHEHHEEEEE A

X = nuclearPed(2, sex = c(1, 2))
als = list(1, 2:3, 3, c(1, 3))
ibdDraw(x, als, cols = c(3, 7, 2))

HHHHHHARHE
# Example 4: mtDNA inheritance #
B S S R

x = linearPed(2, sex = 2)
als = list(1, 2, 2, 3, 2)
ibdDraw(x, als, cols = 2:4)

# Restore graphics parameters
par(op)

ibdTriangle IBD triangle plot

Description

The IBD triangle is typically used to visualize the pairwise relatedness of non-inbred individuals.
Various annotations are available, including points marking the most common relationships, contour
lines for the kinship coefficients, and shading of the unattainable region.

Usage

ibdTriangle(
relationships = c("UN", "PO", "Mz", "S", "H,U,G", "FC"),
pch = 16,
cexPoint = 1.2,
cexText = 1.2,
kinshipLines = numeric(),
shading = "lightgray”,
xlim = c(0o, 1),
ylim = c(o, 1),
axes = FALSE,
xlab = expression(kappal@]),
ylab = expression(kappal2]),
cexLab = cexText,
mar = c(3.1, 3.1, 1, 1),
xpd = TRUE,
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keep.par = TRUE
)
Arguments

relationships A character vector indicating relationships points to be included in the plot. See
Details for a list of valid entries.

pch Symbol used for the relationship points (see par()).
cexPoint A number controlling the symbol size for the relationship points.
cexText A number controlling the font size for the relationship labels.

kinshipLines A numeric vector (see Details).
shading The shading colour for the unattainable region.
xlim, ylim, mar, xpd

Graphical parameters; see par ().

axes A logical: Draw surrounding axis box? Default: FALSE.

xlab, ylab Axis labels.

cexLab A number controlling the font size for the axis labels.

keep.par A logical. If TRUE, the graphical parameters are not reset after plotting, which

may be useful for adding additional annotation.

Details

For any pair of non-inbred individuals A and B, their genetic relationship can be summarized by the
IBD coefficients (kg, k1, k2), where k; = P(A and B share i alleles IBD at random autosomal locus).
Since ko + k1 + k2 = 1, any relationship corresponds to a point in the triangle in the (kg, k2 )-plane
defined by kg > 0, ko > 0, k9 + k2 < 1. The choice of kg and k9 as the axis variables is done for
reasons of symmetry and is not significant (other authors have used different views of the triangle).

As shown by Thompson (1976), points in the subset of the triangle defined by 4rgko > k2 are
unattainable for pairwise relationships. By default this region in shaded in a ’light grey’ colour, but
this can be modified with the shading argument.

The IBD coefficients are linearly related to the kinship coefficient ¢ by the formula
¢ = 0.25Kk1 + 0.5Ko.
By indicating values for ¢ in the kinshipLines argument, the corresponding contour lines are
shown as dashed lines in the triangle plot.
The following abbreviations are valid entries in the relationships argument:

* UN = unrelated

* PO = parent/offspring

* MZ = monozygotic twins

* S =full siblings

* H,U,G = half sibling/avuncular (uncle)/grandparent
» FC = first cousins

* SC = second cousins

* DFC = double first cousins

Q = quadruple first half cousins
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Value

None

Author(s)
Magnus Dehli Vigeland

References

* E. A. Thompson (1975). The estimation of pairwise relationships. Annals of Human Genetics
39.

* E. A. Thompson (1976). A restriction on the space of genetic relationships. Annals of Human
Genetics 40.

Examples
opar = par(no.readonly = TRUE) # store graphical parameters

ibdTriangle()
ibdTriangle(kinshipLines = ¢(@.25, 0.125), shading = NULL, cexText = 0.8)

par(opar) # reset graphical parameters

identityCoefs Omnibus function for identity coefficients

Description

This function calculates the pairwise identity coefficients described by Jacquard (1974). Unlike the
previous condensedIdentity () (which will continue to exist), this function also computes the 15
detailed identity coefficients. The implementation supports pedigrees with inbred founders, and
X-chromosomal coefficients.

Usage

identityCoefs(
X,
ids = labels(x),
detailed = FALSE,
Xchrom = FALSE,
self = FALSE,
simplify = TRUE,
method = c("auto”, "K", "WL", "LS", "GC", "idcoefs", "identity"”, "merlin"),
verbose = FALSE,

)

detailed2condensed(d)
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Arguments

X
ids

detailed

Xchrom
self

simplify

method

verbose

Details
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A pedigree in the form of a pedtools: : ped object.
A vector of two ID labels.

A logical. If FALSE (default), the 9 condensed coefficients are computed; oth-
erwise the 15 detailed identity coefficients.

A logical, by default FALSE.

A logical indicating if self-relationships (i.e., between a pedigree member and
itself) should be included. FALSE by default.

Simplify the output (to a numeric of length 9) if ids has length 2. Default:
TRUE.

Either "auto", "K", "WL", "LS", "GC", "idcoefs", "identity" or "merlin". By
default ("auto") a suitable algorithm is chosen automatically.

A logical.
Further arguments.

Either a numeric vector of length 15, or a data frame with 17 columns.

Both the condensed and detailed coefficients are given in the orders used by Jacquard (1974). The
function detailed2condensed() converts from detailed coefficients (d1, ..., d15) to condensed
ones (D1, ..., D9) using the following relations:

* DI =dl

» D2=d6

* D3=d2+4d3
e D4=d7

e D5=d4+d5
* D6=d8

e D7=d9+d12

e D8=d10+d11 +dI3+dl14

* D9 =dI15

Algorithms for computing identity coefficients:

The following is

a brief overview of various algorithms for computing (single-locus) condensed

and/or detailed identity coefficients. This topic is closely linked to that of generalised kinship
coefficients, which is further described in the documentation of gkinship().

For each algorithm below, it is indicated in brackets how to enforce it in identityCoefs().

» Karigl (1981) gave the first recursive algorithm for the 9 condensed identity coefficients.
[method = "K"]

* Weeks & Lange (1988) suggested a broader and more natural generalisation of kinship coef-
ficients, leading to a slightly different algorithm for condensed coefficients. [method = "WL"]
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Value

identityCoefts

Lange & Sinsheimer (1992) described an even further generalisation of kinship coefficients,
allowing a mix of deterministic and random sampling of alleles. They used this to give (i) an
alternative algorithm for the 9 condensed identity coefficients, and (ii) an algorithm for the
15 detailed coefficients. [method = "LS"]

The C program IdCoef's (version 2.1.1) by Mark Abney (2009) uses a graph model to obtain
very fast computation of condensed identity coefficients. This requires IdCoefs to be in-
stalled on the computer (see link under References) and available on the system search path.
The function then writes the necessary files to disk and calls IdCoef's via system(). [method
= "idcoefs"]

The R package identity provides an R interface for IdCoef's, avoiding calls to system().
[method = "identity"]

The MERLIN software (Abecasis et al, 2002) offers an option "—extended" for computing
detailed identity coefficients. This option requires MERLIN to be installed on the system.
The function then writes the necessary files to disk and calls MERLIN via system(). If
detailed = FALSE, the coefficients are transformed with detailed2condensed() before re-
turning. Note: MERLIN rounds all numbers to 3 decimal places. Since this rounding is done
on the detailed coefficients, rounding errors may happen when converting to the condensed
ones. [method = "merlin"]

A data frame with L + 2 columns, where L is either 9 or 15 (if detailed = TRUE).

If simplify = TRUE and length(ids) = 2: A numeric vector of length L.

References

See Also

Jacquard, A. (1974). The Genetic Structure of Populations. Springer.

Karigl, G. (1981). A recursive algorithm for the calculation of identity coefficients. Ann.
Hum. Genet.

Weeks, D.E. & Lange, K. (1988). The affected-pedigree-member method of linkage analysis.
Am. J. Hum. Genet

Lange, K. & Sinsheimer, J.s. (1992). Calculation of genetic identity coefficients. Ann. Hum.
Genet.

Abney, M. (2009). A graphical algorithm for fast computation of identity coefficients and
generalized kinship coefficients. Bioinformatics, 25, 1561-1563. https://home.uchicago.
edu/~abney/abney_web/Software.html

condensedIdentity(), gKinship()

Examples

x = fullSibMating(1)

### Condensed coefficients

i1
j2

identityCoefs(x, method
identityCoefs(x, method

"K")
”WL”)


https://home.uchicago.edu/~abney/abney_web/Software.html
https://home.uchicago.edu/~abney/abney_web/Software.html
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j3 = identityCoefs(x, method = "LS")
j4 = identityCoefs(x, method = "GC")
j5 = condensedIdentity(x, ids = 1:6) # legacy version

stopifnot(all.equal(j1,j2), all.equal(j1,j3), all.equal(j1,j4), all.equal(j1,j5))

### Detailed coefficients
jdetl = identityCoefs(x, detailed
jdet2 = identityCoefs(x, detailed

TRUE, method = "LS")
TRUE, method = "GC")

stopifnot(all.equal(jdet1,jdet2))

### X-chromosomal coefficients

jx1 = identityCoefs(x, Xchrom = TRUE, method = "K")

jx2 = identityCoefs(x, Xchrom = TRUE, method = "GC")

jx3 = condensedIdentityX(x, ids = 1:6) # legacy version

stopifnot(all.equal(jx1,jx2), all.equal(jx1,jx3))

### Detailed X-chromosomal coefficients
jdx = identityCoefs(x, detailed = TRUE, Xchrom = TRUE, method = "GC")

stopifnot(all.equal(detailed2condensed(jdx), jx1))

inbreeding Inbreeding coefficients

Description

Compute the inbreeding coefficients of all members of a pedigree. Both autosomal and X-chromosomal
coefficients are supported. This function is a simple wrapper of kinship(). Note that pedigree
founders are allowed to be inbred; see pedtools: : founderInbreeding() for how to set this up,
and see Examples below.

Usage

inbreeding(x, ids = NULL, Xchrom = FALSE)

inbreedingX(x, ids = NULL)

Arguments
X A pedigree in the form of a ped object, or a list of such.
ids A vector of ID labels, or NULL (default).
Xchrom A logical, indicating if the autosomal (default) or X-chromosomal inbreeding

coefficients should be computed.
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Details

The autosomal inbreeding coefficient of a pedigree member is defined as the probability that, at a
random autosomal locus, the two alleles carried by the member are identical by descent relative to
the pedigree. It follows from the definition that the inbreeding coefficient of a non-founder equals
the kinship coefficient of the parents.

The implementation here uses kinship() to compute the kinship matrix, and computes the inbreed-
ing coefficients from the diagonal, by the formula

fo =2%@aq — 1.

The X chromosomal inbreeding coefficient of females are defined (and computed) similarly to the
autosomal case above. For males is it always defined as 1.

Value

If ids has length 1, the inbreeding coefficient of this individual is returned as a single unnamed
number.

Otherwise, the output is a named numeric vector containing the inbreeding coefficients of the indi-
cated pedigree members (if ids = NULL: all).

See Also
kinship()

Examples

# Child of half siblings: f = 1/8
x = halfCousinPed(@, child = TRUE)

# Inbreeding vector
inbreeding(x)

# Simpler output using the ‘ids®

inbreeding(x, ids = 6)

argument:

### X-chromosomal inbreeding ###

# Males have inbreeding coefficient 1
stopifnot(inbreeding(x, ids = 6, Xchrom = TRUE) == 1)

y1 = swapSex(x, ids = 6) # female child
stopifnot(inbreeding(y1, ids = 6, Xchrom = TRUE) == @)

y2 = swapSex(yl, ids = 2) # female ancestor
stopifnot(inbreeding(y2, ids = 6, Xchrom = TRUE) == 0.25)

### Inbred founder #it#
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# Mother 100% inbred
founderInbreeding(x, ids = 2) =1

inbreeding(x)

# Example with selfing and complete inbreeding
s = selfingPed(1)

founderInbreeding(s, 1) =1
stopifnot(inbreeding(s, ids = 2) == 1)

jicaque Jicaque pedigree

Description

A data frame describing a pedigree from the Jicaque tribe, studied by Chapman and Jacquard (1971).

Usage

jicaque

Format
A data frame with 22 rows and four columns:
e id: individual ID
e fid: father’s ID (or O if not included)

e mid : mother’s ID (or O if not included)

¢ sex : Gender codes, where 1 = male and 2 = female

References

Chapman, A.M and Jacquard, A. (1971). Un isolat d’ Amerique Centrale: les Indiens Jicaques de
Honduras. In Genetique et Population. Paris: Presses Universitaires de France.
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kappalBD IBD (kappa) coefficients

Description

Computes the three IBD coefficients summarising the relationship between two non-inbred individ-
uals. Both autosomal and X chromosomal versions are implemented. The pedigree founders (other
than the individuals in question) are allowed to be inbred; see pedtools: : founderInbreeding()
for how to set this up, and see Examples below.

Usage

kappaIBD(x, ids = labels(x), inbredAction = 1, simplify = TRUE, Xchrom = FALSE)

Arguments
X A pedigree in the form of a ped object (or a list of such).
ids A character (or coercible to character) containing ID labels of two or more pedi-

gree members.

inbredAction  An integer telling the program what to do if either of the ids individuals are in-
bred. Possible values are: 0 = do nothing; 1 = print a warning message (default);
2 =raise an error. In the first two cases the coefficients are reported as NA.

simplify Simplify the output (to a numeric of length 3) if ids has length 2. Default:
TRUE.
Xchrom A logical, indicating if the autosomal (default) or X-chromosomal kappa coeffi-

cients should be computed.

Details

For non-inbred individuals a and b, their autosomal IBD coefficients (k0, k1, x2) are defined as
follows:

k; = P(aandbshareexactlyiallelesI B Datarandomautosomallocus)

The autosomal kappa coefficients are computed from the kinship coefficients. When a and b are
both nonfounders, the following formulas hold:

* K2=¢uM *ppF' + omF * oM

e kKl =4%psb— 2% kK2

e k0=1—krl — K2
Here ¢5; M denotes the kinship coefficient between the mothers of a and b, and so on. If either a or
b is a founder, then k2 = 0, while the other two formulas remain as above.

The X-chromosomal IBD coefficients are defined similarly to the autosomal case. Here x2 is unde-
fined when one or both individuals are male, which greatly simplifies the calculations when males
are involved. The formulas are (with ¢,b referring to the X-chromosomal kinship coefficient):
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* Both male: (0, k1, k2) = (1 — @gb, Ppab, NA)
* One male, one female: (k0, k1, k2) = (1 — 2 x ¢gb, 2 * Pob, NA)

e Two females: Similar formulas as in the autosomal case.

Value

If ids has length 2 and simplify = TRUE: A numeric vector of length 3: (k0, k1, k2).

Otherwise: A data frame with one row for each pair of individuals, and 5 columns. The first two
columns contain the ID labels, and columns 3-5 contain the IBD coefficients.

Unless inbredAction = 2, the coefficients of pairs involving inbred individuals (X-inbred females
if Xchrom =T) are reported as NA. Furthermore, the X-chromosomal 2 is NA whenever at least
one of the two individuals is male.

See Also

kinship(), identityCoefs()

Examples

#i## Siblings
X = nuclearPed(2)
kappaIBD(x)

k = kappalBD(x, 3:4)
stopifnot(identical(k, c(.25, .5, .25)))

### Quad half first cousins

X = quadHalfFirstCousins()

k = kappalBD(x, ids = leaves(x))
stopifnot(identical(k, c(17/32, 14/32, 1/32)))

### Paternal half brothers with 100% inbred father

# Genetically indistinguishable from an (outbred) father-son relationship
x = halfSibPed()

ids = 4:5

# Set founder inbreeding
fou = commonAncestors(x, ids) # robust to label change
founderInbreeding(x, fou) =1

k = kappalBD(x, ids)
stopifnot(identical(k, c(@, 1, 0)))

### X-chromosomal kappa
y = nuclearPed(2, sex = 2)
kappalIBD(y, Xchrom = TRUE)
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kin2deg Degree of relationship

Description

Converts a vector of kinship coefficients to "degrees of relationship”, as used by some software for
relatedness inference (e.g. KING).

Usage

kin2deg(kin, unrelated = Inf)

Arguments
kin A vector of kinship coefficients, i.e., numbers in [0, 1].
unrelated The conversion of unrelated individuals (kin = @). Mathematically this corre-
sponds to degree = Inf, but in some situations degree = NA or something else
might be preferable.
Details

The implementation uses the conversion formula
deg = round(—log2(kin) — 1).
The first degrees correspond to the following approximate kinship ranges:

» [0.354, 1]: Oth degree (MZ twins or duplicates)

* [0.177, ©.354): 1st degree (parent-offspring, full siblings)

* [0.0884, 0.177): 2nd degree (half sibs, grandparent-grandchild, avuncular)

* [0.0442, 0.0884) 3rd degree (half-avuncular, first cousins, great-grandparent etc)

Value

An integer vector of the same length as kin.

References

KING manual with thresholds for relationship degrees: https://www.kingrelatedness.com/
manual.shtml

See Also

kinship(), coeffTable()


https://www.kingrelatedness.com/manual.shtml
https://www.kingrelatedness.com/manual.shtml
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Examples
X = cousinPed(1)

# Kinship matrix
k = kinship(x)

# Degrees
deg = kin2deg(k)
deg

# First cousins are 3rd degree
stopifnot(deg['7', '8'] == 3)

kinship Kinship coefficients

Description

Compute the matrix of kinship coefficients of all members of a pedigree. Both autosomal and
X-chromosomal versions are supported. The pedigree founders are allowed to be inbred; see
pedtools: : founderInbreeding() for how to set this up, and see Examples below.

Usage

kinship(x, ids = NULL, Xchrom = FALSE)

kinshipX(x, ids = NULL)

Arguments
X A ped object or a list of such.
ids Either NULL (default), or a vector of length 2, containing the IDs of two (pos-
sibly equal) members of x.
Xchrom A logical, indicating if the autosomal (default) or X-chromosomal kinship coef-
ficients should be computed.
Details

For two (possibly equal) members A, B of a pedigree, their autosomal (resp. X-chromosomal)
kinship coefficient is defined as the probability that a random allele from A and a random allele
from B, sampled at the same autosomal (resp. X-chromosomal) locus, are identical by descent
relative to the pedigree.

Value

If ids = NULL, a symmetric matrix containing all pairwise kinship coefficients in x. If ids has length
2, the function returns a single number.
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See Also

inbreeding(), kappa()

Examples

# Kinship coefficients in a nuclear family with two children
X = nuclearPed(2)
kinship(x)

# X chromosomal kinship coefficients in the same family
kinship(x, Xchrom = TRUE)

# Autosomal kinships if the mother is 100% inbred
founderInbreeding(x, 2) =1
kinship(x)

# Similar for X:
founderInbreeding(x, 2, chromType = "X") =1
kinship(x, Xchrom = TRUE)

minimalPattern Minimal IBD pattern

Description

Compute the minimal form of given multiperson IBD pattern.

Usage

minimalPattern(x)
Arguments

X An integer vector of even length.
Value

An integer vector of the same length as x.

Examples

v =c(1,2,2,3)
stopifnot(identical(minimalPattern(v), c(1,2,1,3)))
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multiPersonIBD Multi-person IBD coefficients

Description

Computes the probabilities (coefficients) of all possible patterns of identity by descent (IBD) sharing
at a single locus, among N>1 non-inbred members of a pedigree. The reported coefficients are
"condensed" in the sense that allele ordering within each individual is ignored. For N = 2, the result
should agree with the traditional "kappa" coefficients, as computed by kappaIBD(). This function
is under development, and should be regarded as experimental. For now, the only cases handled are
those with: N =2 or 3, autosomal locus.

Usage

multiPersonIBD(x, ids, complete = FALSE, verbose = FALSE)

Arguments
X A ped object.
ids A vector of ID labels.
complete A logical. If FALSE, only IBD patterns with nonzero probability are included
in the output.
verbose A logical. If TRUE, some computational details are printed.
Details

Consider N members of a pedigree, il, 12, ... iN. A pattern of IBD sharing between these individuals
is a sequence of N ordered pairs of labels, (al_1, al_2), (a2_1, a2_2), ... (aN_1, aN_2), where ai_1
and ai_2 represent the paternal and maternal allele of individual i, respectively. Equality of labels
means that the corresponding alleles are IBD, and vice versa.

We say that two IBD patterns are equivalent if one can be transformed into the other by some
combination of

* renaming the labels (without changing the structure)

» swapping the paternal/maternal labels of some individuals
Each equivalence class has a "minimal” element, using integer labels, and being minimal with

respect to standard sorting. For example, the minimal element equivalent to (a,c), (d,c), (b,b)
is (1,2),(2,3),(4,4.

Value

A data frame in which each row corresponds to an equivalence class of multi-person IBD patterns.
The first column gives the calculated probability, followed by one column for each ids individual,
describing the minimal element of the equivalence class. (See Details.) If complete = FALSE (the
default) rows with probability 0 are removed.
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Examples

### Trivial example: Trio #it#

X = nuclearPed(1)

ids = 1:3

multiPersonIBD(x, ids, complete = TRUE)

#i## Example due to Peter Green #i#
# Three (pariwise) cousins arranged in two different ways,
# with different 3-way IBD coefficients.

threeCousins1 = ped(

id = c('gf','gm',"'gf1","'gf2","'gf3","'gm1 ", "gm2"',"'gm3",
1, f2 3, 'mt, 'm2", 'm3", e, 'c2', 'e3"),

fid = ¢(0,0,0,0,0,0,0,0, 'gf1', 'gf2','gf3"', "'gf"','gf"', 'gf",
"1, f20, N F3Y),

mid = ¢(0,0,0,0,0,0,0,0,'gml"', 'gm2','gm3"','gm',"'gm', 'gm',
'mi’', 'm2"','m3"),

sex = ¢(1,2,1,1,1,2,2,2,1,1,1,2,2,2,1,1,1))

threeCousins2 = ped(
id = c('gf1','gf2','gf3"','gm1', 'gm2"',"'gm3","'f1',"'f2','f3"',
'm','m2"','m3",'c1',"'c2",'c3"),

fid = ¢(0,0,0,0,0,0,'gf2','gf3"','gf1', 'gf3"', 'gf1', 'gf2',
"f1r, 2, F3Y),

mid = ¢(0,0,0,0,0,0, 'gm2','gm3"',"'gm1"','gm3', " 'gml"', 'gm2’',
'mi’', 'm2"','m3"),

sex = ¢(1,1,1,2,2,2,1,1,1,2,2,2,1,1,1))

ids = ¢c('c1','c2','c3")
multiPersonIBD(threeCousins1, ids)
multiPersonIBD(threeCousins2, ids)

realisedIbdVariance Variance of realised relatedness coefficients

Description

Compute the variance of realised relatedness coefficients, by doubly integrating the corresponding
two-locus coefficients.

Usage

realisedIbdVariance(x, ids = leaves(x), coeff, L = 1)

Arguments

X A ped object.

ids A vector naming two members of Xx.
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coeff A string naming a coefficient for which the variance is to be computed. See
Details for legal values.
L A positive number; the chromosome length in Morgan.
Details

The double integral method was used by Guo to compute the variation in proportion of the genome
shared IBD (Guo 1995, see also Thompson 2013). The method extends directly to other coefficients.
The implementation here supports Cotterman’s kappa coefficients (of noninbred individuals), and
Jacquard’s condensed identity coefficients.

This function is a bare-bones implementation of the double integral method, based on stats: :integrate,
and can probably be optimised in various ways.

The coeff parameter must be either a character naming the coefficient to compute, or a function. If
a character, it must be one of the following names:

* "inb" (inbreeding coefficient)
* "kinship", "phi" (synonyms for the kinship coefficient)
* "k0", "k1", "k2" (kappa coefficients of noninbred individuals)

* "DI", "D2", ... "D9" (condensed identity coefficients)

Value

A positive number.

References

* Guo (1995) Proportion of genome shared identical by descent by relatives: concept, compu-
tation, and applications. Am J Hum Genet.

* Hill & Weir (2011). Variation in actual relationship as a consequence of Mendelian sampling
and linkage. Genet Res.

* Thompson (2013). Identity by Descent: Variation in Meiosis, Across Genomes, and in Popu-
lations. Genetics.

Examples

HHHHAHHHEAEE A
### Box 1 of Hill & Weir (2011) ##i#
I

# Eq. 4b of Hill & Weir
phi = function(n, 1) {
1/(2*%1%2) = (1/4)"n * sum(sapply(1:n, function(r)
choose(n, r) * (2xrx1 - 1 + exp(-2xrx1))/r*2))
3

# Chromosome of 1 Morgan
L=1
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showlInTriangle

### Full sibs #i#

X = nuclearPed(2)
realisedIbdVariance(x, ids = 3:4, coeff = "k2", L = L)

# Hill & Weir (Box 1)
16xphi(4,L) - 16%phi(3,L) + 8*phi(2,L) - 2*phi(1,L)

### Double first cousins #if#

## Not run:
dfc = doubleFirstCousins()

# Runtime ~1 min

realisedIbdVariance(dfc, coeff = "k@", L = L)
realisedIbdVariance(dfc, coeff = "k1", L = L)
realisedIbdVariance(dfc, coeff = "k2", L = L)

# Hill & Weir, Box 1
var_k2 = 64*phi(8,L) - 64xphi(7,L) + 40*phi(6,L) - 20*phi(5,L) +
33/4xphi(4,L) - 5/2%phi(3,L) + 5/8%phi(2,L)-1/8*phi(1,L)

var_k1
var_ko

var_ko
var_k1
var_k2

4xvar_k2
var_k2 + 2 * (4xphi(4,L) - 2*phi(3,L) + 3/4*phi(2,L) - 1/4*xphi(1,L))

## End(Not run)

ribd

ribd: Computation of pedigree-based relatedness coefficients

Description

Recursive algorithms for computing various relatedness coefficients, including Jacquard’s con-
densed identity coefficients. The standard algorithms are extended to allow inbred founders. Both
autosomal and X-linked coefficients are computed.

showInTriangle Add points to the IBD triangle

Description

Utility function for plotting points in the IBD triangle.
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Usage

showInTriangle(
kappa,
new = TRUE,
col = 6,
cex =1,
pch = 4,
lwd = 2,
labels = FALSE,
collLab = col,
cexLab = 0.8,
pos =1,
adj = NULL,

keep.par = TRUE,

)
Arguments
kappa Coordinates of points to be plotted in the IBD triangle. Valid input types are:
* A numerical vector of length 2 or 3. In the latter case kappalc(1, 3)]is
used.
¢ A matrix of data frame, whose column names must include either k@ and
k2, kappa® and kappa2, or ibd®@ and ibd2.
* A list (and not a data frame), in which case an attempt is made to bind the
elements row-wise.
new A logical indicating if a new triangle should be drawn.

col, cex, pch, 1wd
Parameters passed onto points().

labels A character of same length as the number of points, or a single logical TRUE or
FALSE. If TRUE, an attempt is made to create labels by pasting columns ID1 and
ID2 in kappa, if these exist. By default, no labels are plotted.

collLab, cexLab, pos, adj
Parameters passed onto text() (if labels is non-NULL).

keep.par A logical. If TRUE, the graphical parameters are not reset after plotting, which
may be useful for adding additional annotation.

Plot arguments passed on to ibdTriangle().

Value

None

Author(s)
Magnus Dehli Vigeland
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Examples

twoLocusIBD

showInTriangle(c(3/8, 1/8), label = "3/4 siblings”, pos = 1)

twolLocusIBD

Two-locus IBD coefficients

Description

Computes the 3*3 matrix of two-locus IBD coefficients of a pair of non-inbred pedigree members,
for a given recombination rate.

Usage
twoLocusIBD(
X,
ids,
rho,
coefs = NULL,

detailed = FALSE,
uniMethod = 1,

verbose

Arguments

X

ids

rho

coef's

detailed

uniMethod

verbose

Details

FALSE

A pedigree in the form of a pedtools: : ped object.

A character (or coercible to character) containing ID labels of two pedigree
members.

A number in the interval [0, 0.5]; the recombination rate between the two loci.

A character indicating which coefficient(s) to compute. A subset of c('k0@"',
ko1', 'ke2', 'k1@', 'k11', 'k12', 'k20', 'k21', 'k22'). By default, all
coefficients are computed.

A logical, indicating whether the condensed (default) or detailed coefficients
should be returned.

Either 1 or 2 (for testing purposes)
A logical.

Let A, B be two pedigree members, and L1, L2 two loci with a given recombination rate p. The
two-locus IBD coefficients x; ;(p), for 0 < ¢, j < 2 are defined as the probability that A and B have
i alleles IBD at L1 and j alleles IBD at L2 simultaneously. Note that IBD alleles at the two loci are
not required to be in cis (or in trans for that matter).
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The method of computation depends on the (single-locus) IBD coefficient xo. If this is zero (e.g.
if A is a direct ancestor of B, or vice versa) the two-locus IBD coefficients are easily computable
from the two-locus kinship coefficients, as implemented in twoLocusKinship(). In the general
case, the computation is more involved, requiring generalised two-locus kinship coefficients. This
is implemented in the function twoLocusGeneralisedKinship(), which is not exported yet.

Value

By default, a symmetric 3*3 matrix containing the two-locus IBD coefficients «; ;.

If either coef's is explicitly given (i.e., not NULL), or detailed = TRUE, the computed coefficients
are returned as a named vector.

See Also

twoLocusKinship(), twoLocusIdentity(), twoLocusPlot()

Examples

# Plot title used in several examples below
main = expression(paste(”"Two-locus IBD: ", kappal[‘1,1']1))

HHHEHHHEHEE AR A
# Example 1: A classic example of three relationships with the same
# one-locus IBD coefficients, but different two-locus coefficients.
# As a consequence, these relationships cannot be separated using
# unlinked markers, but are (theoretically) separable with linked

# markers.
HHHEHHHEHEE A A
peds = list(
GrandParent = list(ped = linearPed(2), ids = c(1, 5)),
HalfSib = list(ped = halfSibPed(), ids = c(4, 5)),
Uncle = list(ped = avuncularPed(), ids = c(3, 6)))

twolLocusPlot(peds, coeff = "k11", main = main, 1ty = 1:3, col = 1)

AR AR
Example 2: Inspired by Fig. 3 in Thompson (1988),
and its erratum: https://doi.org/10.1093/imammb/6.1.1.

where we show that they have identical two-locus kinship
coefficients. Here we demonstrate that they have different
two-locus IBD coefficients.

HHHHHHARE R R

#
#
#
# These relationships are also analysed in ?twolLocusKinship,
#
#
#

peds = list(
GreatGrand = list(ped = linearPed(3), ids = c(1, 7)),
HalfUncle = list(ped = avuncularPed(half = TRUE), ids = c(4, 7))
)

twoLocusPlot(peds, coeff = "k11", main = main, 1ty = 1:2, col = 1)
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AR

Example 3: Fig. 15 of Vigeland (2021).

Two-locus IBD of two half sisters whose mother have inbreeding
coefficient 1/4. We compare two different realisations of this:

PO: the mother is the child of parent-offspring

The fact that these relationships have different two-locus coefficients
exemplifies that a single-locus inbreeding coefficient cannot replace

#
#
#
#
# SIB: the mother is the child of full siblings
#
#
#
#

the genealogy in analyses of linked loci.

A

po = addChildren(nuclearPed(1, sex = 2), 1, 3, nch =1, sex = 2)
po = addDaughter (addDaughter(po, 4), 4)
sib = addChildren(nuclearPed(2, sex = 1:2), 3, 4, nch = 1)

sib = addDaughter(addDaughter(sib, 5), 5)

# plotPedList(list(po, sib), new = TRUE, title = c("P0", "SIB"))

# List of pedigrees and ID pairs
peds = 1list(PO = 1list(ped = po, ids = leaves(po)),
SIB = list(ped = sib, ids = leaves(sib)))

twoLocusPlot(peds, coeff = "k11"”, main = main, 1ty = 1:2, col = 1)

### Check against exact formulas
rho = seq(@, 0.5, length = 11) # recombination values

kvals = sapply(peds, function(x)

sapply(rho, function(r) twolLocusIBD(x$ped, x$ids, r, coefs = "k11")))

k11.po = 1/8%(-4*rho*5 + 12*rho*4 - 16*rho*3 + 16*rho*2 - 9*rho + 5)

stopifnot(all.equal(kvals[, "P0"], kl11.po, check.names

k11.s = 1/16%(8*rho*6 - 32*rho”5 + 58*rho*4 - 58*rho*3
stopifnot(all.equal(kvals[, "SIB"], k11.s, check.names

B s S S S
# Example 4:

# The complete two-locus IBD matrix of full sibs
B s S S S

X = nuclearPed(2)
k2_mat = twolLocusIBD(x, ids = 3:4, rho = 0.25)
k2_mat

### Compare with exact formulas
IBDSibs = function(rho) {

+

FALSE))

43xrho*2 - 20*rho + 10)
FALSE))
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R = rho*2 + (1-rho)*2
nms = c("ibd@"”, "ibd1", "ibd2")
m = matrix(@, nrow = 3, ncol = 3, dimnames = list(nms, nms))

m[1,1] = m[3,3] = 0.25 *R"2
m{2,1] = m[1,2] = 0.5 * R * (1-R)
m[3,11 = m[1,3] = 0.25 x (1-R)*2

mi2,2]1 = 0.5 x (1 - 2 * R % (1-R))
m3,2] = m[2,3] = 0.5 * R * (1-R)
m

stopifnot(all.equal(k2_mat, IBDSibs(0.25)))

AR AR R
# Example 5: Two-locus IBD of quad half first cousins
#

# We use this to exemplify two simple properties of

# the two-locus IBD matrix.

HHHH AR A

x = quadHalfFirstCousins()
ids = leaves(x)

# First compute the one-locus IBD coefficients (= c(17, 14, 1)/32)
k1 = kappalBD(x, ids)

#i## Case 1: Complete linkage (‘rho = 0%).

# In this case the two-locus IBD matrix has ‘k1‘ on the diagonal,
# and 0's everywhere else.

k2_mat_0 = twolLocusIBD(x, ids = ids, rho = 0)

stopifnot(all.equal(k2_mat_0, diag(k1l), check.attributes = FALSE))

#' ### Case 2: Unlinked loci (‘rho = 0.5%).

# In this case the two-locus IBD matrix is the outer product of

# “k1® with itself.

k2_mat_0.5 = twolLocusIBD(x, ids = ids, rho = 0.5)
stopifnot(all.equal(k2_mat_0.5, k1 %o0% k1, check.attributes = FALSE))

HHHEHHEEEEEE AR AR
# Example 6: By Donnelly (1983) these relationships are
# genetically indistinguishable

HHHEHHABHEEEE AR R

x1 = halfCousinPed(1)
x2 = halfCousinPed(@, removal = 2)
stopifnot(identical(

twoLocusIBD(x1, ids = leaves(x1), rho = 0.25),
twoLocusIBD(x2, ids = leaves(x2), rho = 0.25)))



40 twoLocusldentity

HEHHHHHHEEEEHHEEEEEHEHEHAHREBHBHEEEERHEHEHHEEEEHBHEEEE R
# Example 7: Detailed coefficients of double first cousins.
# Compare with exact formulas by Denniston (1975).

SHEHHHHHHEEEEHHEEHEEH A HEEHHEHEEEHEHHHEHREEEEHBEEEEEHEHEE

x = doubleFirstCousins()
ids = leaves(x)
rho = 0.25

kapDetailed = twolLocusIBD(x, ids, rho, detailed = TRUE)

# Example 1 of Denniston (1975)
denn = function(rho) {

F = (1-rho)*2 * (rho*2 + (1-rho)*2)/4 + rho*2/8
U=1+ 2%F
V=1 - 4xF

# Note that some of Denniston's definitions differ slightly;
# some coefficients must be multiplied with 2
c(koo = U*2/4,

kol = UxV/8 %2,

ko2 = VA2/16,

k10 = UxV/8 %2,

ki1l.cc = F*U/2 %2,

k11.ct = 0,

k11.tc = 0,

k11.tt = V*2/16 %2,
k12.h = FxV/4 %2,
k12.r = o,

k20 = v*2/16,

k21.h = FxV/4 %2,
k21.r = 0,

k22.h = F*2,

k22.r = 0)

}

stopifnot(all.equal (kapDetailed, denn(rho)))

twoLocusIdentity Two-locus identity coefficients

Description
Computes the 9*9 matrix of two-locus condensed identity coefficients of a pair of pedigree mem-
bers, for a given recombination rate.

Usage

twoLocusIdentity(x, ids, rho, coefs = NULL, detailed = FALSE, verbose = FALSE)



twoLocusldentity 41

Arguments
X A pedigree in the form of a pedtools: : ped object.
ids A character (or coercible to character) containing ID labels of two pedigree
members.
rho A number in the interval [0, 0.5]; the recombination rate between the two loci.
coef's A character indicating which coefficient(s) to compute. A subset of c('D0@",
'‘Do1', ..., 'D99"). By default, all coefficients are computed.
detailed A logical, indicating whether the condensed (default) or detailed coefficients
should be returned.
verbose A logical.
Details

Let A, B be two pedigree members, and L1, L2 two loci with a given recombination rate p. The
two-locus identity coefficient A; ;(p), for 1 <4, j < 9is defined as the probability that the identity
state of the alleles of A and B are 3J; at L1 and XJ; at L2 simultaneously. (The ordering of the 9
states follows Jacquard (1974).)

For details about the algorithm, see Vigeland (2022).

Value

By default, a symmetric 9*9 matrix containing the two-locus condensed identity coefficients A; ;.

If either coef's is explicitly given (i.e., not NULL), or detailed = TRUE, the computed coefficients
are returned as a named vector.

References

* Jacquard (1974). The Genetic Structure of Populations. Springer.
* Vigeland (2022) Two-locus identity coefficients in pedigrees (In progress)

See Also

twoLocusIBD(), identityCoefs()

Examples

#i## Full sibs ###

X = nuclearPed(2)

kapp = twolLocusIBD(x, ids = 3:4, rho = 0.25)
jacq = twolLocusIdentity(x, ids = 3:4, rho = 0.25)

stopifnot(all.equal(jacq[9:7,9:7], kapp, check.attributes = FALSE))

### Parent-child ###
X = nuclearPed(1)
jacqg = twoLocusIdentity(x, ids = c(1,3), rho = 0.25)
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stopifnot(jacql8,8] == 1)
### Full sib mating ###
x = fullSibMating(1)
j = condensedIdentity(x, ids = 5:6)
j2 = twolLocusIdentity(x, ids = 5:6, rho = 0.25)
stopifnot(identical (unname(rowSums(j2)), j))
twoLocusInbreeding Two-locus inbreeding
Description
Computes the two-locus inbreeding coefficient of a pedigree member, for a given recombination
rate.
Usage
twoLocusInbreeding(x, id, rho, verbose = FALSE, debug = FALSE)
Arguments
X A pedigree in the form of a pedtools: : ped object.
id The ID label of a pedigree member.
rho A numeric vector of recombination rates; all entries must be in the interval
[0,0.5].
verbose A logical.
debug A logical. If TRUE, detailed messages are printed during the recursion process.
Details
Let A be a pedigree member, and L1, L2 two autosomal loci with recombination rate p. The two-
locus inbreeding coefficient f11(p) is defined as the probability that A is autozygous at both L1 and
L2 simultaneously.
As in the one-locus case, the two-locus inbreeding coefficient of A equals the two-locus kinship
coefficient of the parents.
References
Weir & Cockerham (1969). Pedigree mating with two linked loci. Genetics, 61:923-940.
See Also

twoLocusKinship(), twoLocusIBD(), twoLocusIdentity()
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Examples

S I I I I i
# Reproducing an example of Weir & Cockerham (1969)
AR AR R

# Pedigree
X = nuclearPed(2, sex = 1:2) |>
addDaughter(3:4) |>
addSon(c(3,5)) |>
addDaughter(5:6) |>
relabel(new = strsplit("GHDECBA","")[[1]]1)

plot(x)

# The two-locus inbreeding of A
twoLocusPlot(list(ped = x, ids = "A"), coeff = "inb")

# W&C formula (expressed by linkage parameter a = 1-2*rho)

rho = seq(@, 0.5, length = 11)

a =1 - 2*rho

WC = (128 + 10%a + 36*a*2 + 47*xa*3 + 20%*a"4 + 10*a*5 + 4*a*6 + a*7)/512

points(rho, WC, col = 2)

twoLocusKinship Two-locus kinship coefficients

Description

Computes the two-locus kinship coefficient of a pair of pedigree members, at a given recombination
rate.

Usage

twoLocusKinship(
X,
ids,
rho,
recombinants = NULL,
verbose = FALSE,
debug = FALSE

Arguments

X A pedigree in the form of a pedtools: : ped object.
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ids A character (or coercible to character) containing ID labels of two or more pedi-
gree members.

rho A numeric vector of recombination rates; all entries must be in the interval

[0,0.5].

recombinants A logical of length 2, applicable only when ids has length 2. When given, it
indicates whether each of the two gametes is a recombinant or non-recombinant.
This parameter is mainly used by twoLocusIBD().

verbose A logical.
debug A logical. If TRUE, detailed messages are printed during the recursion process.
Details

Let A, B be two pedigree members, and L1, L2 two loci with a given recombination rate rho. The
two-locus kinship coefficient ¢ 4 5 (rho) is defined as the probability that random gametes segregat-
ing from A and B has IBD alleles at both L1 and L2 simultaneously.

The implementation is based on the recursive algorithm described by Thompson (1988).

References

E. A. Thompson (1988). Two-locus and Three-locus Gene Identity by Descent in Pedigrees. IMA
Journal of Mathematics Applied in Medicine & Biology, vol. 5.

Examples

HHHHHHAEEE
# Example 1: Full sibs
HHHEHHEEEE
X = nuclearPed(2)

k_@ = twolLocusKinship(x, ids = 3:4, rho = @)
k_0.5 = twolLocusKinship(x, ids = 3:4, rho = 0.5)
stopifnot(k_0 == 1/4, k_0.5 == 1/16)

HHHEHHAEEEE R R
# Example 2: Reproducing Fig. 3 in Thompson (1988)
# Note that in the article, curve (a) is wrong.

# See Erratum: https://doi.org/10.1093/imammb/6.1.1
HHHHHHAREE AR R

# Pedigrees (a) - (d)
ped.a = linearPed(3)
ped.b = avuncularPed(half = TRUE)
ped.c = cousinPed(1)

ped.d = doubleCousins(1, 1, half1l = TRUE, half2 = TRUE)
peds = list(

a = list(ped = ped.a, ids = c(1,7)),

b = list(ped = ped.b, ids = leaves(ped.b)),
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c = list(ped
d = list(ped
)
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ped.c, ids = leaves(ped.c)),
ped.d, ids = leaves(ped.d))

twoLocusPlot(peds, coeff = "kinship”, 1ty = 1:4)

twolLocusPlot

Two-locus coefficient plot

Description

Plot two-locus kinship or IBD coefficients as function of the recombination rate.

Usage
twoLocusPlot(
peds,
coeff = "k11",
rseq = seq(@, 0.5, length = 11),
xlab = "Recombination rate”,
ylab = NA,
col = seq_along(peds),
1ty =1,
lwd = 1,
)
Arguments
peds A list of lists. See details.
coeff A string identifying which coefficient to compute. See Details for legal values.
rseq A numeric vector of recombination rates. By default seq(from=9, by =0.5,
length=11).
xlab, ylab Axis labels.
col, 1ty, lwd Plotting parameters.
Further parameters passed on to matplot().
Details

Each entry of peds must be a list with the following (named) entries:

* ped: A ped object

* ids: A pair of labels identifying two members of ped
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The coeff parameter must be either a character naming the coefficient to compute, or a function. If

a character, it must be one of the following names: "inb", "kinship", "phi", "phil1", "k00", "k01",
llkozll’ llkloll’ "kllll’ llklzll, ||k20"’ ||k21|| ()I' llk22".

If coeff is a function, it must take three arguments named ped, ids and rho, and produce a single
number for each set of input data. See Examples.

The first three are synonymous and indicate the two-locus kinship coefficient. The remaining
choices are two-locus IBD coefficients. (See twoLocusIBD().)

Examples

SR
# Classic example of three relationships with equal one-locus coeffs

peds = list(
GrandParent = list(ped = linearPed(2), ids = c(1, 5)),
HalfSib = list(ped = halfSibPed(), ids = c(4, 5)),
Uncle = list(ped = cousinPed(@, 1), ids = c(3, 6)))

twoLocusPlot(peds, coeff = "kinship")
twoLocusPlot(peds, coeff = "k11")

HHHHRHHA R

peds = list(
PO = list(ped = nuclearPed(1), ids = c(1,3)),
S = list(ped = nuclearPed(2), ids = c(3,4)))
twoLocusPlot(peds, coeff = "kinship")
twoLocusPlot(peds, coeff = "k11")

SHHHEHHHEEHRA R

pedl = addChildren(halfSibPed(sex2 = 2), 4, 5, nch = 2)

ped2 = addChildren(addDaughter(nuclearPed(1), 3), 1, 5, nch = 2)
ped3 = addChildren(addDaughter(nuclearPed(2), 4), 3, 6, nch = 2)
peds = list(

*H-sibs® = list(ped = pedl, ids = leaves(pedl)),
*G-sibs® = list(ped = ped2, ids = leaves(ped2)),
*U-sibs® = list(ped = ped3, ids = leaves(ped3))

)

# plotPedList(peds)

twoLocusPlot(peds, coeff = "kinship")

I

### Reproducing Fig 2 of Bishop & Williamson (1990)
### This example illustrates ‘coeff* as a function.

# The coefficient d11(rho) is the conditional probability of IBD = 1
# in the first locus, given IBD = 1 in the second.
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= linearPed(2)

halfSibPed()

= cousinPed(@, removal = 1)

FC = cousinPed(1)

FC1R = cousinPed(1, removal = 1)
SC = cousinPed(2)

cCITo®
1

peds = list(
GrandParent = list(ped = G, ids = c(1, 5)),
HalfSib = list(ped = H, ids = leaves(H)),
Uncle = list(ped = U, ids = leaves(U)),
FirstCous = list(ped = FC, ids = leaves(FC)),

FirstCous1R = list(ped = FCIR, ids = leaves(FCIR)),
SecondCous = list(ped = SC, ids = leaves(SC)))

d11 = function(ped, ids, rho) {
twoLocusIBD(ped, ids, rho, coefs = "k11")/kappalBD(ped, ids)[2]
}

twoLocusPlot(peds, coeff = d11)
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