The rintcal package also provides some functions related to radiocarbon calibration. First there are two functions to calculate radiocarbon ages from pMC values (in this case of a postbomb date):
pMC.age(150, 1)
## [1] -3257 53
and the other way round:
age.pMC(-2300, 40)
## y sdev
## [1,] 133.15 0.66138
The same for calculations in the F14C realm:
F14C.age(.150, .01)
## y sdev
## [1,] 15240 518.44
and the other way round:
age.F14C(-2300, 40)
## y sdev
## [1,] 1.3315 0.0066138
To transfer D14C (a proxy for atmospheric 14C concentration at t cal BP) to F14C, and the other way around:
F14C.D14C(0.71, t=4000)
## [1] 151.8406
D14C.F14C(152, 4000)
## [1] 0.7100983
These functions can be used to investigate Delta14C over time:
<- ccurve()
cc <- age.F14C(cc[,2]+cc[,3])
cc.Fmin <- age.F14C(cc[,2]-cc[,3])
cc.Fmax <- F14C.D14C(cc.Fmin, cc[,1])
cc.D14Cmin <- F14C.D14C(cc.Fmax, cc[,1])
cc.D14Cmax par(mar=c(4,3,1,3), bty="l")
plot(cc[,1]/1e3, cc.D14Cmax, type="l", xlab="kcal BP", ylab="")
mtext(expression(paste(Delta, ""^{14}, "C")), 2, 1.7)
lines(cc[,1]/1e3, cc.D14Cmin)
par(new=TRUE)
plot(cc[,1]/1e3, (cc[,2]+cc[,3])/1e3, type="l", xaxt="n", yaxt="n", col=4, xlab="", ylab="")
lines(cc[,1]/1e3, (cc[,2]-cc[,3])/1e3, col=4)
axis(4, col=4, col.axis=4)
mtext("14C kBP", 4, 1.7, col=4)
The above functions can be used to calculate the effect of contamination on radiocarbon ages, e.g. what age would be observed if material with a ‘true’ radiocarbon age of 5000 +- 20 14C BP would be contaminated with 1% of modern carbon (F14C=1)?
contaminate(5000, 20, .01, 1)
## y sdev
## [1,] 4930.9 19.779
The effect of different levels of contamination can also be visualised:
.14C <- seq(0, 50e3, length=200)
real<- seq(0, .1, length=101) # 0 to 10% contamination
contam <- rainbow(length(contam))
contam.col plot(0, type="n", xlim=c(0, 55e3), xlab="real 14C age", ylim=range(real.14C), ylab="observed 14C age")
for(i in 1:length(contam))
lines(real.14C, contaminate(real.14C, c(), contam[i], 1, decimals=5), col=contam.col[i])
<- seq(0, .1, length=6)
contam.legend <- rainbow(length(contam.legend)-1)
contam.col text(50e3, contaminate(50e3, c(), contam.legend, 1),
labels=contam.legend, col=contam.col, cex=.7, offset=0, adj=c(0,.8))
Now on to calibration. We can obtain the calibrated probability distributions from radiocarbon dates, e.g. one of 130 +- 20 C14 BP:
.130 <- caldist(130, 20, BCAD=TRUE)
calibplot(calib.130, type="l")
For reporting purposes, calibrated dates are often reduced to their 95% highest posterior density (hpd) ranges (please report all, not just your favourite one!):
hpd(calib.130)
## from to perc
## [1,] 1683 1738 24.4
## [2,] 1755 1761 1.8
## [3,] 1801 1938 68.6
Additionally, calibrated dates are often reduced to single point estimates. Note however how poor representations they are of the entire calibrated distribution!
.2450 <- caldist(2450, 20)
calibplot(calib.2450, type="l")
.2450 <- point.estimates(calib.2450)
points.2450 points
## weighted mean median mode midpoint
## 2539.9 2512.3 2666.0 2531.5
abline(v=points.2450, col=1:4, lty=2)
Want a plot of the radiocarbon and calibrated distributions, together with their hpd ranges?
calibrate(130,20)
You can also draw one or more calibrated distributions:
set.seed(123)
<- sort(sample(500:2500,5))
dates <- .05*dates
errors <- 1:length(dates)
depths <- c("my", "very", "own", "simulated", "dates")
my.labels draw.dates(dates, errors, depths, BCAD=TRUE, labels=my.labels, age.lim=c(0, 1800))
or add them to an existing plot:
plot(0, type="n", xlim=c(0, 1800), ylim=c(5,0), xlab="AD", ylab="dates")
draw.dates(dates, errors, depths, BCAD=TRUE, add=TRUE, labels=my.labels, mirror=FALSE)