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chartEvent Trigger an event

Description

This function is called whenever any interactive element of a chart is activated by clicking, marking,
hovering, etc. In turn, it calls a corresponding callback function, if any has been specified. This
function is meant to be used internally. However, an experienced user can still use it to simulate
mouse events, even those triggered by non-existing elements. This function is a wrapper around
method chartEvent of class LCApp.

Usage

chartEvent(d, chartId, layerId = "main", event, sessionId = .id, app = .app)

Arguments

d Value that is used to identify an interactive element or its state. A single numeric
index for a point or a line, vector or row and column indices of a cell for a
heatmap, value for an input block (please, check lc_input for more details
about input blocks and their values). It should be NULL for mouseout or marked
events. NB: This function is called from the web page, and therefore all element
indices start from zero as it happens in JavaScript.

chartId ID of the chart.

layerId ID of the layer. You can print IDs of all charts and their layers with listCharts.

event Type of event. Must be one of "click", "mouseover", "mouseout", "marked",
"labelClickRow", "labelClickCol", "clickPosition".
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sessionId ID of the session (opened client page) that triggered the event. The default value
uses a local session variable. This must be a single session ID. You can get
a list of IDs of all currently active with the method getSessionIds inherited
from class App by LCApp. Possible errors in the evaluation of this argument are
ignored.

app Object of class LCApp for which the event was triggered. Note that this argument
is here for internal use, and its default value is a variable stored in each session
locally. If you are not using wrapper functions, it is preferred to call method
chartEvent of an object of class LCApp.

Examples

x <- rnorm(50)
lc_scatter(x = x, y = 2*x + rnorm(50, 0.1), on_click = function(d) print(d))
chartEvent(51, "Chart1", "Layer1", "click")

closePage Stop server

Description

Stops the server and closes all currently opened pages (if any). This function is a wrapper of the
stopServer method inherited by the LCApp class from the App class.

Usage

closePage()

Examples

openPage(useViewer = FALSE)
closePage()

dat Link data to the chart

Description

dat allows linking variables from the current environment to chart’s properties. On every updateCharts
call, all the data provided via the dat function will be automatically re-evaluated, and the chart will
be changed accordingly. One can also put properties outside of the dat function to prevent their
re-evaluation. It can also be used to ensure re-evaluation of the with argument of any plotting
function.
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Usage

dat(...)

Arguments

... List of name-value pairs to define the properties.

Examples

lc_scatter(dat(x = rnorm(30)), y = rnorm(30))
#note that the Y values remain the same after each updateCharts call
updateCharts()

#This way the dataset is not strored inside the chart and will be re-evaluated
data("iris")
lc_scatter(dat(x = Sepal.Length, y = Petal.Length), with = dat(iris))

iris <- iris[1:10, ]
updateCharts()

getMarked Get currently marked elements

Description

getMarked returns indices of the chart’s elements that are currently marked. To mark elements
select them with your mouse while holding the Shift key. Double click on the chart with the Shift
key pressed will deselect all the elements. This function is a wrapper of method getMarked of class
LCApp.

Usage

getMarked(chartId = NULL, layerId = NULL, sessionId = NULL)

Arguments

chartId An ID of the chart. This argument is optional if there is only one chart.

layerId An ID of the layer. This argument is optional if there is only one chart with a
single layer.

sessionId An ID of the session from which to get the marked elements. It can be NULL if
there is only one active session. Otherwise must be a valid session ID. Check
Session for more information on client sessions. If a call to this function was
triggered from a web page, the ID of the corresponding session would be used
automatically.
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Value

a vector of indices or, in the case of heatmaps, an n x 2 matrix where first and second columns
contain row and column indices of the marked cells, respectively.

Examples

data(iris)

lc_scatter(dat(x = iris$Sepal.Length, y = iris$Petal.Length))

#now mark some points by selecting them with your mouse with Shift pressed

getMarked("Chart1")

getPage Get the currently running app

Description

rlc offers two ways to control an interactive app. One is by using methods of class LCApp. This al-
lows one to have any number of apps within one R session but requires some understanding of object
oriented-programming. Another way is to use provided wrapper functions that are exported by the
package. These functions internally work with the LCApp object stored in the package namespace
upon initialization with the openPage function. getPage returns this object, if any.

Usage

getPage()

Details

Note that the rlc package is based on the jrc library. Both packages are similarly organized. Both
have a central class representing the entire app and can be fully managed with their methods (LCApp
and App, respectively). And both also provide a set of wrapper functions that can be used instead
of the methods. However, wrapper functions of the jrc package can’t be used for rlc apps, while
LCApp inherits all the methods of class App. Therefore, if you want to get more low-level control
over your app, such as managing client sessions, local variables and memory usage, you should use
methods of the App class.

Value

An object of class LCApp or NULL if there is no active app.
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LCApp LCApp class

Description

Object of this class represents the entire linked-charts app. It stores all charts, client sessions and
local variables. You can create and manage interactive apps solely by creating new instances of this
class and utilizing their methods. There are no limitations on the number of apps simultaneously
running in one R session. However, it is also possible to create and manage app via the wrapper
functions provided in this package. In this case an instance of LCApp class is initialized and stored
in the package’s namespace. Therefore, only one app can be active simultaneously. You can always
retrieve the active app with the getPage function. The LCApp class inherits from the App class of
the jrc package.

Methods

removeChart(chartId) Removes a chart with the given ID from the app. See also removeChart.

removeLayer(chartId, layerId) Removes a layer from a chart by their IDs. See also removeLayer.

setProperties(data, chartId, layerId = NULL) Changes or sets properties for a given chart
and layer. For more information, please, check setProperties.

updateCharts(chartId = NULL, layerId = NULL, updateOnly = NULL, sessionId = NULL) Updates
charts or specific layers for one or multiple users. For more information on the arguments,
please, check updateCharts.

chartEvent(d, chartId, layerId = "main", event, sessionId = NULL) Triggers a reaction to
mouse event on a web page. Generally, this method is not supposed to be called explicitly. It is
called internally each time, client clicks or hovers over an interactive chart element. However,
experienced users can use this method to simulate mouse events on the R side. For more
information on the arguments, please, check chartEvent.

listCharts() Prints a list of all existing charts and their layers. See also listCharts.

getMarked(chartId = NULL, layerId = NULL, sessionId = NULL) Returns a vector of indices of
all currently marked elements of a certain chart and layer and from a given client. For more
information, please, check getMarked.

mark(elements, chartId = NULL, layerId = NULL, preventEvent = TRUE, sessionId = NULL)
Marks elements of a given chart and layer on one of the currently opened web pages. Please,
check mark for more information on the arguments.

setChart(chartType, data, ..., place = NULL, chartId = NULL, layerId = NULL, [...]) Adds
a new chart (or replaces an existing one) to the app. This is the main method of the package,
that allows to define any chart and all its properties. There are multiple wrappers for this
method - one for each type of chart. Here is a full list:

• lc_scatter

• lc_beeswarm

• lc_line

• lc_path
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• lc_ribbon

• lc_bars

• lc_hist

• lc_dens

• lc_heatmap

• lc_colourSlider

• lc_abLine

• lc_vLine

• lc_html

• lc_input

You can check the wrapper functions for information about arguments and available proper-
ties. Compared to them, this method gets additional argument chartType, which is always the
same as the second part of the name of a corresponding wrapper function (lc_'chartType').
In all other aspects, wrapper functions and the setChart method are the same.

new(layout = NULL, beforeLoad = function(s) {}, afterLoad = function(s) {}, ...) Creates
new instance of class LCApp. Most of its arguments are inherited from method new of class App
from the jrc package. There are only three arguments specific for the LCApp class. layout
sets a default layout for each new webpage (currently only tables of arbitrary size are sup-
ported). beforeLoad and afterLoad replace onStart from the App class. For more informa-
tion, please, check openPage.

lc_bars Create a barplot

Description

lc_bars creates a new barplot and adds it to the app and all currently opened pages as a new chart
or a new layer of an existing chart.

Usage

lc_bars(
data = list(),
place = NULL,
...,
chartId = NULL,
layerId = NULL,
with = NULL,
addLayer = FALSE

)
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Arguments

data Name-value pairs of properties passed through the dat function. These proper-
ties will be re-evaluated on each updateCharts call.

place An ID of the container, where to place new chart. It will be ignored if the chart
already exists. If not defined, the chart will be appended to the web page’s body.

... Name-value pairs of properties that will be evaluated only once and then will re-
main constant. These properties can still be changed later using the setProperties
function.

chartId An ID for the chart. All charts must have unique IDs. If a chart with the same ID
already exists, it will be replaced unless addLayer = TRUE. If ID is not defined, it
will be the same as the value of the place argument. And if both are not defined,
the ID will be set to ChartN, where N - 1 is the number of existing charts.

layerId An ID for the new layer. All layers within one chart must have different IDs. If
a layer with the same ID already exists, it will be replaced. If not defined, it will
be set to LayerN, where N - 1 is the current number of layers in this chart.

with A dataset or a list from which other properties should be taken. If the dataset
doesn’t have a column with the requested name, the variable will be searched
for outside of the dataset. Must be a data.frame or a list.

addLayer If there is already a chart with the same ID, this argument defines whether to
replace it or to add a new layer to it. This argument is ignored if both place and
chartId are NULL or if there is no chart with the given ID.

Available properties

You can read more about different properties here.

• values - heights of bars/stacks.

• stackIds - IDs of all stacks (optional). Must be the same size as values.

• barIds - IDs of all bars (optional). Must be the same size as values.

• groupIds - IDs of all groups (optional). Must be the same size as values.

• groupWidth - a ratio of the width of a group of bars to the space available to the group.

Style settings

• opacity - a vector of opacity values for each bar or stack in the range from 0 to 1.

• colour - a vector of colours for each bar or stack. Must be a colour name or a hexadecimal
code.

• colourValue - grouping values for different colours. Can be numbers or characters.

• colourDomain - a vector of all possible values for discrete colour scales or a range of all
possible colour values for the continuous ones.

• palette - a vector of colours to construct the colour scale.

• colourLegendTitle - a title for the colour legend.

• addColourScaleToLegend - whether or not to show the colour legend for the current layer.

• globalColourScale - whether or not to use one colour scale for all the layers.

https://anders-biostat.github.io/linked-charts/rlc/tutorials/props.html
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• stroke - a vector of stroke colours for each bar or stack. Must be a colour name or a hexadec-
imal code.

• strokeWidth - a vector of stroke widths for each bar or stack.

Axes settings

• logScaleX, logScaleY - a base of logarithm for logarithmic scale transformation. If 0 or
FALSE no transformation will be performed.

• layerDomainX, layerDomainY - default axes ranges for the given layer.

• domainX, domainY - default axes ranges for the entire chart. If not defined, it is automatically
set to include all layer domains.

• contScaleX, contScaleY - whether or not the axis should be continuous.

• aspectRatio - an aspect ratio for the chart.

• axisTitleX, axisTitleY - axis titles.

• axisTitlePosX, axisTitlePosY - positions of the axis titles. For each axis, one can specify
a title position across or along the corresponding axis. Possible options are "up" (for title
inside the plotting area) or "down" (outside the plotting area, under the axis), and "start",
"middle", "end". This property must be a string with one or two of the aforementioned
options (e.g. "middle down", "start", etc.).

• ticksRotateX, ticksRotateY - angles by which to rotate ticks (in degrees). Must be be-
tween 0 (horizontal ticks, default) and 90 (vertical ticks).

• ticksX, ticksY - sets of ticks for the axes.

Interactivity settings

• on_click - a function, to be called when one of the bars is clicked. Gets an index of the
clicked bar as an argument.

• on_clickPosition - a function, to be called when any point of the chart is clicked. Unlike
on_click, which is called only when an element of the chart (point, line, etc.) is clicked,
this function reacts to any click on the chart. As an argument, it receives a vector of x and y
coordinates of the click (based on the current axes scales). If one of the axes is categorical,
the function will get the closest tick to the clicked position.

• on_mouseover - a function, to be called when the mouse hovers over one of the bars. Gets an
index of the clicked bar as an argument.

• on_mouseout - a function, to be called when the mouse moves out of one of the bars.

• on_marked - a function, to be called when any of the bars are selected (marked) or deselected.
Use getMarked function to get the IDs of the currently marked bars. To mark bars, select
them with your mouse while holding the Shift key.

Legend settings

• legend_width - width of the legend in pixels. The default value is 200.

• legend_height - height of the legend in pixels. By default, it is equal to the height of the
chart.

• legend_sampleHeight - height of a single key of the legend in pixels. The default value is
20.
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• legend_ncol - number of columns to order several legends. By default, this is defined from
the number of legends to reach close to a square shape.

• legend_container - a DOM element of the web page where to place the legend. By default,
the legend is positioned to the right from the chart in a table cell specifically made for it. This
should be a valid CSS selector. If the specified element does not exist, the legend will be
added to the web page’s body.

Global chart settings

• width - width of the chart in pixels.

• heigth - height of the chart in pixels.

• plotWidth - width of the plotting area in pixels.

• plotHeight - height of the plotting area in pixels.

• paddings - padding sizes in pixels. Must be a list with all the following fields: "top",
"bottom", "left", "right".

• title - a title of the chart.

• titleX, titleY - coordinates of the chart title.

• titleSize - font-size of the chart title.

• showLegend - whether or not to show the legend.

• showPanel - whether of not to show the instrument panel (grey triangle in the upper-left corner
of the chart).

• transitionDuration - duration of the transitions between any two states of the chart. If 0, no
animated transition is shown. It can be useful to turn the transition off, when lots of frequent
changes happen to the chart.

Examples

data("esoph")

lc_bars(dat(value = tapply(esoph$ncases, esoph$agegp, sum),
title = "Number of cases per age group",
axisTitleX = "Age group",
axisTitleY = "Number of esophageal cases",
axisTitlePosX = "down"))

lc_bars(dat(value = c(tapply(esoph$ncases, esoph$agegp, sum),
tapply(esoph$ncontrols, esoph$agegp, sum)),

stackIds = c(rep("case", 6), rep("control", 6))))

#It is easy to put data in a convenient form for barplots using tidyverse
library(magrittr)
library(dplyr)
library(tidyr)
library(stringr)

esoph %>%
gather(type, cases, (ncases:ncontrols)) %>%
mutate(type = str_sub(type, 2, -2)) %>%
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group_by(agegp, alcgp, type) %>%
summarise(ncases = sum(cases)) -> newData

lc_bars(dat(value = newData$ncases,
stackIds = newData$type,
barIds = newData$alcgp,
groupIds = newData$agegp))

lc_colourSlider Add a colour slider

Description

Colour slider provides an easy way to change any continuous colour scale interactively. If your
chart uses a continuous colour scale, you can just link a colour slider and it will be automatically
synchronized with your chart’s colour scale.

Usage

lc_colourSlider(data = list(), place = NULL, ..., chartId = NULL, with = NULL)

Arguments

data Name-value pairs of properties passed through the dat function. These proper-
ties will be re-evaluated on each updateCharts call.

place An ID of the container, where to place new chart. It will be ignored if the chart
already exists. If not defined, the chart will be appended to the web page’s body.

... Name-value pairs of properties that will be evaluated only once and then will re-
main constant. These properties can still be changed later using the setProperties
function.

chartId An ID for the chart. All charts must have unique IDs. If a chart with the same
ID already exists, it will be replaced. If ID is not defined, it will be the same as
the value of the place argument. And if both are not defined, the ID will be set
to ChartN, where N - 1 is the number of existing charts.

with A dataset or a list from which other properties should be taken. If the dataset
doesn’t have a column with the requested name, the variable will be searched
for outside of the dataset. Must be a data.frame or a list.

Available properties

You can read more about different properties here.

• chart - ID of the chart to which the colour slider should be linked.

• layer - id of the layer to which the colour slider should be linked. If the chart has only one
layer, this property is optional.

https://anders-biostat.github.io/linked-charts/rlc/tutorials/props.html
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Global chart settings

• width - width of the chart in pixels.

• heigth - height of the chart in pixels.

• paddings - padding sizes in pixels. Must be a list with all the following fields: "top",
"bottom", "left", "right".

• title - a title of the chart.

• titleX, titleY - coordinates of the chart title.

• titleSize - font-size of the chart title.

Examples

data("iris")
lc_scatter(dat(x = Sepal.Length,

y = Petal.Length,
colourValue = Petal.Width,
symbolValue = Species),

with = iris,
title = "Iris dataset",
axisTitleY = "Petal Length",
axisTitleX = "Sepal Length",
colourLegendTitle = "Petal Width",
symbolLegendTitle = "Species",
showLegend = FALSE,
chartId = "scatter")

lc_colourSlider(chart = "scatter")

lc_heatmap Create a heatmap

Description

lc_heatmap creates a new heatmap. Unlike charts with axes, heatmaps do not have any layers.

Usage

lc_heatmap(
data = list(),
place = NULL,
...,
chartId = NULL,
with = NULL,
pacerStep = 50

)
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Arguments

data Name-value pairs of properties passed through the dat function. These proper-
ties will be re-evaluated on each updateCharts call.

place An ID of the container, where to place new chart. It will be ignored if the chart
already exists. If not defined, the chart will be appended to the web page’s body.

... Name-value pairs of properties that will be evaluated only once and then will re-
main constant. These properties can still be changed later using the setProperties
function.

chartId An ID for the chart. All charts must have unique IDs. If a chart with the same
ID already exists, it will be replaced. If ID is not defined, it will be the same as
the value of the place argument. And if both are not defined, the ID will be set
to ChartN, where N - 1 is the number of existing charts.

with A dataset or a list from which other properties should be taken. If the dataset
doesn’t have a column with the requested name, the variable will be searched
for outside of the dataset. Must be a data.frame or a list.

pacerStep Time in ms between two consecutive calls of an onmouseover event. Prevents
over-queueing in case of cumbersome computations. May be important when
the chart works in canvas mode.

Available properties

You can read more about different properties here.

• value - matrix of values that will be displayed as a heatmap.

• rowLabel, colLabel - vector of labels for all rows or columns.

• showDendogramRow, showDendogramCol - whether to show dendrograms when rows or columns
are clustered. Even if these properties are set to FALSE, rows and columns can still be clustered.

• clusterRows, clusterCols - whether rows or columns should be clustered. If these proper-
ties are set to FALSE, rows and columns can still be clustered later using the instrument panel.

• mode - one of "default", "svg", "canvas". Defines, whether to display heatmap as an SVG
or Canvas object. "default" mode switches between the two, turning heatmap into Canvas
image, when there are too many cell, and into SVG object otherwise.

• rankRows, rankCols - rank of rows and columns of the heatmap. This should be a vector
with a numeric value for each row or column.

• showValue - if TRUE, values will be shown as text in each cell.

• valueTextColour - of the value text in each cell. By default, the colour is defined individually
based on the cell colour.

• informText - text that appears when the mouse cursor moves over an element. Unlike label,
completely overwrites the tooltip content with a custom HTML code. Must be a matrix of
characters (HTML code for each cell).

Style settings

• rowTitle, colTilte - titles for rows and columns (similar to axes titles).

• palette - a vector of colours to construct a colour scale.

https://anders-biostat.github.io/linked-charts/rlc/tutorials/props.html
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• colourDomain - domain of the colour scale. All values outside it will be clamped to its edges.

Interactivity settings

• on_click - a function, to be called when one of the cells is clicked. Gets a vector of row and
column indices of the clicked cell as its arguments.

• on_mouseover - a function, to be called when the mouse hovers over one of the cells. Gets a
vector of row and column indices of the clicked cell as its arguments.

• on_mouseout - a function, to be called when the mouse moves away from one of the cells.
• on_marked - a function, to be called when any of the cells are selected (marked) or deselected.

Use getMarked function to get the IDs of the currently marked cells. To mark cells, select
them with your mouse while holding the Shift key.

• on_labelClickRow, on_labelClickCol - functions, to be called when a row or a column
label is clicked. By default, a click on a, for instance, row label sorts all columns of the
heatmap based on their value in the selected row.

Legend settings

• legend_width - width of the legend in pixels. The default value is 200.
• legend_height - height of the legend in pixels. By default, it is equal to the height of the

chart.
• legend_sampleHeight - height of a single key of the legend in pixels. The default value is

20.
• legend_ncol - number of columns to order several legends. By default, this is defined from

the number of legends to reach close to a square shape.
• legend_container - a DOM element of the web page where to place the legend. By default,

the legend is positioned to the right from the chart in a table cell specifically made for it. This
should be a valid CSS selector. If the specified element does not exist, the legend will be
added to the web page’s body.

Global chart settings

• width - width of the chart in pixels.
• heigth - height of the chart in pixels.
• plotWidth - width of the plotting area in pixels.
• plotHeight - height of the plotting area in pixels.
• paddings - padding sizes in pixels. Must be a list with all the following fields: "top",
"bottom", "left", "right".

• title - a title of the chart.
• titleX, titleY - coordinates of the chart title.
• titleSize - font-size of the chart title.
• showLegend - whether or not to show the legend.
• showPanel - whether of not to show the instrument panel (grey triangle in the upper-left corner

of the chart).
• transitionDuration - duration of the transitions between any two states of the chart. If 0, no

animated transition is shown. It can be useful to turn the transition off, when lots of frequent
changes happen to the chart.
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Examples

library(RColorBrewer)
#create a test matrix
test <- cbind(sapply(1:10, function(i) c(rnorm(10, mean = 1, sd = 3),

rnorm(6, mean = 5, sd = 2),
runif(14, 0, 8))),

sapply(1:10, function(i) c(rnorm(10, mean = 3, sd = 2),
rnorm(6, mean = 1, sd = 2),
runif(14, 0, 8))))

test[test < 0] <- 0
rownames(test) <- paste0("Gene", 1:30)
colnames(test) <- paste0("Sample", 1:20)

lc_heatmap(dat(value = test))

# when you want to cluster rows or columns, it can be
# a good idea to make bottom and right paddings larger to
# fit labels
lc_heatmap(dat(value = test),

clusterRows = TRUE,
clusterCols = TRUE,
paddings = list(top = 50, left = 30, bottom = 75, right = 75))

lc_heatmap(dat(value = cor(test),
colourDomain = c(-1, 1),
palette = brewer.pal(11, "RdYlBu")))

lc_hist Histograms and density plots

Description

These functions make either a histogram or a density plot of the given data and either add them as
a new layer to an existing chart or create a new chart.

Usage

lc_hist(
data = list(),
place = NULL,
...,
chartId = NULL,
layerId = NULL,
with = NULL,
addLayer = FALSE

)

lc_dens(
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data = list(),
place = NULL,
...,
chartId = NULL,
layerId = NULL,
with = NULL,
addLayer = FALSE

)

Arguments

data Name-value pairs of properties passed through the dat function. These proper-
ties will be re-evaluated on each updateCharts call.

place An ID of the container, where to place new chart. It will be ignored if the chart
already exists. If not defined, the chart will be appended to the web page’s body.

... Name-value pairs of properties that will be evaluated only once and then will re-
main constant. These properties can still be changed later using the setProperties
function.

chartId An ID for the chart. All charts must have unique IDs. If a chart with the same ID
already exists, it will be replaced unless addLayer = TRUE. If ID is not defined, it
will be the same as the value of the place argument. And if both are not defined,
the ID will be set to ChartN, where N - 1 is the number of existing charts.

layerId An ID for the new layer. All layers within one chart must have different IDs. If
a layer with the same ID already exists, it will be replaced. If not defined, it will
be set to LayerN, where N - 1 is the current number of layers in this chart.

with A dataset or a list from which other properties should be taken. If the dataset
doesn’t have a column with the requested name, the variable will be searched
for outside of the dataset. It must be a data.frame or a list.

addLayer If there is already a chart with the same ID, this argument defines whether to
replace it or to add a new layer to it. This argument is ignored if both place and
chartId are NULL or if there is no chart with the given ID.

Functions

• lc_hist: makes a histogram. It is an extension of lc_bars.

• lc_dens: makes a density plot. Is an extension of lc_line.

Available properties

You can read more about different properties here.

• value - vector of data values.

• nbins - (only for lc_hist) number of bins.

These functions are extensions of lc_line (lc_dens) or lc_bars (lc_hist) and therefore also
accept all their properties.

https://anders-biostat.github.io/linked-charts/rlc/tutorials/props.html
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Examples

lc_hist(dat(value = rnorm(1000), nbins = 30, height = 300))
lc_dens(dat(value = rnorm(1000), height = 300))

lc_html Add HTML code to the page

Description

lc_html adds a block of HTML code. It uses hwrite function to transform some data structures
(e.g. data frames) to HTML tables.

Usage

lc_html(data = list(), place = NULL, ..., chartId = NULL, with = NULL)

Arguments

data Name-value pairs of properties passed through the dat function. These proper-
ties will be re-evaluated on each updateCharts call.

place An ID of the container, where to place new chart. It will be ignored if the chart
already exists. If not defined, the chart will be appended to the web page’s body.

... Name-value pairs of properties that will be evaluated only once and then will re-
main constant. These properties can still be changed later using the setProperties
function.

chartId An ID for the chart. All charts must have unique IDs. If a chart with the same
ID already exists, it will be replaced. If ID is not defined, it will be the same as
the value of the place argument. And if both are not defined, the ID will be set
to ChartN, where N - 1 is the number of existing charts.

with A dataset or a list from which other properties should be taken. If the dataset
doesn’t have a column with the requested name, the variable will be searched
for outside of the dataset. Must be a data.frame or a list.

Available properties

You can read more about different properties here.

• content - HTML code to display on the page. Can also be a vector, data.frame or any other
structure, that can be transformed to HTML by hwrite.

Global chart settings

• width - width of the chart in pixels. By default, width will be set to fit the content. If width is
defined and it’s smaller than content’s width, scrolling will be possible.

https://anders-biostat.github.io/linked-charts/rlc/tutorials/props.html
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• heigth - height of the chart in pixels. By default, height will be set to fit the content. If height
is defined and it’s smaller than content’s height, scrolling will be possible.

• paddings - padding sizes in pixels. Must be a list with all the following fields: "top",
"bottom", "left", "right".

Examples

lc_html(content = "Some <b>HTML</b> <br> <i>code</i>.")
lc_html(dat(content = matrix(1:12, nrow = 4)))
data(iris)
lc_html(content = iris, height = 200)

lc_image Add static plot or custom image to the page

Description

lc_image adds a graphical object to the page. It can be any graphical R object (for example, objects
of class ggplot) or image that is stored locally. Note: currently works only on Linux and iOS.

Usage

lc_image(data = list(), place = NULL, ..., chartId = NULL, with = NULL)

Arguments

data Name-value pairs of properties passed through the dat function. These proper-
ties will be re-evaluated on each updateCharts call.

place An ID of the container, where to place new chart. It will be ignored if the chart
already exists. If not defined, the chart will be appended to the web page’s body.

... Name-value pairs of properties that will be evaluated only once and then will re-
main constant. These properties can still be changed later using the setProperties
function.

chartId An ID for the chart. All charts must have unique IDs. If a chart with the same
ID already exists, it will be replaced. If ID is not defined, it will be the same as
the value of the place argument. And if both are not defined, the ID will be set
to ChartN, where N - 1 is the number of existing charts.

with A dataset or a list from which other properties should be taken. If the dataset
doesn’t have a column with the requested name, the variable will be searched
for outside of the dataset. Must be a data.frame or a list.
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Available properties

You can read more about different properties here.

One of img and src properties is required.

• img - static plot to display. Anything that can be saved as png can be used here. .png image
fill be saved to a temporary directory (see tempdir).

• src - path to an already saved image. Can be an absolute path or a path relative to the current
working directory. If img is defined, this property will be ignored.

Global chart settings

• title - title of the input block.

• width - width of the chart in pixels. By default, width will be set to fit the content. If width is
defined and it’s smaller than content’s width, scrolling will be possible.

• heigth - height of the chart in pixels. By default, height will be set to fit the content. If height
is defined and it’s smaller than content’s height, scrolling will be possible.

• paddings - padding sizes in pixels. Must be a list with all the following fields: "top",
"bottom", "left", "right".

Examples

library(ggplot2)
pl <- ggplot() + geom_point(aes(1:10, 1:10))

lc_image(dat(img = pl,
title = "Some plot",
paddings = list(top = 100, bottom = 100, left = 10, right = 10)))

lc_input Add input forms to the page

Description

lc_input adds an input form. This function is an rlc wrapper for an HTML <input> tag. Five
types of input are supported: "text", "range", "checkbox", "radio" and "button".

Usage

lc_input(data = list(), place = NULL, ..., chartId = NULL, with = NULL)

https://anders-biostat.github.io/linked-charts/rlc/tutorials/props.html
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Arguments

data Name-value pairs of properties passed through the dat function. These proper-
ties will be re-evaluated on each updateCharts call.

place An ID of the container, where to place new chart. It will be ignored if the chart
already exists. If not defined, the chart will be appended to the web page’s body.

... Name-value pairs of properties that will be evaluated only once and then will re-
main constant. These properties can still be changed later using the setProperties
function.

chartId An ID for the chart. All charts must have unique IDs. If a chart with the same
ID already exists, it will be replaced. If ID is not defined, it will be the same as
the value of the place argument. And if both are not defined, the ID will be set
to ChartN, where N - 1 is the number of existing charts.

with A dataset or a list from which other properties should be taken. If the dataset
doesn’t have a column with the requested name, the variable will be searched
for outside of the dataset. Must be a data.frame or a list.

Available properties

You can read more about different properties here.

• type - type of input. Must be one of "text", "range", "checkbox", "radio" or "button".
• value - current state of the input block. For radio buttons it is an index of the checked button.

For checkboxes - a vector of TRUE (for each checked box) and FALSE (for each unchecked
ones), for ranges and text boxes - a vector of values for each text field or slider.

• step (only for type = "range") - stepping interval for values that can be selected with the
slider. Must be a numeric vector with one value for each slider in the input block.

• min, max (only for type = "range") - minimal and maximal values that can be selected with
the slider. Must be a numeric vector with one value for each slider in the input block.

• fontSize - changes font size of the labels. The default size is 17.
• nrows - number of rows in the table of input elements. By default is defined by the number of

elements.
• ncols - number of columns of input elements. The default value is 1.

Interactivity settings

• on_click, on_change - a function, to be called when user clicks on a button, enters text in a
text field or moves a slider. The two properties are complete synonyms and can replace one
another.

Global chart settings

• title - title of the input block.
• width - width of the chart in pixels. By default, width will be set to fit the content. If width is

defined and it’s smaller than content’s width, scrolling will be possible.
• heigth - height of the chart in pixels. By default, height will be set to fit the content. If height

is defined and it’s smaller than content’s height, scrolling will be possible.
• paddings - padding sizes in pixels. Must be a list with all the following fields: "top",
"bottom", "left", "right".

https://anders-biostat.github.io/linked-charts/rlc/tutorials/props.html
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Examples

lc_input(type = "checkbox", labels = paste0("el", 1:5), on_click = function(value) print(value),
value = TRUE)
lc_input(type = "radio", labels = paste0("el", 1:5), on_click = function(value) print(value),

value = 1)
lc_input(type = "text", labels = paste0("el", 1:5), on_click = function(value) print(value),

value = c("a", "b", "c", "e", "d"))
lc_input(type = "range", labels = paste0("el", 1:5), on_click = function(value) print(value),

value = 10, max = c(10, 20, 30, 40, 50), step = c(0.5, 0.1, 1, 5, 25))
lc_input(type = "button", labels = paste0("el", 1:5), on_click = function(value) print(value))

lc_line Lines and ribbons

Description

These functions create various kinds of lines. They connect observations or create filled areas with
customized border. Each layer may have one or several lines.

Usage

lc_line(
data = list(),
place = NULL,
...,
chartId = NULL,
layerId = NULL,
with = NULL,
addLayer = FALSE,
pacerStep = 50

)

lc_path(
data = list(),
place = NULL,
...,
chartId = NULL,
layerId = NULL,
with = NULL,
addLayer = FALSE,
pacerStep = 50

)

lc_ribbon(
data = list(),
place = NULL,
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...,
chartId = NULL,
layerId = NULL,
with = NULL,
addLayer = FALSE

)

lc_abLine(
data = list(),
place = NULL,
...,
chartId = NULL,
layerId = NULL,
with = NULL,
addLayer = FALSE,
pacerStep = 50

)

lc_hLine(
data = list(),
place = NULL,
...,
chartId = NULL,
layerId = NULL,
with = NULL,
addLayer = FALSE,
pacerStep = 50

)

lc_vLine(
data = list(),
place = NULL,
...,
chartId = NULL,
layerId = NULL,
with = NULL,
addLayer = FALSE,
pacerStep = 50

)

Arguments

data Name-value pairs of properties passed through the dat function. These proper-
ties will be re-evaluated on each updateCharts call.

place An ID of the container, where to place new chart. It will be ignored if the chart
already exists. If not defined, the chart will be appended to the web page’s body.

... Name-value pairs of properties that will be evaluated only once and then will re-
main constant. These properties can still be changed later using the setProperties
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function.

chartId An ID for the chart. All charts must have unique IDs. If a chart with the same ID
already exists, it will be replaced unless addLayer = TRUE. If ID is not defined, it
will be the same as the value of the place argument. And if both are not defined,
the ID will be set to ChartN, where N - 1 is the number of existing charts.

layerId An ID for the new layer. All layers within one chart must have different IDs. If
a layer with the same ID already exists, it will be replaced. If not defined, it will
be set to LayerN, where N - 1 is the current number of layers in this chart.

with A dataset or a list from which other properties should be taken. If the dataset
doesn’t have a column with the requested name, the variable will be searched
for outside of the dataset. Must be a data.frame or a list.

addLayer If there is already a chart with the same ID, this argument defines whether to
replace it or to add a new layer to it. This argument is ignored if both place and
chartId are NULL or if there is no chart with the given ID.

pacerStep Time in ms between two consecutive calls of an on_mouseover event. Prevents
over-queueing in case of cumbersome computations. May be important when
the chart works in canvas mode.

Functions

• lc_line: connects points in the order of variables on the x axis.

• lc_path: connects points in the order they are given.

• lc_ribbon: displays a filled area, defined by ymax and ymin values.

• lc_abLine: creates straight lines by intercept and slope values

• lc_hLine: creates horizontal lines by y-intercept values

• lc_vLine: creates vertical lines by x-intercept values

Available properties

You can read more about different properties here.

• x, y - vector of x and y coordinates of the points to connect. Can be vectors for a single line
or m x n matrix for n lines.

• ymax, ymin - (only for lc_ribbon) vectors of maximal and minimal values for a ribbon.

• a, b - (only for lc_abLine) vectors of slope and intercept values respectively.

• v - (only for lc_vLine) vector of x-intercepts.

• h - (only for lc_hLine) vector of y-intercepts.

• lineWidth - (nor for lc_ribbon) width of each line.

• opacity - a vector of opacity values for each line in the range from 0 to 1.

• label - vector of text labels for each line (labels by default are shown, when mouse hovers
over a line).

• dasharray - defines pattern of dashes and gaps for each line.

https://anders-biostat.github.io/linked-charts/rlc/tutorials/props.html
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• informText - text that appears when the mouse cursor moves over an element. Unlike label,
completely overwrites the tooltip content with a custom HTML code. Must be a vector of
characters (HTML code for each element).

Colour settings

• colour - colour of the lines. Must be a colour name or a hexadecimal code. For lc_ribbon
this property defines colour of the ribbon, not the strokes.

• fill - (not for lc_ribbon) colour with which to fill area inside the line. Must be a colour
name or a hexadecimal code.

• colourValue - grouping values for different colours. Can be numbers or characters.

• colourDomain - a vector of all possible values for discrete colour scales or a range of all
possible colour values for the continuous ones.

• palette - a vector of colours to construct the colour scale.

• colourLegendTitle - a title for the colour legend.

• addColourScaleToLegend - whether or not to show the colour legend for the current layer.

• globalColourScale - whether or not to use one colour scale for all the layers.

• stroke - (only for lc_ribbon) stroke colour for each ribbon. Must be a colour name or a
hexadecimal code.

• strokeWidth - (only for lc_ribbon) width of the strokes for each ribbon.

Axes settings

• logScaleX, logScaleY - a base of logarithm for logarithmic scale transformation. If 0 or
FALSE no transformation will be performed.

• layerDomainX, layerDomainY - default axes ranges for the given layer.

• domainX, domainY - default axes ranges for the entire chart. If not defined, it is automatically
set to include all layer domains.

• contScaleX, contScaleY - whether or not the axis should be continuous.

• aspectRatio - an aspect ratio for the chart.

• axisTitleX, axisTitleY - axis titles.

• axisTitlePosX, axisTitlePosY - positions of the axis titles. For each axis, one can specify
a title position across or along the corresponding axis. Possible options are "up" (for title
inside the plotting area) or "down" (outside the plotting area, under the axis), and "start",
"middle", "end". This property must be a string with one or two of the aforementioned
options (e.g. "middle down", "start", etc.).

• ticksRotateX, ticksRotateY - angles by which to rotate ticks (in degrees). Must be be-
tween 0 (horizontal ticks, default) and 90 (vertical ticks).

• ticksX, ticksY - sets of ticks for the axes.

Interactivity settings

• on_click - a function, to be called when one of the lines is clicked. Gets an index of the
clicked line as an argument.
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• on_clickPosition - a function, to be called when any point of the chart is clicked. Unlike
on_click, which is called only when an element of the chart (point, line, etc.) is clicked,
this function reacts to any click on the chart. As an argument, it receives a vector of x and y
coordinates of the click (based on the current axes scales). If one of the axes is categorical,
the function will get the closest tick to the clicked position.

• on_mouseover - a function, to be called when the mouse hovers over one of the lines. Gets an
index of the clicked line as an argument.

• on_mouseout - a function, to be called when the mouse moves out of one of the lines.

• on_marked - a function, to be called when any of the lines are selected (marked) or deselected.
Use getMarked function to get the IDs of the currently marked lines. To mark lines, select
them with your mouse while holding the Shift key.

Legend settings

• legend_width - width of the legend in pixels. The default value is 200.

• legend_height - height of the legend in pixels. By default, it is equal to the height of the
chart.

• legend_sampleHeight - height of a single key of the legend in pixels. The default value is
20.

• legend_ncol - number of columns to order several legends. By default, this is defined from
the number of legends to reach close to a square shape.

• legend_container - a DOM element of the web page where to place the legend. By default,
the legend is positioned to the right from the chart in a table cell specifically made for it. This
should be a valid CSS selector. If the specified element does not exist, the legend will be
added to the web page’s body.

\

Global chart settings

• width - width of the chart in pixels.

• heigth - height of the chart in pixels.

• plotWidth - width of the plotting area in pixels.

• plotHeight - height of the plotting area in pixels.

• paddings - padding sizes in pixels. Must be a list with all the following fields: "top",
"bottom", "left", "right".

• title - a title of the chart.

• titleX, titleY - coordinates of the chart title.

• titleSize - font-size of the chart title.

• showLegend - whether or not to show the legend.

• showPanel - whether of not to show the instrument panel (grey triangle in the upper-left corner
of the chart).

• transitionDuration - duration of the transitions between any two states of the chart. If 0, no
animated transition is shown. It can be useful to turn the transition off, when lots of frequent
changes happen to the chart.
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Examples

x <- seq(0, 8, 0.2)
lc_line(dat(x = x, y = cbind(cos(x), sin(x)),

aspectRatio = 1,
colour = c("blue", "red"),
dasharray = c("5", "1 5 5")))

points <- seq(0, 6.5, 0.1)
x <- cos(points)
y <- sin(points)
lc_path(dat(x = sapply(0:2, function(i) x + i),

y = sapply(0:2, function(i) y + i),
fill = c("blue", "red", "black"),
opacity = c(0.3, 0.5, 0.7)))

x <- seq(0, 5, 0.1)
y <- x*3 + rnorm(length(x), sd = 2)
fit <- lm(y ~ x)
pred <- predict(fit, data.frame(x = x), se.fit = TRUE)
lc_ribbon(dat(ymin = pred$fit - 1.96 * pred$se.fit,

ymax = pred$fit + 1.96 * pred$se.fit,
x = x,
colour = "#555555"), chartId = "ribbonTest")

lc_scatter(dat(x = x, y = y), size = 2, chartId = "ribbonTest", addLayer = TRUE)
lc_abLine(dat(a = fit$coefficients[2], b = fit$coefficients[1]),

chartId = "ribbonTest", addLayer = TRUE)

lc_hLine(dat(h = seq(1, 9, 1), domainX = c(0, 10), domainY = c(0, 10)), chartId = "grid")
lc_vLine(dat(v = seq(1, 9, 1)), chartId = "grid", addLayer = TRUE)

lc_scatter Visualize a set of points

Description

These functions plot a set of points with known coordinates that can be either categorical, or con-
tinuous.

Usage

lc_scatter(
data = list(),
place = NULL,
...,
chartId = NULL,
layerId = NULL,
with = NULL,
addLayer = FALSE,
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pacerStep = 50
)

lc_beeswarm(
data = list(),
place = NULL,
...,
chartId = NULL,
layerId = NULL,
with = NULL,
addLayer = FALSE,
pacerStep = 50

)

Arguments

data Name-value pairs of properties passed through the dat function. These proper-
ties will be re-evaluated on each updateCharts call.

place An ID of the container, where to place new chart. It will be ignored if the chart
already exists. If not defined, the chart will be appended to the web page’s body.

... Name-value pairs of properties that will be evaluated only once and then will re-
main constant. These properties can still be changed later using the setProperties
function.

chartId An ID for the chart. All charts must have unique IDs. If a chart with the same ID
already exists, it will be replaced unless addLayer = TRUE. If ID is not defined, it
will be the same as the value of the place argument. And if both are not defined,
the ID will be set to ChartN, where N - 1 is the number of existing charts.

layerId An ID for the new layer. All layers within one chart must have different IDs. If
a layer with the same ID already exists, it will be replaced. If not defined, it will
be set to LayerN, where N - 1 is the current number of layers in this chart.

with A dataset or a list from which other properties should be taken. If the dataset
doesn’t have a column with the requested name, the variable will be searched
for outside of the dataset. Must be a data.frame or a list.

addLayer If there is already a chart with the same ID, this argument defines whether to
replace it or to add a new layer to it. This argument is ignored if both place and
chartId are NULL or if there is no chart with the given ID.

pacerStep Time in ms between two consecutive calls of an onmouseover event. Prevents
over-queueing in case of cumbersome computations. May be important when
the chart works in canvas mode.

Functions

• lc_scatter: creates a scatterplot and adds it as a new layer to an existing chart or creates a
new one.

• lc_beeswarm: creates a special kind of scatterplot, where the points are spread along one of
the axes to avoid overlapping.
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Available properties

You can read more about different properties here.

• x, y - vector of x and y coordinates of the points.

• size - sizes of the points. Default size is 6.

• opacity - a vector of opacity values for each point in the range from 0 to 1.

• label - vector of text labels for each point (labels by default are shown, when mouse hovers
over a point).

• valueAxis - (for lc_beeswarm only) defines axis with values that will not be changed. Must
be "x" or "y" (default).

• informText - text that appears when the mouse cursor moves over an element. Unlike label,
completely overwrites the tooltip content with a custom HTML code. Must be a vector of
characters (HTML code for each element).

Colour and shape settings

• colour - colour of the points. Must be a colour name or a hexadecimal code.

• colourValue - grouping values for different colours. Can be numbers or characters.

• colourDomain - a vector of all possible values for discrete colour scales or a range of all
possible colour values for the continuous ones.

• palette - a vector of colours to construct the colour scale.

• colourLegendTitle - a title for the colour legend.

• addColourScaleToLegend - whether or not to show the colour legend for the current layer.

• globalColourScale - whether or not to use one colour scale for all the layers.

• symbol - shape of each point. Must be one of "Circle", "Cross", "Diamond", "Square",
"Star", "Triangle", "Wye".

• symbolValue - grouping values for different symbols.

• symbolLegendTitle - a title for the symbol value.

• stroke - stroke colour for each element. Must be a colour name or a hexadecimal code.

• strokeWidth - width of the strokes for each point.

Axes settings

• logScaleX, logScaleY - a base of logarithm for logarithmic scale transformation. If 0 or
FALSE no transformation will be performed.

• jitterX, jitterY - amount of random variation to be added to the position of the points
along one of the axes. 0 means no variation. 1 stands for distance between x and x + 1
for linear scale, x and b*x for logarithmic scale (b is a base of the logarithm), or between
neighbouring ticks for categorical scale.

• shiftX, shiftY - shift for each point from its original position along one of the axes. 0 means
no shift. 1 stands for distance between x and x + 1 for linear scale, x and b*x for logarithmic
scale (b is a base of the logarithm), or between neighbouring ticks for categorical scale.

• layerDomainX, layerDomainY - default axes ranges for the given layer.

https://anders-biostat.github.io/linked-charts/rlc/tutorials/props.html
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• domainX, domainY - default axes ranges for the entire chart. If not defined, it is automatically
set to include all layer domains.

• contScaleX, contScaleY - whether or not the axis should be continuous.

• aspectRatio - an aspect ratio for the chart.

• axisTitleX, axisTitleY - axis titles.

• axisTitlePosX, axisTitlePosY - positions of the axis titles. For each axis, one can specify
a title position across or along the corresponding axis. Possible options are "up" (for title
inside the plotting area) or "down" (outside the plotting area, under the axis), and "start",
"middle", "end". This property must be a string with one or two of the aforementioned
options (e.g. "middle down", "start", etc.).

• ticksRotateX, ticksRotateY - angles by which to rotate ticks (in degrees). Must be be-
tween 0 (horizontal ticks, default) and 90 (vertical ticks).

• ticksX, ticksY - sets of ticks for the axes.

Interactivity settings

• on_click - a function, to be called when one of the points is clicked. Gets an index of the
clicked point as an argument.

• on_clickPosition - a function, to be called when any point of the chart is clicked. Unlike
on_click, which is called only when an element of the chart (point, line, etc.) is clicked,
this function reacts to any click on the chart. As an argument, it receives a vector of x and y
coordinates of the click (based on the current axes scales). If one of the axes is categorical,
the function will get the closest tick to the clicked position.

• on_mouseover - a function, to be called when the mouse hovers over one of the points. Gets
an index of the clicked point as an argument.

• on_mouseout - a function, to be called when the mouse moves out of one of the points.

• on_marked - a function, to be called when any of the points are selected (marked) or dese-
lected. Use getMarked function to get the IDs of the currently marked points. To mark points,
select them with your mouse while holding the Shift key.

Legend settings

• legend_width - width of the legend in pixels. The default value is 200.

• legend_height - height of the legend in pixels. By default, it is equal to the height of the
chart.

• legend_sampleHeight - height of a single key of the legend in pixels. The default value is
20.

• legend_ncol - number of columns to order several legends. By default, this is defined from
the number of legends to reach close to a square shape.

• legend_container - a DOM element of the web page where to place the legend. By default,
the legend is positioned to the right from the chart in a table cell specifically made for it. This
should be a valid CSS selector. If the specified element does not exist, the legend will be
added to the web page’s body.

Global chart settings

• width - width of the chart in pixels.
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• heigth - height of the chart in pixels.

• plotWidth - width of the plotting area in pixels.

• plotHeight - height of the plotting area in pixels.

• paddings - padding sizes in pixels. Must be a list with all the following fields: "top",
"bottom", "left", "right".

• title - a title of the chart.

• titleX, titleY - coordinates of the chart title.

• titleSize - font-size of the chart title.

• showLegend - whether or not to show the legend.

• showPanel - whether of not to show the instrument panel (grey triangle in the upper-left corner
of the chart).

• transitionDuration - duration of the transitions between any two states of the chart. If 0, no
animated transition is shown. It can be useful to turn the transition off, when lots of frequent
changes happen to the chart.

Examples

data("iris")
lc_scatter(dat(x = Sepal.Length,

y = Petal.Length,
colourValue = Petal.Width,
symbolValue = Species),

with = iris,
title = "Iris dataset",
axisTitleY = "Petal Length",
axisTitleX = "Sepal Length",
colourLegendTitle = "Petal Width",
symbolLegendTitle = "Species")

lc_beeswarm(dat(x = iris$Species,
y = iris$Sepal.Length,
colourValue = iris$Sepal.Width),

title = "Iris dataset",
axisTitleY = "Sepal Length",
axisTitleX = "Species",
colourLegendTitle = "Sepal Width")

listCharts List all existing charts and layers

Description

listCharts prints a list of IDs of all existing charts and layers. This function is wrapper around
method listCharts of class LCApp.
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Usage

listCharts()

Examples

noise <- rnorm(30)
x <- seq(-4, 4, length.out = 30)

lc_scatter(dat(x = x,
y = sin(x) + noise,
colourValue = noise),

chartId = "plot", layerId = "points")
lc_line(dat(x = x, y = sin(x)), chartId = "plot", addLayer = TRUE)
lc_colourSlider(chart = "plot", layer = "points")

listCharts()

mark Mark elements of a chart

Description

mark selects a set of elements in a given chart. It is equivalent to selecting elements interactively
by drawing a rectangle with the mouse while holding the Shift key. This function is a wrapper of
method mark of class LCApp.

Usage

mark(
elements = NULL,
chartId = NULL,
layerId = NULL,
preventEvent = TRUE,
clear = FALSE,
sessionId = NULL

)

Arguments

elements numeric vector of indices of the elements to select.

chartId ID of the chart where to select elements (can be omitted if there is only one
chart).

layerId ID of the layer where to select elements (can be omitted if the chart has only one
layer).

preventEvent if TRUE, on_marked callback function will not be called. Can be used to prevent
endless stacks of calls.



32 openPage

clear if TRUE, all previously marked elements will be unmarked, otherwise new ele-
ments will be added to a set of currently marked ones.

sessionId An ID of the session for which to mark elements. Can be NULL if there is only
one active session. Otherwise must be a valid session ID. Check Session for
more information on client sessions. If a call to this function was triggered from
an opened web page, ID of the corresponding session will be used automatically.

Examples

data("iris")
openPage(FALSE, layout = "table1x2")

#brushing example
#Hold Shift pressed and select a group of point on one of the charts

lc_scatter(dat(
x = iris$Sepal.Length,
y = iris$Petal.Length,
colourValue = iris$Species,
on_marked = function() {

mark(getMarked("A1"), "A2")
}

), "A1")

lc_scatter(dat(
x = iris$Sepal.Width,
y = iris$Petal.Width,
colourValue = iris$Species,
on_marked = function() {

mark(getMarked("A2"), "A1")
}

), "A2")

openPage Open a new empty page

Description

openPage starts a server, establishes a web socket connection between it and the current R session
and loads linked-charts JS library with all the dependencies. This function initializes an instance
of class LCApp and stores it in the namespace of the package. If another instance has already been
stored (i.e. another app has been started with this function), the existing app will be closed.

Usage

openPage(
useViewer = TRUE,
rootDirectory = NULL,
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startPage = NULL,
layout = NULL,
port = NULL,
browser = NULL,
onlyServer = FALSE,
...

)

Arguments

useViewer If TRUE, a page will be opened in the RStudio Viewer. If FALSE, a default web
browser will be used.

rootDirectory A path to the root directory for the server. Any file, requested by the server
will be searched for in this directory. If rootDirectory is not defined, the
http_root in the package directory will be used as a root directory.

startPage A path to an HTML file that should be used as a starting page of the app. It can
be an absolute path to a local file, or it can be relative to the rootDirectory or
to the current R working directory. If startPage is not defined, an empty page
will be used. The file must have .html extension.

layout Adds one of the defaults layouts to each new page. Currently, only tables of
arbitrary size are supported. To add a table, this parameter must be equal to
"tableNxM", where N is the number of rows and M is the number of columns.
Each cell will get an ID that consists of a letter (indicating the row) and a number
(indicating the column) (e.g. B3 is an ID of the second row and third column).

port Defines which TCP port the server will listen to. If not defined, random available
port will be used (see randomPort).

browser A browser in which to open a new web page. If not defined, default browser will
be used. For more information check browseURL. If this argument is specified,
useViewer will be ignored.

onlyServer If TRUE, then an app will initialise without trying to open a new page in a
browser.

... Further arguments passed to openPage. Check details for more information.

Details

Argument onStart of jrc openPage function is replaced in rlc with beforeLoad and afterLoad.
The reason for that is when the page opens, rlc has to put there all the existing charts. Different sit-
uations may require some code be loaded before or after that happens. beforeLoad and afterLoad
provide a way to define two callback functions, each receiving a Session object as an argument
and is called once for each new page. beforeLoad runs before anything else has happened, while
afterLoad is called after all the existing charts have been added to the page.

This function initializes a new instance of class LCApp and wraps around methods startServer
and openPage of its parent class App.

Value

A new instance of class LCApp.



34 removeLayer

Examples

openPage()

openPage(useViewer = FALSE, layout = "table2x3")

removeChart Remove chart from the page

Description

Removes an existing chart. Changes will be applied to all currently opened and future pages. This
function is a wrapper around method removeChart of class LCApp.

Usage

removeChart(chartId)

Arguments

chartId A vector of IDs of the charts to be removed.

Examples

lc_scatter(dat(x = 1:10, y = 1:10 * 2), chartId = "scatter")
removeChart("scatter")

removeLayer Remove a layer from a chart

Description

Removes a layer from an existing chart. Changes will be applied to all currently opened and future
pages. This function is a wrapper around method removeLayer of class LCApp.

Usage

removeLayer(chartId, layerId)

Arguments

chartId ID of the chart from which to remove a layer.

layerId ID of the layer to remove.
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Examples

lc_scatter(dat(x = 1:10, y = 1:10 * 2), chartId = "scatter")
lc_abLine(a = 2, b = 0, chartId = "scatter", addLayer = TRUE)
removeLayer("scatter", "Layer1")

setProperties Set properties of the chart

Description

Sets or resets properties for an existing chart. Changes will be applied to all currently opened and
future pages. This function is a wrapper around method setProperties of class LCApp.

Usage

setProperties(data, chartId, layerId = NULL, with = NULL)

Arguments

data List of properties to be redefined for this layer or chart. Created by the dat
function.

chartId ID of the chart, for which to redefine properties.

layerId ID of the layer, for which to redefine properties. If the chart has a single layer
or doesn’t have layers, default value (which is NULL) can be used.

with A dataset or a list from which other properties should be taken. If the dataset
doesn’t have a column with the requested name, the variable will be searched
for outside of the dataset. Must be a data.frame or a list.

Examples

data("iris")
lc_scatter(dat(x = iris$Sepal.Length, y = iris$Sepal.Width), chartId = "irisScatter")
setProperties(dat(symbolValue = iris$Species, y = iris$Petal.Length), chartId = "irisScatter")
updateCharts("irisScatter")

lc_line(dat(x = iris$Sepal.Length, y = iris$Petal.Length), chartId = "irisScatter",
layerId = "line")

setProperties(dat(colour = "red"), chartId = "irisScatter", layerId = "line")
updateCharts("irisScatter")
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updateCharts Update a chart

Description

updateCharts redraws a chart or a single layer of a chart to make it up to date with the current state
of the environment variables.

Usage

updateCharts(chartId = NULL, layerId = NULL, updateOnly = NULL)

Arguments

chartId ID of the chart to be updated (or vector of IDs). If NULL, all the existing charts
will be updated.

layerId ID of the layer to be updated (or vector of IDs). If NULL, all the layers of the
selected charts will be updated. To update only some layers of multiple charts
the lengths of chartId and layerId must be the same.

updateOnly To improve performance it may be useful to change only certain aspects of a
chart (e.g. positions of points, colour of heatmap cells, etc.). This argument
can specify which part of chart to update. Possible options are Elements,
ElementPosition, ElementStyle, Axes, Labels, Cells, Texts, LabelPosition,
CellPosition, TextPosition, LabelText, CellColour, TextValues, Canvas,
Size. See details for more information.

Details

Linked charts of the rlc package are based on the idea that the variables that are used to define a
chart are not constant, but can change as a result of user’s actions. Each time the updateCharts
function is called, all the properties that were set inside the dat function are re-evaluated and the
chart is redrawn in accordance with the new state.

If this function is called from the R session, changes will be applied to all currently opened pages.
If it is used as a part of any rlc callback, only the page that triggered the call will be affected.

This function is a wrapper around method updateCharts of class LCApp.

Update types

To improve performance you can update only a certain part of a chart (e.g. colours, size, etc.). This
can be done by setting the updateOnly argument. Here are all possible values for this argument.

These are valid for all the charts:

• Size changes the size of the chart (and consequently position of all its elements).

• Title changes the title of the chart.
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• Canvas If number of elements is too high the charts switch to the canvas mode and instead of
multiple SVG point or cells a single Canvas image is generated. This type of update redraws
the Canvas image. It is not recommended to use this option, since it will be used automatically
when necessary.

These can be updated only in heatmaps (lc_heatmap):

• Labels adds new row and column labels and removes those that are no longer needed. Also
updates Cells.

• Cells adds new cells and removes those that are no longer needed. Also updates Texts if
necessary.

• Texts adds or remove text inside cells where needed.

• LabelPosition updates coordinates of all existing row and column labels. Also updates
CellPosition.

• CellPosition updates coordinates of all existing cells. Also updates TextPosition if nec-
essary.

• LabelText updates text of all existing labels.

• CellColour updates colour of all existing cells. Also updates TextValues if necessary.

• TextValues updates text inside cells to make it up to date with current data values.

These aspects are present in all the charts with axes.

• Axes updates axes of a chart and changes position of its elements (points, lines, etc.) accord-
ingly.

• Elements updates (add or removes) all the elements of the layer.

• ElementPosition updates positions of all the elements in the layer.

• ElementStyle updates the style (colour, opacity, etc.) of all the elements of the layer.

Examples

data(iris)

#store some properties in global variables
width <- 300
height <- 300
colour <- iris$Sepal.Width
#create a chart
lc_scatter(dat(x = iris$Sepal.Length, y = iris$Petal.Length, colourValue = colour,

width = width, height = height), chartId = "iris")

#change the variables
height <- 400
colour <- iris$Petal.Width

#this will change colour of points and chart height
updateCharts("iris")
#this will change only height
updateCharts("iris", updateOnly = "Size")
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#add another property
setProperties(dat(symbolValue = iris$Species), "iris")
#this will change only colour and symbols
updateCharts("iris", updateOnly = "ElementStyle")
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