About the rocbc Package

(Authors: LE Bantis, B Brewer, CT Nakas, B Reiser)

This package is focused on Box-Cox based ROC curves and provides point estimates, confidence intervals (CIs), and hypothesis tests. It can be used both for inferences for a single biomarker and when comparisons of two correlated biomarkers are of interest. It provides inferences and comparisons around the area under the ROC curve (AUC), the Youden index, the sensitivity at a given specificity level (and vice versa), the optimal operating point of the ROC curve (in the Youden sense), and the Youden based cutoff. This documentation consists of two parts, the one marker and the two marker case. All approaches presented herein have been recently published (see references for each function).

The functions of each part:


checkboxcox


#DATA GENERATION
set.seed(123)
x=rgamma(100, shape=2, rate = 8) # Generates biomarker data from a gamma distribution 
                                 # for the healthy group.
y=rgamma(100, shape=2, rate = 4) # Generates biomarker data from a gamma distribution 
                                 # for the diseased group.
scores=c(x,y)
D=c(zeros(1,100), ones(1,100))

out=checkboxcox(marker=scores, D, plots="on", printShapiro = TRUE)
## 
##  Shapiro-Wilk normality test
## 
## data:  x
## W = 0.92354, p-value = 2.181e-05
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  y
## W = 0.90169, p-value = 1.7e-06
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  transx
## W = 0.98765, p-value = 0.4826
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  transy
## W = 0.98936, p-value = 0.6128

plot of chunk unnamed-chunk-9plot of chunk unnamed-chunk-9plot of chunk unnamed-chunk-9

summary(out)
##                          Length Class  Mode    
## transformation.parameter   1    -none- numeric 
## transx                   100    -none- numeric 
## transy                   100    -none- numeric 
## pval_x                     1    -none- numeric 
## pval_y                     1    -none- numeric 
## pval_transx                1    -none- numeric 
## pval_transy                1    -none- numeric 
## rocbc                      1    -none- function

rocboxcox


set.seed(123)
x=rgamma(100, shape=2, rate = 8)
y=rgamma(100, shape=2, rate = 4)
scores=c(x,y)
D=c(zeros(1,100), ones(1,100))
out=rocboxcox(marker=scores,D, 0.05, plots="on", printProgress=FALSE)

plot of chunk unnamed-chunk-11


rocboxcoxCI


out=rocboxcoxCI(marker, D, givenSP=NA, givenSE=givenSE, alpha, plots)

givenSP=c(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9)
givenSE=NA
out=rocboxcoxCI(marker=scores ,D, givenSP=givenSP, givenSE=NA, alpha=0.05, plots="on")

plot of chunk unnamed-chunk-12plot of chunk unnamed-chunk-12

#

comparebcAUC


#GENERATE SOME BIVARIATE DATA===
set.seed(123)

nx <- 100
 Sx <- matrix(c(1,   0.5,
                0.5,  1), 
            nrow = 2, ncol = 2)

mux <- c(X = 10, Y = 12)
X=rmvnorm(nx, mean = mux, sigma = Sx)

ny <- 100
Sy <- matrix(c(1.1,   0.6,
               0.6,  1.1), 
             nrow = 2, ncol = 2)

muy <- c(X = 11, Y = 13.7)
Y=rmvnorm(ny, mean = muy, sigma = Sy)

dx=zeros(nx,1)
dy=ones(ny,1)

markers=rbind(X,Y);
marker1=markers[,1]
marker2=markers[,2]
D=c(rbind(dx,dy))

#==DATA HAVE BEEN GENERATED====


#===COMPARE THE AUCs of Marker 1 vs Maker 2

out=comparebcAUC(marker1, marker2, D, alpha=0.05,  plots="on")

plot of chunk unnamed-chunk-13


comparebcJ


#==DATA HAVE BEEN GENERATED====
#===COMPARE THE Js of Marker 1 vs Maker 2

out=comparebcJ(marker1, marker2, D, alpha=0.05,  plots="on")

plot of chunk unnamed-chunk-14

#

comparebcSens


out=comparebcSens(marker1=marker1, marker2=marker2, D=D, alpha =0.05, atSpec=0.8, plots="on")

plot of chunk unnamed-chunk-15

summary(out)
##                          Length Class       Mode    
## resultstable               6    formattable numeric 
## Sens1                      1    -none-      numeric 
## Sens2                      1    -none-      numeric 
## pvalue_probit_difference   1    -none-      numeric 
## pvalue_difference          1    -none-      numeric 
## CI_difference              2    -none-      numeric 
## roc1                       1    -none-      function
## roc2                       1    -none-      function
## transx1                  100    -none-      numeric 
## transy1                  100    -none-      numeric 
## transx2                  100    -none-      numeric 
## transy2                  100    -none-      numeric
#  


comparebcSpec


out=comparebcSpec(marker1=marker1, marker2=marker2, D=D, alpha =0.05, atSens=0.8, plots="on")

plot of chunk unnamed-chunk-16

summary(out)
##                          Length Class       Mode    
## resultstable               6    formattable numeric 
## FPR1                       1    -none-      numeric 
## FPR2                       1    -none-      numeric 
## pvalue_probit_difference   1    -none-      numeric 
## pvalue_difference          1    -none-      numeric 
## CI_difference              2    -none-      numeric 
## roc1                       1    -none-      function
## roc2                       1    -none-      function
## transx1                  100    -none-      numeric 
## transy1                  100    -none-      numeric 
## transx2                  100    -none-      numeric 
## transy2                  100    -none-      numeric
#  

The package is available at https://www.leobantis.net and soon to be submitted to CRAN.