
Package ‘scrutiny’
January 20, 2023

Title Error Detection in Science

Version 0.2.4

Maintainer Lukas Jung <jung-lukas@gmx.net>

Description Test published summary statistics for consistency
(Brown and Heathers, 2017, <doi:10.1177/1948550616673876>;
Allard, 2018, <https://aurelienallard.netlify.app/post/
anaytic-grimmer-possibility-standard-deviations/>;
Heathers and Brown, 2019, <https://osf.io/5vb3u/>).
The package also provides infrastructure for implementing new
error detection techniques.

License GPL (>= 3)

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Imports cli, dplyr, glue, magrittr, methods, purrr, rlang (>= 1.0.2),
stringr, tibble

Collate 'is-numeric-like.R' 'import-reexport.R' 'utils.R'
'mapper-function-helpers.R' 'audit-cols-minimal.R' 'audit.R'
'before-inside-parens.R' 'function-factory-helpers.R'
'round-ceil-floor.R' 'round.R' 'reround.R' 'unround.R'
'sd-binary.R' 'decimal-places.R' 'debit-table.R' 'debit.R'
'grim.R' 'function-map.R' 'grimmer.R' 'grimmer-map.R'
'duplicate-detect.R' 'debit-map.R' 'restore-zeros.R'
'seq-decimal.R' 'manage-extra-cols.R' 'grim-map.R' 'data-doc.R'
'data-frame-predicates.R' 'function-map-seq.R'
'debit-map-seq.R' 'disperse.R' 'function-map-total-n.R'
'debit-map-total-n.R' 'debit-plot.R'
'duplicate-count-colpair.R' 'duplicate-count.R'
'grim-explain.R' 'grim-granularity.R' 'grim-map-seq.R'
'grim-map-total-n.R' 'grim-plot.R' 'grim-stats.R'
'grimmer-map-seq.R' 'grimmer-map-total-n.R' 'metadata.R'
'method-audit-seq.R' 'method-audit-total-n.R'
'method-debit-map.R' 'method-detect.R'

1

https://doi.org/10.1177/1948550616673876
https://aurelienallard.netlify.app/post/anaytic-grimmer-possibility-standard-deviations/
https://aurelienallard.netlify.app/post/anaytic-grimmer-possibility-standard-deviations/
https://osf.io/5vb3u/

2 R topics documented:

'method-dup-count-colpair.R' 'method-dup-count.R'
'method-grim-map.R' 'method-grim-sequence.R'
'method-grimmer-map.R' 'reround-to-fraction.R'
'reverse-map-seq.R' 'reverse-map-total-n.R'
'rivets-perfect-mean-sd.R' 'rivets-plot-cols.R'
'rivets-plot-lines.R' 'rivets-t-test.R' 'rivets_new.R'
'rounding-bias.R' 'row-to-colnames.R' 'seq-disperse.R'
'seq-length.R' 'seq-predicates.R' 'split-by-parens.R'
'subset-superset.R' 'utils-pipe.R' 'utils-tidy-eval.R'
'write-doc-audit.R'

Suggests corrr, covr, devtools, ellipsis, ggplot2, ggrepel, janitor,
knitr, rmarkdown, roxygen2, stats, testthat (>= 3.0.0), tidyr,
tidyselect

Config/testthat/edition 3

Depends R (>= 3.4.0)

VignetteBuilder knitr

URL https://lhdjung.github.io/scrutiny/,

https://github.com/lhdjung/scrutiny/

BugReports https://github.com/lhdjung/scrutiny/issues

NeedsCompilation no

Author Lukas Jung [aut, cre],
Aurélien Allard [ctb]

Repository CRAN

Date/Publication 2023-01-20 21:00:02 UTC

R topics documented:
audit . 4
audit_cols_minimal . 5
check_audit_special . 6
check_mapper_input_colnames . 7
data-frame-predicates . 8
debit . 9
debit_map . 11
debit_map_seq . 12
debit_map_total_n . 14
debit_plot . 17
decimal_places . 19
decimal_places_df . 20
disperse . 22
duplicate_count . 24
duplicate_count_colpair . 26
duplicate_detect . 27
fractional-rounding . 29

https://lhdjung.github.io/scrutiny/
https://github.com/lhdjung/scrutiny/
https://github.com/lhdjung/scrutiny/issues

R topics documented: 3

function_map . 30
function_map_seq . 33
function_map_total_n . 36
grim . 39
grim-stats . 41
grimmer . 43
grimmer_map . 45
grimmer_map_seq . 47
grimmer_map_total_n . 49
grim_granularity . 51
grim_map . 53
grim_map_seq . 55
grim_map_total_n . 57
grim_plot . 60
is_numeric_like . 62
manage_helper_col . 64
manage_key_colnames . 65
parens-extractors . 66
pigs1 . 67
pigs2 . 67
pigs3 . 68
pigs4 . 69
pigs5 . 69
reround . 70
restore_zeros . 71
reverse_map_seq . 73
reverse_map_total_n . 74
rounding-common . 75
rounding-uncommon . 77
rounding_bias . 78
row_to_colnames . 79
sd-binary . 80
seq-decimal . 82
seq-predicates . 84
seq_disperse . 86
seq_length . 88
seq_test_ranking . 90
split_by_parens . 91
subset-superset . 93
unnest_consistency_cols . 95
unround . 96
write_doc_audit . 98
write_doc_audit_seq . 99
write_doc_audit_total_n . 100
write_doc_factory_map_conventions . 101

Index 103

4 audit

audit Summarize scrutiny objects

Description

audit() is an S3 generic to follow up on those scrutiny functions that perform tests on data frames.
It summarizes results of those tests and presents the summaries in a tibble. audit_list() is a
variant that returns a named list instead.

audit_seq() and audit_total_n() summarize the results of functions that end on _seq and
_total_n, respectively.

Below is a list of functions that return objects with classes for which there are audit() methods.
This means you can run audit() on the output returned by any of these functions. The same is true
for audit_seq() and audit_total_n().

Go to the documentation of any function named below to learn about its audit() method, or about
the way its output is processed by audit_seq() or audit_total_n().

Usage

audit(data)

audit_list(data)

audit_seq(data)

audit_total_n(data)

Arguments

data A data frame that inherits one of the classes named below.

Value

A tibble (data frame) with test summary statistics.

audit()

Function Class
grim_map() "scr_grim_map"
grimmer_map() "scr_grimmer_map"
debit_map() "scr_debit_map"
duplicate_count() "scr_dup_count"
duplicate_count_colpair() "scr_dup_count_colpair"
duplicate_detect() "scr_dup_detect"
audit_seq() "scr_audit_seq"
audit_total_n() "scr_audit_total_n"

audit_cols_minimal 5

audit_seq()

Function Class
grim_map_seq() "scr_grim_map_seq"
grimmer_map_seq() "scr_grimmer_map_seq"
debit_map_seq() "scr_debit_map_seq"

audit_total_n()

Function Class
grim_map_total_n() "scr_grim_map_total_n"
grimmer_map_total_n() "scr_grimmer_map_total_n"
debit_map_total_n() "scr_debit_map_total_n"

Examples

For basic GRIM-testing:
pigs1 %>%

grim_map() %>%
audit()

For GRIM-testing with
dispersed inputs:
pigs1 %>%

grim_map_seq() %>%
audit_seq()

For detecting duplicates:
pigs4 %>%

duplicate_detect() %>%
audit()

audit_cols_minimal Compute minimal audit() summaries

Description

Call audit_cols_minimal() within your audit() methods for the output of consistency test map-
per functions such as grim_map(). It will create a tibble with the three minimal, required columns:

6 check_audit_special

1. incons_cases counts the inconsistent cases, i.e., the number of rows in the mapper’s output
where "consistency" is FALSE.

2. all_cases is the total number of rows in the mapper’s output.
3. incons_rate is the ratio of incons_cases to all_cases.

You can still add other columns to this tibble. Either way, make sure to name your method correctly.
See examples.

Usage

audit_cols_minimal(data, name_test)

Arguments

data Data frame returned by a mapper function, such asgrim_map().
name_test String (length 1). Short, plain-text name of the consistency test, such as "GRIM".

Only needed for a potential alert.

Value

A tibble (data frame) with the columns listed above.

See Also

For context, see vignette("consistency-tests"). In case you don’t call audit_cols_minimal(),
you should call check_audit_special().

Examples

For a mapper function called `schlim_map()`
that applies a test called SCHLIM and returns
a data frame with the `"scr_schlim_map"` class:
audit.scr_schlim_map <- function(data) {

audit_cols_minimal(data, name_test = "SCHLIM")
}

If you like, add other summary columns
with `dplyr::mutate()` or similar.

check_audit_special Alert user if more specific audit_*() summaries are available

Description

(Note: Ignore this function if your audit() method calls audit_cols_minimal().)
Call check_audit_special() within an audit() method for a consistency test mapper function,
such as audit.scr_grim_map(). It checks if the input data frame was the product of a function
produced by function_map_seq() or function_map_total_n().
If so, the function issues a gentle alert to the user that points to audit_seq() or audit_total_n(),
respectively.

check_mapper_input_colnames 7

Usage

check_audit_special(data, name_test)

Arguments

data The audit() method’s input data frame.
name_test String (length 1). Short, plain-text name of the consistency test, such as "GRIM".

Value

No return value. Might print an alert.

See Also

vignette("consistency-tests"), for context.

check_mapper_input_colnames

Check that a mapper’s input has correct column names

Description

When called within a consistency test mapper function, check_mapper_input_colnames() makes
sure that the input data frame has correct column names:

• They include all the key columns corresponding to the test applied by the mapper.
• They don’t already include "consistency".

If either check fails, the function throws an informative error.

Usage

check_mapper_input_colnames(data, reported, name_test)

Arguments

data Data frame. Input to the mapper function.
reported String vector of the "key" column names that data must have, such as c("x",

"n") for grim_map().
name_test String (length 1). Short, plain-text name of the consistency test that the mapper

function applies, such as "GRIM".

Value

No return value. Might throw an error.

See Also

vignette("consistency-tests"), for context and the "key columns" terminology.

8 data-frame-predicates

data-frame-predicates Is an object a consistency test output tibble?

Description

• is_map_df() tests whether an object is the output of a scrutiny-style mapper function for
consistency tests, like grim_map(). These mapper functions also include those produced by
function_map(), function_map_seq(), and function_map_total_n().

• is_map_basic_df() is a variant of is_map_df() that tests whether an object is the output of
a "basic" mapper function. This includes functions like grim_map() and those produced by
function_map(), but not those produced by function_map_seq() or function_map_total_n().

• is_map_seq_df() tests whether an object is the output of a function that was produced by
function_map_seq().

• is_map_total_n_df() tests whether an object is the output of a function that was produced
by function_map_total_n().

Usage

is_map_df(x)

is_map_basic_df(x)

is_map_seq_df(x)

is_map_total_n_df(x)

Arguments

x Object to be tested.

Details

Sections 3, 6, and 7 of vignette("consistency-tests") discuss which function factories pro-
duce which functions, and which of these new, factory-made functions return which kinds of tibbles.

These tibbles are what the is_map_*() functions test for. As an example, function_map_seq()
produces grim_map_seq(), and this new function returns a tibble. is_map_df() and is_map_seq_df()
return TRUE for this tibble, but is_map_basic_df() and is_map_total_n_df() return FALSE.

For an overview, see the table at the end of vignette("consistency-tests").

Value

Boolean (length 1).

debit 9

Examples

Example test output:
df1 <- grim_map(pigs1)
df2 <- grim_map_seq(pigs1)
df3 <- grim_map_total_n(tibble::tribble(

~x1, ~x2, ~n,
"3.43", "5.28", 90,
"2.97", "4.42", 103

))

All three tibbles are mapper output:
is_map_df(df1)
is_map_df(df2)
is_map_df(df3)

However, only `df1` is the output of a
basic mapper...
is_map_basic_df(df1)
is_map_basic_df(df2)
is_map_basic_df(df3)

...only `df2` is the output of a
sequence mapper...
is_map_seq_df(df1)
is_map_seq_df(df2)
is_map_seq_df(df3)

...and only `df3` is the output of a
total-n mapper:
is_map_total_n_df(df1)
is_map_total_n_df(df2)
is_map_total_n_df(df3)

debit The DEBIT (descriptive binary) test

Description

debit() tests summaries of binary data for consistency: If the mean and the standard deviation of
binary data are given, are they consistent with the reported sample size?

The function is vectorized, but it is recommended to use debit_map() for testing multiple cases.

Usage

debit(
x,
sd,
n,
formula = "mean_n",

10 debit

rounding = "up_or_down",
threshold = 5,
symmetric = FALSE

)

Arguments

x String. Mean of a binary distribution.

sd String. Sample standard deviation of a binary distribution.

n Integer. Total sample size.

formula String. Formula used to compute the SD of the binary distribution. Currently,
only the default, "mean_n", is supported.

rounding String. Rounding method or methods to be used for reconstructing the SD values
to which sd will be compared. Default is "up_or_down" (from 5). For more
options, see documentation for grim(), section Details.

threshold Integer. If rounding is set to "up_from", "down_from", or "up_from_or_down_from",
set threshold to the number from which the reconstructed values should then
be rounded up or down. Otherwise irrelevant. Default is 5.

symmetric Boolean. Set symmetric to TRUE if the rounding of negative numbers with "up",
"down", "up_from", or "down_from" should mirror that of positive numbers so
that their absolute values are always equal. Default is FALSE.

Value

Boolean. TRUE if x, sd, and n are mutually consistent, FALSE if not.

References

Heathers, James A. J., and Brown, Nicholas J. L. 2019. DEBIT: A Simple Consistency Test For
Binary Data. https://osf.io/5vb3u/.

See Also

debit_map() applies debit() to any number of cases at once.

Examples

Check single cases of binary
summary data:
debit(x = "0.36", sd = "0.11", n = 20)

debit_map 11

debit_map Apply DEBIT to many cases

Description

Call debit_map() to use DEBIT on multiple combinations of mean, standard deviation, and sample
size of binary distributions. Mapping function for debit().

For summary statistics, call audit() on the results.

Usage

debit_map(
data,
x = NULL,
sd = NULL,
n = NULL,
rounding = "up_or_down",
threshold = 5,
symmetric = FALSE,
show_rec = TRUE,
extra = Inf

)

Arguments

data Data frame.

x, sd, n Optionally, specify these arguments as column names in data.

rounding, threshold, symmetric

Arguments passed on to debit(), with the same defaults.

show_rec If set to FALSE, the resulting tibble only includes the columns x, sd, n, and
consistency. Default is TRUE.

extra Not currently used.

Value

A tibble with (at least) these columns –

• x, sd, n: the inputs.

• consistency: DEBIT consistency of x, sd, and n.

By default, the tibble also includes the rounding method, boundary values, and Boolean information
about the boundary values being inclusive or not. The tibble has the scr_debit_map class, which
is recognized by the audit() generic.

12 debit_map_seq

Summaries with audit()

There is an S3 method for the audit() generic, so you can call audit() following debit_map().
It returns a tibble with these columns —

1. incons_cases: the number of DEBIT-inconsistent cases.

2. all_cases: the total number of cases.

3. incons_rate: the rate of inconsistent cases.

4. mean_x: the mean x (mean) value.

5. mean_sd: the mean sd value.

6. distinct_n: the number of distinct n values.

References

Heathers, James A. J., and Brown, Nicholas J. L. 2019. DEBIT: A Simple Consistency Test For
Binary Data. https://osf.io/5vb3u/.

Examples

Call `debit_map()` on binary summary
data such as these:
pigs3

The `consistency` column shows
whether the values to its left
are DEBIT-consistent:
pigs3 %>%

debit_map()

Get test summaries with `audit()`:
pigs3 %>%

debit_map() %>%
audit()

debit_map_seq Using DEBIT with dispersed inputs

Description

debit_map_seq() applies DEBIT with values surrounding the input values. This provides an easy
and powerful way to assess whether small errors in computing or reporting may be responsible for
DEBIT-inconsistencies in published statistics.

debit_map_seq 13

Usage

debit_map_seq(
data,
x = NULL,
sd = NULL,
n = NULL,
var = .var,
dispersion = .dispersion,
out_min = .out_min,
out_max = .out_max,
include_reported = .include_reported,
include_consistent = .include_consistent,
...

)

Arguments

data A data frame that debit_map() could take.

x, sd, n Optionally, specify column names in data as these arguments.

var String. Names of the columns that will be dispersed. Default is c("x", "sd",
"n").

dispersion Numeric. Sequence with steps up and down from the var inputs. It will be
adjusted to these values’ decimal levels. For example, with a reported 8.34, the
step size is 0.01. Default is 1:5, for five steps up and down.

out_min, out_max

If specified, output will be restricted so that it’s not below out_min or above
out_max. Defaults are "auto" for out_min, i.e., a minimum of one decimal
unit above zero; and NULL for out_max, i.e., no maximum.

include_reported

Boolean. Should the reported values themselves be included in the sequences
originating from them? Default is FALSE because this might be redundant and
bias the results.

include_consistent

Boolean. Should the function also process consistent cases (from among those
reported), not just inconsistent ones? Default is FALSE because the focus should
be on clarifying inconsistencies.

... Arguments passed down to debit_map().

Value

A tibble (data frame) with detailed test results.

Summaries with audit_seq()

You can call audit_seq() following debit_map_seq(). It will return a data frame with these
columns:

• x, sd, and n are the original inputs, tested for consistency here.

14 debit_map_total_n

• hits_total is the total number of DEBIT-consistent value sets found within the specified
dispersion range.

• hits_x is the number of DEBIT-consistent value sets found by varying x.

• Accordingly with sd and hits_sd as well as n and hits_n.

• (Note that any consistent reported cases will be counted by the hits_* columns if both
include_reported and include_consistent are set to TRUE.)

• diff_x reports the absolute difference between x and the next consistent dispersed value (in
dispersion steps, not the actual numeric difference). diff_x_up and diff_x_down report the
difference to the next higher or lower consistent value, respectively.

• diff_sd, diff_sd_up, and diff_sd_down do the same for sd.

• Likewise with diff_n, diff_n_up, and diff_n_down.

Examples

`debit_map_seq()` can take any input
that `debit_map()` can take:
pigs3

Results from testing some few rows:
out <- pigs3 %>%

dplyr::slice(3:4) %>%
debit_map_seq(include_consistent = TRUE)

out

Case-wise summaries with `audit_seq()`
can be more important than the raw results:
out %>%

audit_seq()

debit_map_total_n Use DEBIT with hypothetical group sizes

Description

debit_map_total_n() extends DEBIT to cases where only group means and standard deviations
(SDs) were reported, not group sizes.

The function is analogous to grim_map_total_n() and grimmer_map_total_n(), relying on the
same infrastructure.

Usage

debit_map_total_n(
data,
x1 = NULL,
x2 = NULL,

debit_map_total_n 15

sd1 = NULL,
sd2 = NULL,
dispersion = .dispersion,
n_min = .n_min,
n_max = .n_max,
constant = .constant,
constant_index = .constant_index,
...

)

Arguments

data Data frame with string columns x1, x2, sd1, and sd2, as well as numeric column
n. The first two are reported group means. sd1 and sd2 are reported group SDs.
n is the reported total sample size. It is not very important whether a value is in
x1 or in x2 because, after the first round of tests, the function switches roles be-
tween x1 and x2, and reports the outcomes both ways. The same applies to sd1
and sd2. However, do make sure the x* and sd* values are paired accurately, as
reported.

x1, x2, sd1, sd2

Optionally, specify these arguments as column names in data.

dispersion Numeric. Steps up and down from half the n values. Default is 0:5, i.e., half n
itself followed by five steps up and down.

n_min Numeric. Minimal group size. Default is 1.

n_max Numeric. Maximal group size. Default is NULL, i.e., no maximum.

constant Optionally, add a length-2 vector or a list of length-2 vectors (such as a data
frame with exactly two rows) to accompany the pairs of dispersed values. De-
fault is NULL, i.e., no constant values.

constant_index Integer (length 1). Index of constant or the first constant column in the output
tibble. If NULL (the default), constant will go to the right of n_change.

... Arguments passed down to debit_map().

Value

A tibble with these columns:

• x and sd, the group-wise reported input statistics, are repeated in row pairs.

• n is dispersed from half the input n, with n_change tracking the differences.

• both_consistent flags scenarios where both reported x and sd values are consistent with the
hypothetical n values.

• case corresponds to the row numbers of the input data frame.

• dir is "forth" in the first half of rows and "back" in the second half. "forth" means that
x2 and sd2 from the input are paired with the larger dispersed n, whereas "back" means that
x1 and sd1 are paired with the larger dispersed n.

• Other columns from debit_map() are preserved.

16 debit_map_total_n

Summaries with audit_total_n()

You can call audit_total_n() following up on debit_map_total_n() to get a tibble with sum-
mary statistics. It will have these columns:

• x1, x2, sd1, sd2, and n are the original inputs.

• hits_total is the number of scenarios in which all of x1, x2, sd1, and sd2 are DEBIT-
consistent. It is the sum of hits_forth and hits_back below.

• hits_forth is the number of both-consistent cases that result from pairing x2 and sd2 with
the larger dispersed n value.

• hits_back is the same, except x1 and sd1 are paired with the larger dispersed n value.

• scenarios_total is the total number of test scenarios, whether or not both x1 and sd1 as
well as x2 and sd2 are DEBIT-consistent.

• hit_rate is the ratio of hits_total to scenarios_total.

Call audit() following audit_total_n() to summarize results even further.

References

Bauer, P. J., & Francis, G. (2021). Expression of Concern: Is It Light or Dark? Recalling Moral Be-
havior Changes Perception of Brightness. Psychological Science, 32(12), 2042–2043. https://journals.sagepub.com/doi/10.1177/09567976211058727

Heathers, J. A. J., & Brown, N. J. L. (2019). DEBIT: A Simple Consistency Test For Binary Data.
https://osf.io/5vb3u/.

See Also

function_map_total_n(), which created the present function using debit_map().

Examples

Run `debit_map_total_n()` on data like these:
df <- tibble::tribble(

~x1, ~x2, ~sd1, ~sd2, ~n,
"0.30", "0.28", "0.17", "0.10", 70,
"0.41", "0.39", "0.09", "0.15", 65

)
df

debit_map_total_n(df)

`audit_total_n()` summaries can be more important than
the detailed results themselves.
The `hits_total` column shows all scenarios in
which both divergent `n` values are DEBIT-consistent
with the `x*` values when paired with them both ways:
df %>%

debit_map_total_n(dispersion = 0:2) %>%
audit_total_n()

By default (`dispersion = 0:5`), the function goes

debit_plot 17

five steps up and down from `n`. The longer this
sequence, the larger the number of hits tends to be:
df %>%

debit_map_total_n() %>%
audit_total_n()

debit_plot Visualize DEBIT results

Description

Plot a distribution of binary data and their mutual DEBIT consistency. Call this function only on a
data frame that resulted from a call to debit_map().

Various parameters of the individual geoms can be controlled via arguments.

Usage

debit_plot(
data,
show_outer_boxes = TRUE,
show_labels = TRUE,
show_full_scale = TRUE,
show_theme_other = TRUE,
color_cons = "royalblue1",
color_incons = "red",
line_alpha = 1,
line_color = "black",
line_linetype = 1,
line_width = 0.5,
line_size = 0.5,
rect_alpha = 1,
tile_alpha = 0.15,
tile_height_offset = 0.025,
tile_width_offset = 0.025,
tile_height_min = 0.0375,
tile_width_min = 0.0385,
label_alpha = 0.5,
label_linetype = 3,
label_size = 3.5,
label_linesize = 0.75,
label_force = 175,
label_force_pull = 0.75,
label_padding = 0.5

)

18 debit_plot

Arguments

data Data frame. Result of a call to debit_map().
show_outer_boxes

Boolean. Should outer tiles surround the actual data points, making it easier to
spot them and to assess their overlap? Default is TRUE.

show_labels Boolean. Should the data points have labels (of the form "mean; SD")? Default
is TRUE.

show_full_scale

Boolean. Should the plot be fixed to full scale, showing the entire consistency
line independently of the data? Default is TRUE.

show_theme_other

Boolean. Should the theme be modified in a way fitting the plot structure? De-
fault is TRUE.

color_cons, color_incons

Strings. Colors of the geoms representing consistent and inconsistent values,
respectively.

line_alpha, line_color, line_linetype, line_width, line_size

Parameters of the curved DEBIT line.

rect_alpha Parameter of the DEBIT rectangles. (Due to the nature of the data mapping,
there can be no leeway regarding the shape or size of this particular geom.)

tile_alpha, tile_height_offset, tile_width_offset, tile_height_min, tile_width_min

Parameters of the outer tiles surrounding the DEBIT rectangles. Offset refers to
the distance from the rectangles within.

label_alpha, label_linetype, label_size, label_linesize, label_force, label_force_pull, label_padding

Parameters of the labels showing mean and SD values. Passed on to ggrepel::geom_text_repel();
see there for more information.

Details

The labels are created via ggrepel::geom_text_repel(), so the algorithm is designed to mini-
mize overlap with the tiles and other labels. Yet, they don’t take the DEBIT line into account, and
their locations are ultimately random. You might therefore have to resize the plot or run the function
a few times until the labels are localized in a satisfactory way.

An alternative to the present function would be an S3 method for ggplot2::autoplot(). How-
ever, a standalone function such as this allows for customizing geom parameters and might perhaps
provide better accessibility overall.

Value

A ggplot object.

References

Heathers, James A. J., and Brown, Nicholas J. L. 2019. DEBIT: A Simple Consistency Test For
Binary Data. https://osf.io/5vb3u/.

decimal_places 19

Examples

Run `debit_plot()` on the output
of `debit_map()`:
pigs3 %>%

debit_map() %>%
debit_plot()

decimal_places Count decimal places

Description

decimal_places() counts the decimal places in a numeric vector, or in a string vector that can be
coerced to numeric.

decimal_places_scalar() is much faster but only takes a single input. It is useful as a helper
within other single-case functions.

Usage

decimal_places(x, sep = "\\.")

decimal_places_scalar(x, sep = "\\.")

Arguments

x Numeric (or string that can be coerced to numeric). Object with decimal places
to count.

sep Substring that separates the mantissa from the integer part. Default is "\\.",
which renders a decimal point.

Details

Decimal places in numeric values can’t be counted accurately if the number has 15 or more char-
acters in total, including the integer part and the decimal point. A possible solutions is to enter the
number as a string to count all digits. (Converting to string is not sufficient – those numbers need
to be entered in quotes.)

The functions ignore any whitespace at the end of a string, so they won’t mistake spaces for decimal
places.

Value

Integer. Number of decimal places in x.

20 decimal_places_df

Trailing zeros

If trailing zeros matter, don’t convert numeric values to strings: In numeric values, any trailing
zeros have already been dropped, and any information about them was lost (e.g., 3.70 returns 3.7).
Enter those values as strings instead, such as "3.70" instead of 3.70. However, you can restore lost
trailing zeros with restore_zeros() if the original number of decimal places is known.

If you need to enter many such values as strings, consider using tibble::tribble() and drawing
quotation marks around all values in a tribble() column at once via RStudio’s multiple cursors.

See Also

decimal_places_df(), which applies decimal_places() to all numeric-like columns in a data
frame.

Examples

`decimal_places()` works on both numeric values
and strings...
decimal_places(x = 2.851)
decimal_places(x = "2.851")

... but trailing zeros are only counted within
strings:
decimal_places(x = c(7.3900, "7.3900"))

This doesn't apply to non-trailing zeros; these
behave just like any other digit would:
decimal_places(x = c(4.08, "4.08"))

Whitespace at the end of a string is not counted:
decimal_places(x = "6.0 ")

`decimal_places_scalar()` is much faster,
but only works with a single number or string:
decimal_places_scalar(x = 8.13)
decimal_places_scalar(x = "5.024")

decimal_places_df Count decimal places in a data frame

Description

For every value in a column, decimal_places_df() counts its decimal places. By default, it oper-
ates on all columns that are coercible to numeric.

decimal_places_df 21

Usage

decimal_places_df(
data,
cols = everything(),
check_numeric_like = TRUE,
sep = "\\."

)

Arguments

data Data frame.

cols Select columns from data using tidyselect. Default is everything(), but re-
stricted by check_numeric_like.

check_numeric_like

Boolean. If TRUE (the default), the function only operates on numeric columns
and other columns coercible to numeric, as determined by is_numeric_like().

sep Substring that separates the mantissa from the integer part. Default is "\\.",
which renders a decimal point.

Value

Data frame. The values of the selected columns are replaced by the numbers of their decimal places.

See Also

Wrapped functions: decimal_places(), dplyr::across().

Examples

Coerce all columns to string:
iris <- iris %>%

tibble::as_tibble() %>%
dplyr::mutate(across(everything(), as.character))

The function will operate on all
numeric-like columns but not on `"Species"`:
iris %>%

decimal_places_df()

Operate on some select columns only
(from among the numeric-like columns):
iris %>%

decimal_places_df(cols = starts_with("Sepal"))

https://tidyselect.r-lib.org/reference/language.html

22 disperse

disperse Vary hypothetical group sizes

Description

Some published studies only report a total sample size but no group sizes. However, group sizes are
crucial for consistency tests such as GRIM. Call disperse() to generate possible group sizes that
all add up to the total sample size, if that total is even.

disperse2() is a variant for odd totals. It takes two consecutive numbers and generates decreasing
values from the lower as well as increasing values from the upper. In this way, all combinations still
add up to the total.

disperse_total() directly takes the total sample size, checks if it’s even or odd, splits it up ac-
cordingly, and applies disperse() or disperse2(), respectively.

These functions are primarily intended as helpers. They form the backbone of grim_map_total_n()
and all other functions created with function_map_total_n().

Usage

disperse(
n,
dispersion = 0:5,
n_min = 1L,
n_max = NULL,
constant = NULL,
constant_index = NULL

)

disperse2(
n,
dispersion = 0:5,
n_min = 1L,
n_max = NULL,
constant = NULL,
constant_index = NULL

)

disperse_total(
n,
dispersion = 0:5,
n_min = 1L,
n_max = NULL,
constant = NULL,
constant_index = NULL

)

disperse 23

Arguments

n Numeric:

• In disperse(), single number from which to go up and down. This should
be half of an even total sample size.

• In disperse2(), the two consecutive numbers closest to half of an odd
total sample size (e.g., c(25, 26) for a total of 51).

• In disperse_total(), the total sample size.

dispersion Numeric. Vector that determines the steps up and down from n (or, in disperse_total(),
from half n). Default is 0:5.

n_min Numeric. Minimal group size. Default is 1L.

n_max Numeric. Maximal group size. Default is NULL, i.e., no maximum.

constant Optionally, add a length-2 vector or a list of length-2 vectors (such as a data
frame with exactly two rows) to accompany the pairs of dispersed values. De-
fault is NULL, i.e., no constant values.

constant_index Integer (length 1). Index of constant or the first constant column in the output
tibble. If NULL (the default), constant will go to the right of n_change.

Details

If any group size is less than n_min or greater than n_max, it is removed. The complementary size
of the other group is also removed.

constant values are pairwise repeated. That is why constant must be a length-2 atomic vector or
a list of such vectors. If constant is a data frame or some other named list, the resulting columns
will have the same names as the list-element names. If the list is not named, the new column names
will be "constant1", "constant2", etc; or just "constant", for a single pair.

Value

A tibble (data frame) with these columns:

• n includes the dispersed n values. Every pair of consecutive rows has n values that each add
up to the total.

• n_change records how the input n was transformed to the output n. In disperse2(), the
n_change strings label the lower of the input n values n1 and the higher one n2.

References

Bauer, P. J., & Francis, G. (2021). Expression of Concern: Is It Light or Dark? Recalling Moral Be-
havior Changes Perception of Brightness. Psychological Science, 32(12), 2042–2043. https://journals.sagepub.com/doi/10.1177/09567976211058727

See Also

function_map_total_n(), grim_map_total_n(), seq_distance_df()

24 duplicate_count

Examples

For a total sample size of 40,
set `n` to `20`:
disperse(n = 20)

Specify `dispersion` to control
the steps up and down from `n`:
disperse(n = 20, dispersion = c(3, 6, 10))

In `disperse2()`, specify `n` as two
consecutive numbers -- i.e., group sizes:
disperse2(n = c(25, 26))

Use the total sample size directly
with `disperse_total()`. An even total
internally triggers `disperse()`...
disperse_total(n = 40)

...whereas an odd total triggers `disperse2()`:
disperse_total(n = 51)

You may add values that repeat along with the
dispersed ones but remain constant themselves.
Such values can be stored in a length-2 vector
for a single column...
disperse_total(37, constant = c("5.24", "3.80"))

... or a list of length-2 vectors for multiple
columns. This includes data frames with 2 rows:
df_constant <- tibble::tibble(

name = c("Paul", "Mathilda"), age = 27:28,
registered = c(TRUE, FALSE)

)
disperse_total(37, constant = df_constant)

duplicate_count Count duplicate values

Description

duplicate_count() returns a frequency table. When searching a data frame, it includes values
from all columns for each frequency count.

This function is a blunt tool designed for initial data checking. Don’t put too much weight on its
results.

For summary statistics, call audit() on the results.

Usage

duplicate_count(x, numeric_only = TRUE)

duplicate_count 25

Arguments

x Vector or data frame.

numeric_only Boolean. If TRUE (the default), and if x is a data frame, the function includes only
numeric columns and string columns coercible to numeric. Note: Be careful
when setting it to FALSE. This can lead to all kinds of coercion issues.

Details

duplicate_count() is a thin wrapper around janitor::get_dupes(). Use get_dupes() to
search for duplicate rows.

The function is not too informative if the values have few characters.

Value

A tibble with two columns —

• value includes all the values from x.

• count is the frequency of each value in x, in descending order. The tibble has the scr_dup_count
class, which is recognized by the audit() generic.

Summaries with audit()

There is an S3 method for the audit() generic, so you can call audit() following duplicate_count()
to get summary statistics. These are mostly self-explaining, but count_max and count_min only
directly apply to count and display their respective value numbers, not the minimal and maximal
value numbers.

See Also

duplicate_detect() checks if values have duplicates.

Examples

Count duplicate values...
BJsales %>%

duplicate_count()

...and compute summaries:
BJsales %>%

duplicate_count() %>%
audit()

26 duplicate_count_colpair

duplicate_count_colpair

Count duplicate values by column

Description

duplicate_count_colpair() takes a data frame and checks each combination of columns for
duplicates. Results are presented in a tibble, ordered by the number of duplicates.

Usage

duplicate_count_colpair(data, na.rm = TRUE, show_rates = TRUE)

Arguments

data Data frame.

na.rm Boolean. If TRUE (the default), any NA values in data’s columns will be re-
moved before checking for duplicates. This makes sure that NA values in differ-
ent columns will not be counted as duplicates of each other.

show_rates Boolean. If TRUE (the default), adds columns rate_x and rate_y. See value
section. Set show_rates to FALSE for higher performance.

Value

A tibble (data frame) with these columns —

• x and y: Each line contains a unique combination of data’s columns, stored in the x and y
output columns.

• count: Number of "duplicates", i.e., values that are present in both x and y.

• rate_x and rate_y (added by default): rate_x is the proportion of x values that are dupli-
cated in y. Likewise, rate_y is the proportion of y values that are duplicated in x. These two
rate_* columns will be equal unless NA values are present.

Summaries with audit()

There is an S3 method for audit(), so you can call audit() following duplicate_count_colpair()
to get a summary of duplicate_count_colpair()’s results. It is a tibble with a single row and the
columns below. If the tibble is too wide, call audit_list() instead.

• n: number of column pairs tested (index 1).

• count_min, count_max, count_mean, count_sd, count_median: Summary statistics of the
duplicate count column (index 2 to 6).

• rate_x_min, rate_x_max, rate_x_mean, rate_x_sd, rate_x_median: Summary statistics
of the rate_x column (index 7 to 11).

• rate_y_min, rate_y_max, rate_y_mean, rate_y_sd, rate_y_median: Summary statistics
of the rate_y column (index 12 to 16).

duplicate_detect 27

See Also

corrr::colpair_map(), a versatile tool for pairwise column analysis which the present function
wraps.

Examples

Basic usage:
mtcars %>%

duplicate_count_colpair()

Summaries with `audit()`:
mtcars %>%

duplicate_count_colpair() %>%
audit()

duplicate_detect Detect duplicate values

Description

For every value in a vector or data frame, duplicate_detect() tests whether there is at least one
identical value. Test results are presented next to every value.

By default, only numeric columns and string columns coercible to numeric are tested (if x is a data
frame). Any other columns are silently dropped.

This function is a blunt tool designed for initial data checking. Don’t put too much weight on its
results.

For summary statistics, call audit() on the results.

Usage

duplicate_detect(x, numeric_only = TRUE, colname_end = "dup")

Arguments

x Vector or data frame.

numeric_only Boolean. If TRUE (the default) and if x is a data frame, the function will only
test numeric columns and string columns coercible to numeric. Note: Be careful
when setting it to FALSE. This can lead to all kinds of coercion issues.

colname_end String. Name ending of the Boolean test result columns. Default is "dup".

Details

This function is not very informative with many input values that only have a few characters each.
Many of them may have duplicates just by chance. For example, in R’s built-in iris data set, 99%
of values have duplicates.

In general, the fewer values and the more characters per value there are, the more significant
duplicate_detect()’s results will be.

28 duplicate_detect

Value

A tibble (data frame) —

• If x is a vector, there are two columns: the input value and the Boolean has_duplicates.

• If x is a data frame, the output tibble has (some of) the columns from x, and to each of these
columns’ right, the corresponding Boolean column with an index value.

The tibble has the scr_dup_detect class, which is recognized by the audit() generic.

Summaries with audit()

There is an S3 method for the audit() generic, so you can call audit() following duplicate_detect().
It returns a tibble with these columns —

• variable: The original data frame’s variables with at least one "duplicated" value: one that
has at least one duplicate anywhere else in the data frame. For a vector, x.

• n_duplicated: Number of "duplicated" values of that variable: those that have at least one
duplicate anywhere in the data frame.

• dup_rate: Rate of "duplicated" values of that variable.

The final row, .total, summarizes across all other rows: It adds up the n_duplicated and n_total
columns, and calculates the average of the dup_rate column.

See Also

duplicate_count() provides a frequency table.

Examples

Find duplicate values in a data frame...
duplicate_detect(x = pigs4)

...or in a single vector:
duplicate_detect(x = pigs4$snout)

Summary statistics with `audit()`:
pigs4 %>%

duplicate_detect() %>%
audit()

If there are many values and/or few
characters per value, `duplicate_detect()`
can be misleading:
iris %>%

duplicate_detect()

iris %>%
duplicate_detect() %>%
audit()

fractional-rounding 29

fractional-rounding Generalized rounding to the nearest fraction of a specified denomina-
tor

Description

Two functions that round numbers to specific fractions, not just to the next higher decimal level.
They are inspired by janitor::round_to_fraction() but feature all the options of reround():

• reround_to_fraction() closely follows janitor::round_to_fraction() by first round-
ing to fractions of a whole number, then optionally rounding the result to a specific number of
digits in the usual way.

• reround_to_fraction_level() rounds to the nearest fraction of a number at the specific
decimal level (i.e., number of digits), without subsequent rounding. This is closer to conven-
tional rounding functions.

Usage

reround_to_fraction(
x = NULL,
denominator = 1,
digits = Inf,
rounding = "up_or_down",
threshold = 5,
symmetric = FALSE

)

reround_to_fraction_level(
x = NULL,
denominator = 1,
digits = 0L,
rounding = "up_or_down",
threshold = 5,
symmetric = FALSE

)

Arguments

x Numeric. Vector of numbers to be rounded.

denominator Numeric (>= 1) . x will be rounded to the nearest fraction of denominator.
Default is 1.

digits Numeric (whole numbers).

• In reround_to_fraction(): If digits is specified, the values resulting
from fractional rounding will subsequently be rounded to that many deci-
mal places. If set to "auto", it internally becomes ceiling(log10(denominator))
+ 1, as in janitor::round_to_fraction(). Default is Inf, in which case
there is no subsequent rounding.

30 function_map

• In reround_to_fraction_level(): This function will round to a fraction
of the number at the decimal level specified by digits. Default is 0.

rounding, threshold, symmetric

More arguments passed down to reround().

Value

Numeric vector of the same length as x unless rounding is either of "up_or_down", "up_from_or_down_from",
and "ceiling_or_floor". In these cases, it will always have length 2.

See Also

reround(), which the functions wrap, and janitor::round_to_fraction(), part of which they
copy.

Examples

#`reround_to_fraction()` rounds `0.4`
to `0` if `denominator` is `1`, which
is the usual integer rounding...
reround_to_fraction(0.4, denominator = 1, rounding = "even")

...but if `denominator` is `2`, it rounds to the nearest
fraction of 2, which is `0.5`:
reround_to_fraction(0.4, denominator = 2, rounding = "even")

Likewise with fractions of 3:
reround_to_fraction(0.25, denominator = 3, rounding = "even")

The default for `rounding` is to round
both up and down, as in `reround()`:
reround_to_fraction(0.4, denominator = 2)

These two rounding procedures differ
at the tie points:
reround_to_fraction(0.25, denominator = 2)

`reround_to_fraction_level()`, in contrast,
uses `digits` to determine some decimal level,
and then rounds to the closest fraction at
that level:
reround_to_fraction_level(0.12345, denominator = 2, digits = 0)
reround_to_fraction_level(0.12345, denominator = 2, digits = 1)
reround_to_fraction_level(0.12345, denominator = 2, digits = 2)

function_map Create new *_map() functions

function_map 31

Description

function_map() creates new basic mapper functions for consistency tests, such as grim_map() or
debit_map().

For context, see vignette("consistency-tests"), section Creating mappers with function_map().

Usage

function_map(
.fun,
.reported,
.name_test,
.name_class = NULL,
.args_disabled = NULL,
.col_names = NULL,
.col_control = NULL,
.col_filler = NULL

)

Arguments

.fun Single-case consistency testing function that will be applied to each row in a
data frame, such as the (non-exported) scrutiny functions grim_scalar() and
debit_scalar(). It must return a Boolean value of length 1, i.e., TRUE or
FALSE.

.reported String. Names of the columns to be tested.

.name_test String (length 1). Plain-text name of the consistency test, such as "GRIM".

.name_class String. Optionally, one or more classes to be added to the output data frame.
Default is NULL, i.e., no extra class (but see Details).

.args_disabled Optionally, a string vector with names of arguments of the *_scalar() function
that don’t work with the factory-made function. If the user tries to specify these
arguments, an informative error will be thrown.

.col_names (Experimental) Optionally, a string vector with the names of additional columns
that are derived from the *_scalar() function. Requires .col_control and
.col_filler specifications.

.col_control (Experimental) Optionally, a single string with the name of the *_scalar()
function’s Boolean argument that controls if the columns named in .col_names
will be displayed.

.col_filler (Experimental) Optionally, a vector specifying the values of .col_names columns
in rows where the *_scalar() function only returned the consistency value.

Details

The output tibble returned by the factory-made function will inherit one or two classes indepen-
dently of the .name_class argument:

• It will inherit a class named "scr_{tolower(.name_test)}_map"; for example, "scr_grim_map"
if .name_test is "GRIM".

32 function_map

• If a rounding argument is specified via ..., or else if .fun has a rounding argument with a
default, the output tibble will inherit a class named "scr_rounding_{rounding}"; for exam-
ple, "scr_rounding_up_or_down".

Value

A factory-made function with these arguments:

• data: Data frame with all the columns named in .reported. It must have columns named
after the key arguments in .fun. Other columns are permitted.

• Arguments named after the .reported values. They can be specified as the names of data
columns so that the function will rename that column using the .reported name.

• reported, fun, name_class: Same as when calling function_map() but spelled without
dots. You can override these defaults when calling the factory-made function.

• ...: Arguments passed down to .fun. This does not include the column-identifying argu-
ments derived from .reported.

Value returned by the factory-made function

A tibble that includes "consistency": a Boolean column showing whether the values to its left are
mutually consistent (TRUE) or not (FALSE).

Examples

Basic test implementation for "SCHLIM",
a mock test with no real significance:
schlim_scalar <- function(y, n) {

(y / 3) > n
}

Let the function factory produce
a mapper function for SCHLIM:
schlim_map <- function_map(

.fun = schlim_scalar,

.reported = c("y", "n"),

.name_test = "SCHLIM"
)

Example data:
df1 <- tibble::tibble(y = 16:25, n = 3:12)

Call the "factory-made" function:
schlim_map(df1)

function_map_seq 33

function_map_seq Create new *_map_seq() functions

Description

function_map_seq() is the engine that powers grim_map_seq() and debit_map_seq(). It creates
new, "manufactured" functions that apply consistency tests such as GRIM or DEBIT to sequences
of specified variables. The sequences are centered around the reported values of those variables.

By default, only inconsistent values are dispersed from and tested. This provides an easy and
powerful way to assess whether small errors in computing or reporting may be responsible for
inconsistencies in published statistics.

All arguments here set the defaults for the arguments in the manufactured function. They can still
be specified differently when calling the latter.

If functions created this way are exported from other packages, they should be written as if they were
created with purrr adverbs; see explanations there and examples at vignette("consistency-tests"),
section Creating mappers with function_map().

Usage

function_map_seq(
.fun,
.var = Inf,
.reported,
.name_test,
.name_class = NULL,
.args_disabled = NULL,
.dispersion = 1:5,
.out_min = "auto",
.out_max = NULL,
.include_reported = FALSE,
.include_consistent = FALSE

)

Arguments

.fun Function such as grim_map(): It will be used to test columns in a data frame
for consistency. Test results are Boolean and need to be contained in a column
called "consistency" that is added to the input data frame. This modified data
frame is then returned by .fun.

.var String. Variables that will be dispersed by the manufactured function. Defaults
to .reported.

.reported String. All variables the manufactured function can disperse in principle.

.name_test String (length 1). The name of the consistency test, such as "GRIM", to be op-
tionally shown in a message when using the manufactured function.

https://purrr.tidyverse.org/reference/faq-adverbs-export.html

34 function_map_seq

.name_class String. If specified, the tibbles returned by the manufactured function will in-
herit this string as an S3 class. Default is NULL, i.e., no extra class.

.args_disabled String. Optionally, names of the basic *_map() function’s arguments. These ar-
guments will throw an error if specified when calling the factory-made function.

.dispersion Numeric. Sequence with steps up and down from the reported values. It will be
adjusted to these values’ decimal level. For example, with a reported 8.34, the
step size is 0.01. Default is 1:5, for five steps up and down.

.out_min, .out_max

If specified when calling a factory-made function, output will be restricted so
that it’s not below .out_min or above .out_max. Defaults are "auto" for
.out_min, i.e., a minimum of one decimal unit above zero; and NULL for .out_max,
i.e., no maximum.

.include_reported

Boolean. Should the reported values themselves be included in the sequences
originating from them? Default is FALSE because this might be redundant and
bias the results.

.include_consistent

Boolean. Should the function also process consistent cases (from among those
reported), not just inconsistent ones? Default is FALSE because the focus should
be on clarifying inconsistencies.

Details

This function is a so-called function factory: It produces other functions, such as grim_map_seq().
More specifically, it is a function operator (a.k.a. decorator) because it also takes functions as inputs,
such as grim_map(). See Wickham (2019, ch. 10-11).

Value

A function such as those below. ("Testable statistics" are variables that can be selected via var, and
are then varied. All variables except for those in parentheses are selected by default.)

Manufactured function Testable statistics Test vignette
grim_map_seq() "x", "n", ("items") vignette("grim")
grimmer_map_seq() "x", "sd", "n", ("items") vignette("grimmer")
debit_map_seq() "x", "sd", "n" vignette("debit")

The factory-made function will also have dots, ..., to pass arguments down to .fun, i.e., the basic
mapper function.

Conventions

The name of a function manufactured with function_map_seq() should mechanically follow from
that of the input function. For example, grim_map_seq() derives from grim_map(). This pattern
fits best if the input function itself is named after the test it performs on a data frame, followed by
_map: grim_map() applies GRIM, debit_map() applies DEBIT, etc.

function_map_seq 35

Much the same is true for the classes of data frames returned by the manufactured function via the
.name_class argument of function_map_seq(). It should be the function’s own name preceded
by the name of the package that contains it or by an acronym of that package’s name. In this way,
existing classes are scr_grim_map_seq and scr_debit_map_seq.

References

Wickham, H. (2019). Advanced R (Second Edition). CRC Press/Taylor and Francis Group. https://adv-
r.hadley.nz/index.html

Examples

Function definition of `grim_map_seq()`:
grim_map_seq <- function_map_seq(

.fun = grim_map,

.reported = c("x", "n"),

.name_test = "GRIM",
)

Case study of SCHLIM, a new consistency test --------------

(Note: This is a mock test without any real significance.
Its only purpose is to show the minimal steps necessary
for implementing a serious consistency test, and to use
it as a starting point for `function_map_total_n()`.)

The "SCHLIM test" is analogous to GRIM as implemented
in scrutiny. This is also true for the function names.
Note that the analogue to `schlim_scalar()`, a function
called `grim_scalar()`, is not exported from scrutiny,
but used internally for `grim()`, `grim_map()`, and,
indirectly, `grim_map_seq()`.

Basic test implementation:
schlim_scalar <- function(y, n) {

(y / 3) > n
}

This step is not needed below, but
included for completeness:
schlim <- Vectorize(schlim_scalar)

This will be the input function for
`function_map_total_n()`:
schlim_map <- function_map(

.fun = schlim_scalar,

.reported = c("y", "n"),

.name_test = "SCHLIM"
)

Fire up the function factory:

36 function_map_total_n

schlim_map_seq <- function_map_seq(
.fun = schlim_map,
.reported = c("y", "n"),
.name_test = "SCHLIM",

)

Create some example data:
df1 <- tibble::tibble(y = 16:25, n = 3:12)

Call the manufactured function:
out <- schlim_map_seq(df1)
out

Summarize the results:
audit_seq(out)

function_map_total_n Create new *_map_total_n() functions

Description

function_map_total_n() is the engine that powers functions such as grim_map_total_n(). It
creates new, "manufactured" functions for consistency tests. The new functions take reported sum-
mary statistics such as means and apply those tests in cases where only a total sample size is known,
not group sizes.

This works by making disperse_total() create multiple pairs of hypothetical group sizes, all of
which add up to the reported total. There need to be exactly two groups.

If functions created this way are exported from other packages, they should be written as if they were
created with purrr adverbs; see explanations there and examples at vignette("consistency-tests"),
section Creating mappers with function_map().

Usage

function_map_total_n(
.fun,
.reported,
.name_test,
.name_class = NULL,
.dispersion = 0:5,
.n_min = 1L,
.n_max = NULL,
.constant = NULL,
.constant_index = NULL

)

https://purrr.tidyverse.org/reference/faq-adverbs-export.html

function_map_total_n 37

Arguments

.fun Function such as grim_map: It will be used to test columns in a data frame
for consistency. Test results are Boolean and need to be contained in a column
called consistency that is added to the input data frame. This modified data
frame is then returned by .fun.

.reported String. Names of the columns containing group-specific statistics that were re-
ported alongside the total sample size(s). They will be tested for consistency
with the hypothetical group sizes. Examples are "x" for GRIM and c("x",
"sd") for DEBIT. In the data frame with reported group statistics that the man-
ufactured function takes as an input, each will need to fan out like "x1", "x2",
"sd1", and "sd2".

.name_test String (length 1). The name of the consistency test, such as "GRIM", to be op-
tionally shown in a message when using the manufactured function.

.name_class String. If specified, the tibbles returned by the manufactured function will in-
herit this string as an S3 class. Default is NULL, i.e., no extra class.

.dispersion, .n_min, .n_max, .constant, .constant_index

Arguments passed down to disperse_total(), using defaults from there.

Details

This function is a so-called function factory: It produces other functions, such as grim_map_total_n().
More specifically, it is a function operator (a.k.a. decorator) because it also takes functions as inputs,
such as grim_map(). See Wickham (2019, ch. 10-11).

Value

A function such as these:

Manufactured function Reported statistics Test vignette
grim_map_total_n() "x" vignette("grim")
grimmer_map_total_n() "x", "sd" vignette("grimmer")
debit_map_total_n() "x", "sd" vignette("debit")

The factory-made function will also have dots, ..., to pass arguments down to .fun, i.e., the basic
mapper function.

Conventions

The name of a function manufactured with function_map_total_n() should mechanically follow
from that of the input function. For example, grim_map_total_n() derives from grim_map().
This pattern fits best if the input function itself is named after the test it performs on a data frame,
followed by _map: grim_map() applies GRIM, debit_map() applies DEBIT, etc.

Much the same is true for the classes of data frames returned by the manufactured function via
the .name_class argument of function_map_total_n(). It should be the function’s own name
preceded by the name of the package that contains it or by an acronym of that package’s name. In
this way, existing classes are scr_grim_map_total_n and scr_debit_map_total_n.

38 function_map_total_n

References

Bauer, P. J., & Francis, G. (2021). Expression of Concern: Is It Light or Dark? Recalling Moral Be-
havior Changes Perception of Brightness. Psychological Science, 32(12), 2042–2043. https://journals.sagepub.com/doi/10.1177/09567976211058727

Wickham, H. (2019). Advanced R (Second Edition). CRC Press/Taylor and Francis Group. https://adv-
r.hadley.nz/index.html

See Also

disperse_total()

Examples

Function definition of `grim_map_total_n()`:
grim_map_total_n <- function_map_total_n(

.fun = grim_map,

.reported = "x",

.name_test = "GRIM",

.name_class = "scr_grim_map_total_n"
)

Case study of SCHLIM, a new consistency test --------------

(Note: This is a mock test without any real significance.
Its only purpose is to show the minimal steps necessary
for implementing a serious consistency test, and to use
it as a starting point for `function_map_total_n()`.)

The "SCHLIM test" is analogous to GRIM as implemented
in scrutiny. This is also true for the function names.
Note that the analogue to `schlim_scalar()`, a function
called `grim_scalar()`, is not exported from scrutiny,
but used internally for `grim()`, `grim_map()`, and,
indirectly, `grim_map_total_n()`.

Basic test implementation:
schlim_scalar <- function(y, n) {

(y / 3) > n
}

This step is not needed below, but
included for completeness:
schlim <- Vectorize(schlim_scalar)

This will be the input function for
`function_map_total_n()`:
schlim_map <- function_map(

.fun = schlim_scalar,

.reported = c("y", "n"),

.name_test = "SCHLIM"
)

grim 39

Fire up the function factory:
schlim_map_total_n <- function_map_total_n(

.fun = schlim_map,

.reported = "y",

.name_test = "SCHLIM",
)

Create some example data:
df1 <- tibble::tibble(

y1 = 16:25,
y2 = 26:35,
n = 12:21

)
df1

Call the manufactured function:
out <- schlim_map_total_n(df1)
out

Summarize the results:
audit_total_n(out)

grim The GRIM test (granularity-related inconsistency of means)

Description

grim() checks if a reported mean value of integer data is mathematically consistent with the re-
ported sample size and the number of items that compose the mean value.

Set percent to TRUE if x is a percentage. This will convert x to a decimal number and adjust the
decimal count accordingly.

The function is vectorized, but it is recommended to use grim_map() for testing multiple cases.

Usage

grim(
x,
n,
items = 1,
percent = FALSE,
show_rec = FALSE,
rounding = "up_or_down",
threshold = 5,
symmetric = FALSE,
tolerance = .Machine$double.eps^0.5

)

40 grim

Arguments

x String. The reported mean or percentage value.

n Integer. The reported sample size.

items Numeric. The number of items composing x. Default is 1, the most common
case.

percent Boolean. Set percent to TRUE if x is a percentage. This will convert it to a
decimal number and adjust the decimal count (i.e., increase it by 2). Default is
FALSE.

show_rec Boolean. For internal use only. If set to TRUE, the output is a matrix that also
contains intermediary values from GRIM-testing. Don’t specify this manually;
instead, use show_rec in grim_map(). Default is FALSE.

rounding String. Rounding method or methods to be used for reconstructing the values to
which x will be compared. Default is "up_or_down" (from 5).

threshold Numeric. If rounding is set to "up_from", "down_from", or "up_from_or_down_from",
set threshold to the number from which the reconstructed values should then
be rounded up or down. Otherwise, this argument plays no role. Default is 5.

symmetric Boolean. Set symmetric to TRUE if the rounding of negative numbers with "up",
"down", "up_from", or "down_from" should mirror that of positive numbers so
that their absolute values are always equal. Default is FALSE.

tolerance Numeric. Tolerance of comparison between x and the possible mean or percent-
age values. Default is circa 0.000000015 (1.490116e-08), as in dplyr::near().

Details

The x values need to be strings because only strings retain trailing zeros, which are as important for
the GRIM test as any other decimal digits.

Use restore_zeros() on numeric values (or values that were numeric values at some point) to
easily supply the trailing zeros they might once have had. See documentation there.

Browse the source code in the grim.R file. grim() is a vectorized version of the internal grim_scalar()
function found there.

Value

Boolean. TRUE if x, n, and items are mutually consistent, FALSE if not.

Rounding

Here are the options for the rounding argument. Reconstructed mean or percentage values can be
rounded in either of these ways:

• Rounded to "even" using base R’s own round().

• Rounded "up" or "down" from 5. (Note that SAS, SPSS, Stata, Matlab, and Excel round "up"
from 5, whereas Python rounds "down" from 5.)

• Rounded "up_from" or "down_from" some number, which then must be specified via the
threshold argument.

grim-stats 41

• Given a "ceiling" or "floor" at the respective decimal place.

• Rounded towards zero with "trunc" or away from zero with "anti_trunc". The default,
"up_or_down", allows for numbers rounded either "up" or "down" from 5 when GRIM-
testing; and likewise for "up_from_or_down_from" and "ceiling_or_floor".

With rounding = "up_or_down", if n is 40 or 80 and x has two decimal places, very few values
will test as inconsistent; but note that many will be with either of rounding = "up" and rounding
= "down", or indeed with any other rounding method. This is part of a more general pattern: n is
400 or 800 and x has three decimal places, etc.

For more information about these methods, see documentation for round(), round_up(), and
round_ceiling(). These include all of the above ways of rounding. How the reconstructed values
are rounded can also be calibrated by the threshold and symmetric arguments.

References

Brown, N. J. L., & Heathers, J. A. J. (2017). The GRIM Test: A Simple Technique Detects Numer-
ous Anomalies in the Reporting of Results in Psychology. Social Psychological and Personality
Science, 8(4), 363–369. https://journals.sagepub.com/doi/10.1177/1948550616673876

See Also

grim_map() applies grim() to any number of cases at once.

Examples

A mean of 5.19 is not consistent with a sample size of 28:
grim(x = "5.19", n = 28) # `x` in quotes!

However, it is consistent with a sample size of 32:
grim(x = "5.19", n = 32)

For a scale composed of two items:
grim(x = "2.84", n = 16, items = 2)

With percentages instead of means -- here, 71%:
grim(x = "71", n = 43, percent = TRUE)

grim-stats Possible GRIM inconsistencies

Description

Even without GRIM-testing, means / proportions and sample sizes of granular distributions entail
some key data:

• grim_total() returns the absolute number of GRIM-inconsistencies that are possible given
the mean or percentage’s number of decimal places (D) and the corresponding sample size.

42 grim-stats

• grim_ratio() returns a proportion that is normalized by 10^D, and therefore comparable
across mean or percentage values reported to varying D.

• grim_ratio_upper() returns the upper bound of grim_ratio() for a given D.

For discussion, see vignette("grim"), section GRIM statistics.

Usage

grim_total(x, n, items = 1, percent = FALSE)

grim_ratio(x, n, items = 1, percent = FALSE)

grim_ratio_upper(x, percent = FALSE)

Arguments

x String or numeric. Mean or percentage value computed from data with integer
units (e.g., mean scores on a Likert scale or percentage of study participants in
some condition). Note: Numeric inputs don’t include trailing zeros, although
these are important for both functions. See documentation for grim().

n Integer. Sample size corresponding to x.

items Integer. Number of items composing the mean or percentage value in question.
Default is 1.

percent Boolean. Set percent to TRUE if x is expressed as a proportion of 100 rather than
1. The functions will then account for this fact through increasing the decimal
count by 2. Default is FALSE.

Value

Integer or double. The number or proportion of possible GRIM inconsistencies.

References

Brown, N. J. L., & Heathers, J. A. J. (2017). The GRIM Test: A Simple Technique Detects Numer-
ous Anomalies in the Reporting of Results in Psychology. Social Psychological and Personality
Science, 8(4), 363–369. https://journals.sagepub.com/doi/10.1177/1948550616673876

See Also

grim() for the GRIM test itself; as well as grim_map() for applying it to many cases at once.

Examples

Many value sets are inconsistent here:
grim_total(x = "83.29", n = 21)
grim_ratio(x = "83.29", n = 21)

No sets are inconsistent in this case...
grim_total(x = "5.14", n = 83)

grimmer 43

grim_ratio(x = "5.14", n = 83)

... but most would be if `x` was a percentage:
grim_total(x = "5.14", n = 83, percent = TRUE)
grim_ratio(x = "5.14", n = 83, percent = TRUE)

grimmer The GRIMMER test (granularity-related inconsistency of means
mapped to error repeats)

Description

grimmer() checks if reported mean and SD values of integer data are mathematically consistent
with the reported sample size and the number of items that compose the mean value. It works much
like grim().

The function is vectorized, but it is recommended to use grimmer_map() for testing multiple cases.

Usage

grimmer(
x,
sd,
n,
items = 1,
show_reason = FALSE,
rounding = "up_or_down",
threshold = 5,
symmetric = FALSE,
tolerance = .Machine$double.eps^0.5

)

Arguments

x String. The reported mean value.

sd String. The reported standard deviation.

n Integer. The reported sample size.

items (NOTE: Don’t use the items argument. It currently contains a bug that will be
fixed in scrutiny’s next CRAN release.) Integer. The number of items composing
the x and sd values. Default is 1, the most common case.

show_reason Boolean. For internal use only. If set to TRUE, the output is a list of length-2 lists
which also contain the reasons for inconsistencies. Don’t specify this manually;
instead, use show_reason in grimmer_map(). Default is FALSE.

rounding String. Rounding method or methods to be used for reconstructing the values to
which x will be compared. Default is "up_or_down" (from 5).

44 grimmer

threshold Numeric. If rounding is set to "up_from", "down_from", or "up_from_or_down_from",
set threshold to the number from which the reconstructed values should then
be rounded up or down. Otherwise, this argument plays no role. Default is 5.

symmetric Boolean. Set symmetric to TRUE if the rounding of negative numbers with "up",
"down", "up_from", or "down_from" should mirror that of positive numbers so
that their absolute values are always equal. Default is FALSE.

tolerance Numeric. Tolerance of comparison between x and the possible mean or percent-
age values. Default is circa 0.000000015 (1.490116e-08), as in dplyr::near().

Details

GRIMMER was originally devised by Anaya (2016). The present implementation follows Al-
lard’s (2018) refined Analytic-GRIMMER (A-GRIMMER) algorithm. It adapts the R function
aGrimmer() provided by Allard and modifies it to accord with scrutiny’s standards, as laid out in
vignette("consistency-tests"), sections 1-2. The resulting grimmer() function, then, is a
vectorized version of this basic implementation. For more context and variable name translations,
see the top of the R/grimmer.R, the source file.

The present implementation can differ from Allard’s in a small number of cases. In most cases, this
means that the original flags a value set as inconsistent, but scrutiny’s grimmer*() functions don’t.
For details, see the end of tests/testthat/test-grimmer.R, the grimmer() test file.

Value

Boolean. TRUE if x, sd, n, and items are mutually consistent, FALSE if not.

References

Allard, A. (2018). Analytic-GRIMMER: a new way of testing the possibility of standard deviations.
https://aurelienallard.netlify.app/post/anaytic-grimmer-possibility-standard-deviations/

Anaya, J. (2016). The GRIMMER test: A method for testing the validity of reported measures of
variability. PeerJ Preprints. https://peerj.com/preprints/2400v1/

Examples

A mean of 5.23 is not consistent with an SD of 2.55
and a sample size of 35:
grimmer(x = "5.23", sd = "2.55", n = 35)

However, mean and SD are consistent with a
sample size of 31:
grimmer(x = "5.23", sd = "2.55", n = 31)

For a scale composed of two items:
grimmer(x = "2.74", sd = "0.96", n = 63, items = 2)

grimmer_map 45

grimmer_map GRIMMER-test many cases at once

Description

Call grimmer_map() to GRIMMER-test any number of combinations of mean, standard deviation,
sample size, and number of items. Mapping function for GRIMMER-testing.

For summary statistics, call audit() on the results. Visualize results using grim_plot(), as with
GRIM results.

Usage

grimmer_map(
data,
items = 1,
merge_items = TRUE,
x = NULL,
sd = NULL,
n = NULL,
show_reason = TRUE,
rounding = "up_or_down",
threshold = 5,
symmetric = FALSE,
tolerance = .Machine$double.eps^0.5

)

Arguments

data Data frame with columns x, sd, n, and optionally items (see documentation for
grim()). Any other columns in data will be returned alongside GRIMMER test
results.

items (NOTE: Don’t use the items argument. It currently contains a bug that will be
fixed in scrutiny’s next CRAN release.) Integer. If there is no items column in
data, this specifies the number of items composing the x and sd values. Default
is 1, the most common case.

merge_items Boolean. If TRUE (the default), there will be no items column in the output. In-
stead, values from an items column or argument will be multiplied with values
in the n column. This does not affect GRIM- or GRIMMER-testing.

x, sd, n Optionally, specify these arguments as column names in data.

show_reason Boolean (length 1). Should there be a reason column that shows the reasons for
inconsistencies (and NA for consistent values)? Default is FALSE.

rounding, threshold, symmetric, tolerance

Further parameters of GRIMMER-testing; see documentation for grimmer().

46 grimmer_map

Value

A tibble with these columns –

• x, sd, n: the inputs.

• consistency: GRIMMER consistency of x, n, and items.
• <extra>: any columns from data other than x, n, and items.

The tibble has the scr_grimmer_map class, which is recognized by the audit() generic. It also has
the scr_grim_map class, so it can be visualized by grim_plot().

Summaries with audit()

There is an S3 method for audit(), so you can call audit() following grimmer_map() to get a
summary of grimmer_map()’s results. It is a tibble with a single row and these columns –

1. incons_cases: number of GRIMMER-inconsistent value sets.

2. all_cases: total number of value sets.

3. incons_rate: proportion of GRIMMER-inconsistent value sets.

4. fail_grim: number of value sets that fail the GRIM test.

5. fail_test1: number of value sets that fail the first GRIMMER test (sum of squares is a whole
number)

6. fail_test2: number of value sets that fail the second GRIMMER test (matching SDs)

7. fail_test3: number of value sets that fail the third GRIMMER test (equal parity)

References

Allard, A. (2018). Analytic-GRIMMER: a new way of testing the possibility of standard deviations.
https://aurelienallard.netlify.app/post/anaytic-grimmer-possibility-standard-deviations/

Anaya, J. (2016). The GRIMMER test: A method for testing the validity of reported measures of
variability. PeerJ Preprints. https://peerj.com/preprints/2400v1/

Examples

Use `grimmer_map()` on data like these:
pigs5

The `consistency` column shows whether
the values to its left are GRIMMER-consistent.
If they aren't, the `reason` column says why:
pigs5 %>%

grimmer_map()

Get summaries with `audit()`:
pigs5 %>%

grimmer_map() %>%
audit()

grimmer_map_seq 47

grimmer_map_seq GRIMMER-testing with dispersed inputs

Description

grimmer_map_seq() performs GRIMMER-testing with values surrounding the input values. This
provides an easy and powerful way to assess whether small errors in computing or reporting may
be responsible for GRIMMER-inconsistencies in published statistics.

Call audit_seq() on the results for summary statistics.

Usage

grimmer_map_seq(
data,
x = NULL,
sd = NULL,
n = NULL,
var = .var,
dispersion = .dispersion,
out_min = .out_min,
out_max = .out_max,
include_reported = .include_reported,
include_consistent = .include_consistent,
...

)

Arguments

data A data frame that grimmer_map() could take.

x, sd, n Optionally, specify these arguments as column names in data.

var String. Names of the columns that will be dispersed. Default is c("x", "sd",
"n").

dispersion Numeric. Sequence with steps up and down from the var inputs. It will be
adjusted to these values’ decimal levels. For example, with a reported 8.34, the
step size is 0.01. Default is 1:5, for five steps up and down.

out_min, out_max

If specified, output will be restricted so that it’s not below out_min or above
out_max. Defaults are "auto" for out_min, i.e., a minimum of one decimal
unit above zero; and NULL for out_max, i.e., no maximum.

include_reported

Boolean. Should the reported values themselves be included in the sequences
originating from them? Default is FALSE because this might be redundant and
bias the results.

48 grimmer_map_seq

include_consistent

Boolean. Should the function also process consistent cases (from among those
reported), not just inconsistent ones? Default is FALSE because the focus should
be on clarifying inconsistencies.

... Arguments passed down to grimmer_map(). (NOTE: Don’t use the items ar-
gument. It currently contains a bug that will be fixed in scrutiny’s next CRAN
release.)

Value

A tibble (data frame) with detailed test results.

Summaries with audit_seq()

You can call audit_seq() following grimmer_map_seq(). It will return a data frame with these
columns:

• x, sd, and n are the original inputs, tested for consistency here.

• hits_total is the total number of GRIMMER-consistent value sets found within the specified
dispersion range.

• hits_x is the number of GRIMMER-consistent value sets found by varying x.

• Accordingly with sd and hits_sd as well as n and hits_n.

• (Note that any consistent reported cases will be counted by the hits_* columns if both
include_reported and include_consistent are set to TRUE.)

• diff_x reports the absolute difference between x and the next consistent dispersed value (in
dispersion steps, not the actual numeric difference). diff_x_up and diff_x_down report the
difference to the next higher or lower consistent value, respectively.

• diff_sd, diff_sd_up, and diff_sd_down do the same for sd.

• Likewise with diff_n, diff_n_up, and diff_n_down.

Examples

`grimmer_map_seq()` can take any input
that `grimmer_map()` can take:
pigs5

All the results:
out <- grimmer_map_seq(pigs5, include_consistent = TRUE)
out

Case-wise summaries with `audit_seq()`
can be more important than the raw results:
out %>%

audit_seq()

grimmer_map_total_n 49

grimmer_map_total_n GRIMMER-testing with hypothetical group sizes

Description

When reporting group means, some published studies only report the total sample size but no group
sizes corresponding to each mean. However, group sizes are crucial for GRIMMER-testing.

In the two-groups case, grimmer_map_total_n() helps in these ways:

• It creates hypothetical group sizes. With an even total sample size, it incrementally moves up
and down from half the total sample size. For example, with a total sample size of 40, it starts
at 20, goes on to 19 and 21, then to 18 and 22, etc. With odd sample sizes, it starts from the
two integers around half.

• It GRIMMER-tests all of these values together with the group means.

• It reports all the scenarios in which both "dispersed" hypothetical group sizes are GRIMMER-
consistent with the group means.

All of this works with one or more total sample sizes at a time. Call audit_total_n() for summary
statistics.

Usage

grimmer_map_total_n(
data,
x1 = NULL,
x2 = NULL,
sd1 = NULL,
sd2 = NULL,
dispersion = .dispersion,
n_min = .n_min,
n_max = .n_max,
constant = .constant,
constant_index = .constant_index,
...

)

Arguments

data Data frame with string columns x1, x2, sd1, and sd2, as well as numeric column
n. The first two are reported group means. sd1 and sd2 are reported group SDs.
n is the reported total sample size. It is not very important whether a value is in
x1 or in x2 because, after the first round of tests, the function switches roles be-
tween x1 and x2, and reports the outcomes both ways. The same applies to sd1
and sd2. However, do make sure the x* and sd* values are paired accurately, as
reported.

x1, x2, sd1, sd2

Optionally, specify these arguments as column names in data.

50 grimmer_map_total_n

dispersion Numeric. Steps up and down from half the n values. Default is 0:5, i.e., half n
itself followed by five steps up and down.

n_min Numeric. Minimal group size. Default is 1.

n_max Numeric. Maximal group size. Default is NULL, i.e., no maximum.

constant Optionally, add a length-2 vector or a list of length-2 vectors (such as a data
frame with exactly two rows) to accompany the pairs of dispersed values. De-
fault is NULL, i.e., no constant values.

constant_index Integer (length 1). Index of constant or the first constant column in the output
tibble. If NULL (the default), constant will go to the right of n_change.

... Arguments passed down to grimmer_map(). (NOTE: Don’t use the items ar-
gument. It currently contains a bug that will be fixed in scrutiny’s next CRAN
release.)

Value

A tibble with these columns:

• x, the group-wise reported input statistic, is repeated in row pairs.

• n is dispersed from half the input n, with n_change tracking the differences.

• both_consistent flags scenarios where both reported x values are consistent with the hypo-
thetical n values.

• case corresponds to the row numbers of the input data frame.

• dir is "forth" in the first half of rows and "back" in the second half. "forth" means that x2
from the input is paired with the larger dispersed n, whereas "back" means that x1 is paired
with the larger dispersed n.

• Other columns from grimmer_map() are preserved

Summaries with audit_total_n()

You can call audit_total_n() following up on grimmer_map_total_n() to get a tibble with
summary statistics. It will have these columns:

• x1, x2, sd1, sd2, and n are the original inputs.

• hits_total is the number of scenarios in which all of x1, x2, sd1, and sd2 are GRIMMER-
consistent. It is the sum of hits_forth and hits_back below.

• hits_forth is the number of both-consistent cases that result from pairing x2 and sd2 with
the larger dispersed n value.

• hits_back is the same, except x1 and sd1 are paired with the larger dispersed n value.

• scenarios_total is the total number of test scenarios, whether or not both x1 and sd1 as
well as x2 and sd2 are GRIMMER-consistent.

• hit_rate is the ratio of hits_total to scenarios_total.

grim_granularity 51

References

Bauer, P. J., & Francis, G. (2021). Expression of Concern: Is It Light or Dark? Recalling Moral Be-
havior Changes Perception of Brightness. Psychological Science, 32(12), 2042–2043. https://journals.sagepub.com/doi/10.1177/09567976211058727

Allard, A. (2018). Analytic-GRIMMER: a new way of testing the possibility of standard deviations.
https://aurelienallard.netlify.app/post/anaytic-grimmer-possibility-standard-deviations/

Bauer, P. J., & Francis, G. (2021). Expression of Concern: Is It Light or Dark? Recalling Moral Be-
havior Changes Perception of Brightness. Psychological Science, 32(12), 2042–2043. https://journals.sagepub.com/doi/10.1177/09567976211058727

See Also

function_map_total_n(), which created the present function using grimmer_map().

Examples

Run `grimmer_map_total_n()` on data like these:
df <- tibble::tribble(

~x1, ~x2, ~sd1, ~sd2, ~n,
"3.43", "5.28", "1.09", "2.12", 70,
"2.97", "4.42", "0.43", "1.65", 65

)
df

grimmer_map_total_n(df)

`audit_total_n()` summaries can be more important than
the detailed results themselves.
The `hits_total` column shows all scenarios in
which both divergent `n` values are GRIMMER-consistent
with the `x*` values when paired with them both ways:
df %>%

grimmer_map_total_n() %>%
audit_total_n()

By default (`dispersion = 0:5`), the function goes
five steps up and down from `n`. If this sequence
gets longer, the number of hits tends to increase:
df %>%

grimmer_map_total_n(dispersion = 0:10) %>%
audit_total_n()

grim_granularity Granularity of non-continuous scales

Description

grim_granularity() computes the minimal difference between two means or proportions of or-
dinal or interval data.

grim_items() is the reverse: It converts granularity values to the number of scale items, which
might then be used for consistency testing functions such as grim().

52 grim_granularity

Usage

grim_granularity(n, items = 1)

grim_items(n, gran, tolerance = .Machine$double.eps^0.5)

Arguments

n Numeric. Sample size.

items Numeric. Number of items composing the scale. Default is 1, which will hold
for most non-Likert scales.

gran Numeric. Granularity.

tolerance Numeric. In grim_items(), tolerance is the maximal amount by which results
may differ from being whole numbers. If they exceed that amount, a warning
will be shown.

Details

These two functions differ only in the names of their arguments — the underlying formula is the
same (and it’s very simple). However, for clarity, they are presented as distinct.

The output of grim_items() should be whole numbers, because scale items have a granularity of 1.
If they differ from the next whole number by more than a numeric tolerance (which is determined
by the argument by that name), a warning will be shown.

It would be wrong to determine a scale’s granularity from the minimal distance between two values
in a given distribution. This would only signify how those values actually do differ, not how they can
differ a priori based on scale design. Also, keep in mind that continuous scales have no granularity
at all.

Value

Numeric. Granularity or number of items.

References

Brown, N. J. L., & Heathers, J. A. J. (2017). The GRIM Test: A Simple Technique Detects Numer-
ous Anomalies in the Reporting of Results in Psychology. Social Psychological and Personality
Science, 8(4), 363–369. https://journals.sagepub.com/doi/10.1177/1948550616673876

Examples

If a non-Likert scale ranges from 0 to 3
and measures 16 cases:
grim_granularity(n = 16) # `items = 1` by default

Same but Likert scale with 2 items:
grim_granularity(n = 16, items = 2)

If a scale is applied to a single case
and has a granularity of 0.5:

grim_map 53

grim_items(n = 1, gran = 0.5)

With more cases, a warning appears
because items can only be whole numbers:
grim_items(n = c(10, 15, 20), gran = 0.5)

grim_map GRIM-test many cases at once

Description

Call grim_map() to GRIM-test any number of combinations of mean/proportion, sample size, and
number of items. Mapping function for GRIM-testing.

Set percent to TRUE if the x values are percentages. This will convert x values to decimals and
adjust the decimal count accordingly.

Display intermediary numbers from GRIM-testing in columns by setting show_rec to TRUE.

For summary statistics, call audit() on the results.

Usage

grim_map(
data,
items = 1,
merge_items = TRUE,
percent = FALSE,
x = NULL,
n = NULL,
show_rec = FALSE,
show_prob = FALSE,
rounding = "up_or_down",
threshold = 5,
symmetric = FALSE,
tolerance = .Machine$double.eps^0.5,
testables_only = FALSE,
extra = Inf

)

Arguments

data Data frame with columns x, n, and optionally items (see documentation for
grim(). By default, any other columns in data will be returned alongside GRIM
test results (see extra below).

items Integer. If there is no items column in data, this specifies the number of items
composing the x values. Default is 1, the most common case.

merge_items Boolean. If TRUE (the default), there will be no items column in the output. In-
stead, values from an items column or argument will be multiplied with values
in the n column. This does not affect GRIM-testing.

54 grim_map

percent Boolean. Set percent to TRUE if the x values are percentages. This will convert
them to decimal numbers and adjust the decimal count (i.e., increase it by 2). It
also affects the ratio column. Default is FALSE.

x, n Optionally, specify these arguments as column names in data.

show_rec Boolean. If set to TRUE, the reconstructed numbers from GRIM-testing are
shown as columns. See section Reconstructed numbers below. Default is FALSE.

show_prob Boolean. If set to TRUE, adds a prob column that contains the probability of
GRIM inconsistency. This is simply the ratio column censored to range be-
tween 0 and 1. Default is FALSE.

rounding, threshold, symmetric, tolerance

Further parameters of GRIM-testing; see documentation for grim().

testables_only Boolean. If testables_only is set to TRUE, only GRIM-testable cases (i.e.,
those with a positive GRIM ratio) are included. Default is FALSE.

extra String or integer. The other column(s) from data to be returned in the output
tibble alongside test results, referenced by their name(s) or number(s). Default
is Inf, which returns all columns. To return none of them, set extra to 0.

Value

A tibble with these columns –

• x, n: the inputs.

• consistency: GRIM consistency of x, n, and items.
• <extra>: any columns from data other than x, n, and items.

• ratio: the GRIM ratio; see grim_ratio().

The tibble has the scr_grim_map class, which is recognized by the audit() generic.

Reconstructed numbers

If show_rec is set to TRUE, the output includes the following additional columns:

• rec_sum: the sum total from which the mean or proportion was ostensibly derived.

• rec_x_upper: the upper reconstructed x value.

• rec_x_lower: the lower reconstructed x value.

• rec_x_upper_rounded: the rounded rec_x_upper value.

• rec_x_lower_rounded: the rounded rec_x_lower value.

With the default for rounding, "up_or_down", each of the last two columns is replaced by two
columns that specify the rounding procedures (i.e., "_up" and "_down").

Summaries with audit()

There is an S3 method for audit(), so you can call audit() following grim_map() to get a sum-
mary of grim_map()’s results. It is a tibble with a single row and these columns –

1. incons_cases: number of GRIM-inconsistent value sets.

grim_map_seq 55

2. all_cases: total number of value sets.

3. incons_rate: proportion of GRIM-inconsistent value sets.

4. mean_grim_ratio: average of GRIM ratios.

5. incons_to_ratio: ratio of incons_rate to mean_grim_ratio.

6. testable_cases: number of GRIM-testable value sets (i.e., those with a positive ratio).

7. testable_rate: proportion of GRIM-testable value sets.

References

Brown, N. J. L., & Heathers, J. A. J. (2017). The GRIM Test: A Simple Technique Detects Numer-
ous Anomalies in the Reporting of Results in Psychology. Social Psychological and Personality
Science, 8(4), 363–369. https://journals.sagepub.com/doi/10.1177/1948550616673876

Examples

Use `grim_map()` on data like these:
pigs1

The `consistency` column shows
whether the values to its left
are GRIM-consistent:
pigs1 %>%

grim_map()

Display intermediary numbers from
GRIM-testing with `show_rec = TRUE`:
pigs1 %>%

grim_map(show_rec = TRUE)

Get summaries with `audit()`:
pigs1 %>%

grim_map() %>%
audit()

grim_map_seq GRIM-testing with dispersed inputs

Description

grim_map_seq() performs GRIM-testing with values surrounding the input values. This provides
an easy and powerful way to assess whether small errors in computing or reporting may be respon-
sible for GRIM-inconsistencies in published statistics.

Call audit_seq() on the results for summary statistics.

56 grim_map_seq

Usage

grim_map_seq(
data,
x = NULL,
n = NULL,
var = .var,
dispersion = .dispersion,
out_min = .out_min,
out_max = .out_max,
include_reported = .include_reported,
include_consistent = .include_consistent,
...

)

Arguments

data A data frame that grim_map() could take.

x, n Optionally, specify these arguments as column names in data.

var String. Names of the columns that will be dispersed. Default is c("x", "n").

dispersion Numeric. Sequence with steps up and down from the var inputs. It will be
adjusted to these values’ decimal levels. For example, with a reported 8.34, the
step size is 0.01. Default is 1:5, for five steps up and down.

out_min, out_max

If specified, output will be restricted so that it’s not below out_min or above
out_max. Defaults are "auto" for out_min, i.e., a minimum of one decimal
unit above zero; and NULL for out_max, i.e., no maximum.

include_reported

Boolean. Should the reported values themselves be included in the sequences
originating from them? Default is FALSE because this might be redundant and
bias the results.

include_consistent

Boolean. Should the function also process consistent cases (from among those
reported), not just inconsistent ones? Default is FALSE because the focus should
be on clarifying inconsistencies.

... Arguments passed down to grim_map().

Value

A tibble (data frame) with detailed test results.

Summaries with audit_seq()

You can call audit_seq() following grim_map_seq(). It will return a data frame with these
columns:

• x and n are the original inputs, tested for consistency here.

grim_map_total_n 57

• hits_total is the total number of GRIM-consistent value sets found within the specified
dispersion range.

• hits_x is the number of GRIM-consistent value sets found by varying x.

• Accordingly with n and hits_n.

• (Note that any consistent reported cases will be counted by the hits_* columns if both
include_reported and include_consistent are set to TRUE.)

• diff_x reports the absolute difference between x and the next consistent dispersed value (in
dispersion steps, not the actual numeric difference). diff_x_up and diff_x_down report the
difference to the next higher or lower consistent value, respectively.

• diff_n, diff_n_up, and diff_n_down do the same for n.

Call audit() following audit_seq() to summarize results even further.

Examples

`grim_map_seq()` can take any input
that `grim_map()` can take:
pigs1

All the results:
out <- grim_map_seq(pigs1, include_consistent = TRUE)
out

Case-wise summaries with `audit_seq()`
can be more important than the raw results:
out %>%

audit_seq()

grim_map_total_n GRIM-testing with hypothetical group sizes

Description

When reporting group means, some published studies only report the total sample size but no group
sizes corresponding to each mean. However, group sizes are crucial for GRIM-testing.

In the two-groups case, grim_map_total_n() helps in these ways:

• It creates hypothetical group sizes. With an even total sample size, it incrementally moves up
and down from half the total sample size. For example, with a total sample size of 40, it starts
at 20, goes on to 19 and 21, then to 18 and 22, etc. With odd sample sizes, it starts from the
two integers around half.

• It GRIM-tests all of these values together with the group means.

• It reports all the scenarios in which both "dispersed" hypothetical group sizes are GRIM-
consistent with the group means.

All of this works with one or more total sample sizes at a time. Call audit_total_n() for summary
statistics.

58 grim_map_total_n

Usage

grim_map_total_n(
data,
x1 = NULL,
x2 = NULL,
dispersion = .dispersion,
n_min = .n_min,
n_max = .n_max,
constant = .constant,
constant_index = .constant_index,
...

)

Arguments

data Data frame with string columns x1 and x2, and numeric column n. The first
two are group mean or percentage values with unknown group sizes, and n is
the total sample size. It is not very important whether a value is in x1 or in x2
because, after the first round of tests, the function switches roles between x1 and
x2, and reports the outcomes both ways.

x1, x2 Optionally, specify these arguments as column names in data.

dispersion Numeric. Steps up and down from half the n values. Default is 0:5, i.e., half n
itself followed by five steps up and down.

n_min Numeric. Minimal group size. Default is 1.

n_max Numeric. Maximal group size. Default is NULL, i.e., no maximum.

constant Optionally, add a length-2 vector or a list of length-2 vectors (such as a data
frame with exactly two rows) to accompany the pairs of dispersed values. De-
fault is NULL, i.e., no constant values.

constant_index Integer (length 1). Index of constant or the first constant column in the output
tibble. If NULL (the default), constant will go to the right of n_change.

... Arguments passed down to grim_map().

Value

A tibble with these columns:

• x, the group-wise reported input statistic, is repeated in row pairs.

• n is dispersed from half the input n, with n_change tracking the differences.

• both_consistent flags scenarios where both reported x values are consistent with the hypo-
thetical n values.

• case corresponds to the row numbers of the input data frame.

• dir is "forth" in the first half of rows and "back" in the second half. "forth" means that x2
from the input is paired with the larger dispersed n, whereas "back" means that x1 is paired
with the larger dispersed n.

• Other columns from grim_map() are preserved.

grim_map_total_n 59

Summaries with audit_total_n()

You can call audit_total_n() following up on grim_map_total_n() to get a tibble with summary
statistics. It will have these columns:

• x1, x2, and n are the original inputs.

• hits_total is the number of scenarios in which both x1 and x2 are GRIM-consistent. It is
the sum of hits_forth and hits_back below.

• hits_forth is the number of both-consistent cases that result from pairing x2 with the larger
dispersed n value.

• hits_back is the same, except x1 is paired with the larger dispersed n value.

• scenarios_total is the total number of test scenarios, whether or not both x1 and x2 are
GRIM-consistent.

• hit_rate is the ratio of hits_total to scenarios_total.

Call audit() following audit_total_n() to summarize results even further.

References

Bauer, P. J., & Francis, G. (2021). Expression of Concern: Is It Light or Dark? Recalling Moral Be-
havior Changes Perception of Brightness. Psychological Science, 32(12), 2042–2043. https://journals.sagepub.com/doi/10.1177/09567976211058727

Brown, N. J. L., & Heathers, J. A. J. (2017). The GRIM Test: A Simple Technique Detects Numer-
ous Anomalies in the Reporting of Results in Psychology. Social Psychological and Personality
Science, 8(4), 363–369. https://journals.sagepub.com/doi/10.1177/1948550616673876

See Also

function_map_total_n(), which created the present function using grim_map().

Examples

Run `grim_map_total_n()` on data like these:
df <- tibble::tribble(

~x1, ~x2, ~n,
"3.43", "5.28", 90,
"2.97", "4.42", 103

)
df

grim_map_total_n(df)

`audit_total_n()` summaries can be more important than
the detailed results themselves.
The `hits_total` column shows all scenarios in
which both divergent `n` values are GRIM-consistent
with the `x*` values when paired with them both ways:
df %>%

grim_map_total_n() %>%
audit_total_n()

60 grim_plot

By default (`dispersion = 0:5`), the function goes
five steps up and down from `n`. If this sequence
gets longer, the number of hits tends to increase:
df %>%

grim_map_total_n(dispersion = 0:10) %>%
audit_total_n()

grim_plot Visualize GRIM test results

Description

grim_plot() visualizes summary data and their mutual GRIM consistency. Call this function only
on a data frame that resulted from a call to grim_map().

Consistent and inconsistent value pairs from the input data frame are shown in distinctive colors.
By default, consistent value pairs are blue and inconsistent ones are red. These and other parameters
of the underlying geoms can be controlled via arguments.

The background raster follows the rounding argument from the grim_map() call (unless any of
the plotted mean or proportion values has more than 2 decimal places, in which case a gradient is
shown, not a raster).

Usage

grim_plot(
data = NULL,
show_data = TRUE,
show_raster = TRUE,
show_gradient = TRUE,
n = NULL,
digits = NULL,
rounding = "up_or_down",
color_cons = "royalblue1",
color_incons = "red",
tile_alpha = 1,
tile_size = 1.5,
raster_alpha = 1,
raster_color = "grey75"

)

Arguments

data Data frame. Result of a call to grim_map().

show_data Boolean. If set to FALSE, test results from the data are not displayed. Choose
this if you only want to show the background raster. You can then control plot
parameters directly via the n, digits, and rounding arguments. Default is
TRUE.

grim_plot 61

show_raster Boolean. If TRUE (the default), the plot has a background raster.

show_gradient Boolean. If the number of decimal places is 3 or greater, should a gradient be
shown to signal the overall probability of GRIM inconsistency? Default is TRUE.

n Integer. Maximal value on the x-axis. Default is NULL, in which case n becomes
10 ^ digits (e.g., 100 if digits is 2).

digits Integer. Only relevant if show_data is set to FALSE. The plot will then be con-
structed as it would be for data where all x values have this many decimal places.
Default is 2.

rounding String. Only relevant if show_data is set to FALSE. The plot will then be con-
structed as it would be for data rounded in this particular way. Default is
"up_or_down".

color_cons, color_incons

Strings. Fill colors of the consistent and inconsistent scatter points. Defaults are
"royalblue1" (consistent) and "red" (inconsistent).

tile_alpha, tile_size

Numeric. Further parameters of the scatter points: opacity and, indirectly, size.
Defaults are 1 and 1.5.

raster_alpha, raster_color

Numeric and string, respectively. Parameters of the background raster: opacity
and fill color. Defaults are 1 and "grey75".

Value

A ggplot object.

Background raster

The background raster shows the probability of GRIM-inconsistency for random means or propor-
tions, from 0 (all inconsistent) to the greatest number on the x-axis (all consistent). If the number of
decimal places in the inputs – means or percentages – is 3 or greater, individual points would be too
small to display. In these cases, there will not be a raster but a gradient, showing the overall trend.

As any raster only makes sense with respect to one specific number of decimal places, the function
will throw an error if these numbers differ among input x values (and show_raster is TRUE). You
can avoid the error and force plotting by specifying digits as the number of decimal places for
which the raster or gradient should be displayed.

For 1 or 2 decimal places, the raster will be specific to the rounding procedure. As the raster varies
by rounding procedure, it will automatically correspond to the rounding argument specified in the
preceding grim_map() call. This works fast because the raster is based on data saved in the package
itself, so these data don’t need to be generated anew every time the function is called. Inconsistent
value sets are marked with dark boxes. All other places in the raster denote consistent value sets.
The raster is independent of the data – it only follows the rounding specification in the grim_map()
call and the digits argument in grim_plot().

Display an "empty" plot, one without empirical test results, by setting show_data to FALSE. You
can then control key parameters of the plot with digits and rounding.

With grim_map()’s default for rounding, "up_or_down", strikingly few values are flagged as in-
consistent for sample sizes 40 and 80 (or 4 and 8). This effect disappears if rounding is set to any

62 is_numeric_like

other value. For a list of values that rounding can take, see documentation for grim(), section
Rounding.

The 4/8 leniency effect arises because accepting values rounded either up or down is more careful
and conservative than any other rounding procedure. In any case, grim_plot() doesn’t cause this
effect — it only reveals it.

References

Brown, N. J. L., & Heathers, J. A. J. (2017). The GRIM Test: A Simple Technique Detects Numer-
ous Anomalies in the Reporting of Results in Psychology. Social Psychological and Personality
Science, 8(4), 363–369. https://journals.sagepub.com/doi/10.1177/1948550616673876

Examples

Call `grim_plot()` following `grim_map()`:
pigs1 %>%

grim_map() %>%
grim_plot()

If you change the rounding procedure
in `grim_map()`, the plot will
follow automatically if there is
a difference:
pigs1 %>%

grim_map(rounding = "ceiling") %>%
grim_plot()

For percentages, the y-axis
label also changes automatically:
pigs2 %>%

grim_map(percent = TRUE) %>%
grim_plot()

is_numeric_like Test whether a vector is numeric or coercible to numeric

Description

is_numeric_like() tests whether an object is "coercible to numeric" by the particular standards
of scrutiny. This means:

• Integer and double vectors are TRUE.

• Booleans are FALSE, as are non-vector objects.

• Other vectors (most likely strings) are TRUE if all their non-NA values can be coerced to non-NA
numeric values, and FALSE otherwise.

• Factors are first coerced to string, then tested.

• Lists are tested like atomic vectors unless any of their elements have length greater 1, in which
case they are always FALSE.

is_numeric_like 63

• If all values are non-numeric, non-Boolean NA, the output is also NA.

See details for discussion.

Usage

is_numeric_like(x)

Arguments

x Object to be tested.

Details

The scrutiny package often deals with "number-strings", i.e., strings that can be coerced to numeric
without introducing new NAs. This is a matter of displaying data in a certain way, as opposed to
their storage mode.

is_numeric_like() returns FALSE for Booleans simply because these are displayed as words, not
as numbers, and the usual coercion rules would be misleading in this context. Likewise, the function
treats factors like strings because that is how they are displayed: the fact that factors are stored as
integers is irrelevant.

Why store numbers as strings or factors? Only these data types can preserve trailing zeros, and only
if the data were originally entered as strings. See vignette("wrangling"), section Trailing zeros.

Value

Boolean (length 1).

See Also

The vctrs package provides a serious typing framework for R; quite in contrast to this rather ad-hoc
and use case-specific function.

Examples

Numeric vectors are `TRUE`:
is_numeric_like(x = 1:5)
is_numeric_like(x = 2.47)

Booleans are always `FALSE`:
is_numeric_like(x = c(TRUE, FALSE))

Strings are `TRUE` if all of their non-`NA`
values can be coerced to non-`NA` numbers,
and `FALSE` otherwise:
is_numeric_like(x = c("42", "0.7", NA))
is_numeric_like(x = c("42", "xyz", NA))

Factors are treated like their
string equivalents:
is_numeric_like(x = as.factor(c("42", "0.7", NA)))

https://vctrs.r-lib.org/

64 manage_helper_col

is_numeric_like(x = as.factor(c("42", "0.7", NA)))

Lists behave like atomic vectors if all of their
elements have length 1...
is_numeric_like(x = list("42", "0.7", NA))
is_numeric_like(x = list("42", "xyz", NA))

...but if they don't, they are `FALSE`:
is_numeric_like(x = list("42", "0.7", NA, c(1, 2, 3)))

If all values are `NA`, so is the output...
is_numeric_like(x = as.character(c(NA, NA, NA)))

...unless the `NA`s are numeric or Boolean:
is_numeric_like(x = as.numeric(c(NA, NA, NA)))
is_numeric_like(x = c(NA, NA, NA))

manage_helper_col Helper column operations

Description

If your consistency test mapper function supports helper columns, call manage_helper_col() in-
ternally; once for every such column. It will check whether a helper column is compatible with its
eponymous argument, i.e., if the argument was not specified by the user but has its default value.

By default (affix = TRUE), the function will add the column to the mapper’s input data frame. It
returns the input data frame, so reassign its output to that variable.

All of this only works in mapper functions that were "handwritten" using function(), as opposed
to those produced by function_map(). See vignette("consistency-tests"), section Writing
mappers manually.

Usage

manage_helper_col(data, var_arg, default, affix = TRUE)

Arguments

data The data frame that is the mapper function’s first argument.

var_arg The argument to the mapper function that has the same name as the helper col-
umn you want to manage.

default The default for the argument that was specified in var_arg.

affix Boolean (length 1). If data doesn’t include the helper column already, should
var_arg be added to data, bearing its proper name? Default is TRUE.

Value

The input data frame, data, possibly modified (see affix argument).

manage_key_colnames 65

manage_key_colnames Enable name-independent key column identification

Description

A handwritten mapper function for consistency tests, such as grim_map(), may include arguments
named after the key columns in its input data frame. When such an argument is specified by the
user as a column name of the input data frame, it identifies a differently-named column as that key
column.

Create such functionality in three steps:

1. Add arguments to your mapper function named after the respective key columns. They should
be NULL by default; e.g., x = NULL, n = NULL.

2. Within the mapper, capture the user input by quoting it using rlang::enexpr(). Reassign
these values to the argument variables; e.g., x <- rlang::enexpr(x) and n <- rlang::enexpr(n).

3. For every such argument, call manage_key_colnames() and reassign its value to the input
data frame variable, adding a short description; e.g.,data <- manage_key_colnames(data,
x, "mean/proportion") and data <- manage_key_colnames(data, n, "sample size").

Usage

manage_key_colnames(data, arg, description = NULL)

Arguments

data The mapper function’s input data frame.

arg Symbol. The quoted input variable, captured by rlang::enexpr().

description String (length 1). Short description of the column in question, to be inserted into
an error message.

Value

The input data frame, data, possibly modified.

See Also

vignette("consistency-tests"), for context.

66 parens-extractors

parens-extractors Extract substrings from before and inside parentheses

Description

Two functions that extract substrings from before or inside parentheses, or similar separators like
brackets or curly braces: before_parens() and inside_parens().

See split_by_parens() to split some or all columns in a data frame into both parts.

Usage

before_parens(string, sep = "parens")

inside_parens(string, sep = "parens")

Arguments

string Vector of strings with parentheses or similar.

sep String. What to split by. Either "parens", "brackets", "braces", or a length-
2 vector of custom separators. See examples for split_by_parens(). Default
is "parens".

Value

String vector of the same length as string. The part of string before or inside sep, respectively.

Examples

x <- c(
"3.72 (0.95)",
"5.86 (2.75)",
"3.06 (6.48)"

)

before_parens(string = x)

inside_parens(string = x)

pigs1 67

pigs1 Means and sample sizes for GRIM-testing

Description

A fictional dataset with means and sample sizes of flying pigs. It can be used to demonstrate the
functionality of grim_map() and functions building up on it.

Usage

pigs1

Format

A tibble (data frame) with 12 rows and 2 columns. The columns are:

x String. Means.

n Numeric. Sample sizes.

Value

A tibble (data frame).

See Also

pigs2 for GRIM-testing percentages instead of means, pigs3 for DEBIT-testing, and pigs4 for
detecting duplicates.

pigs2 Percentages and sample sizes for GRIM-testing

Description

A fictional dataset with percentages and sample sizes of flying pigs. It can be used to demonstrate
the functionality of grim_map(), particularly its percent argument, and functions building up on
it.

Usage

pigs2

Format

A tibble (data frame) with 6 rows and 2 columns. The columns are:

x String. Percentages.

n Numeric. Sample sizes.

68 pigs3

Value

A tibble (data frame).

See Also

pigs1 for GRIM-testing means instead of percentages, pigs3 for DEBIT-testing, and pigs4 for
detecting duplicates.

pigs3 Binary means and standard deviations for using DEBIT

Description

A fictional dataset with means and standard deviations from a binary distribution related to flying
pigs. It can be used to demonstrate the functionality of debit_map() and functions building up on
it.

Usage

pigs3

Format

A tibble (data frame) with 7 rows and 3 columns. The columns are:

x String. Means.

sd String. Standard deviations.

n Numeric. Sample sizes.

Value

A tibble (data frame).

See Also

pigs1 for GRIM-testing means, pigs2 for GRIM-testing percentages, and pigs4 for detecting
duplicates.

pigs4 69

pigs4 Data with duplications

Description

A fictional dataset with observations of flying pigs. Two pairs of values are duplicates. The dataset
can be used to demonstrate the functionality of duplicate_detect() and functions building up on
it.

Usage

pigs4

Format

A tibble (data frame) with 7 rows and 3 columns. The columns are:

x String. Means.
sd String. Standard deviations.
n Numeric. Sample sizes.

Value

A tibble (data frame).

See Also

pigs1 for GRIM-testing means, pigs2 for GRIM-testing percentages, and pigs3 for using DEBIT.

pigs5 Means, SDs, and sample sizes for GRIMMER-testing

Description

A fictional dataset with means, standard deviations (SDs), and sample sizes of flying pigs. It can be
used to demonstrate the functionality of grimmer_map() and functions building up on it.

Usage

pigs5

Format

A tibble (data frame) with 12 rows and 3 columns. The columns are:

x String. Means.
sd String. Standard deviations.
n Numeric. Sample sizes.

70 reround

Value

A tibble (data frame).

See Also

pigs1 for (only) GRIM-testing the same means as here, pigs2 for GRIM-testing percentages in-
stead of means, pigs3 for DEBIT-testing, and pigs4 for detecting duplicates.

reround General interface to reconstructing rounded numbers

Description

reround() takes one or more intermediate reconstructed values and rounds them in some specific
way – namely, the way they are supposed to have been rounded originally, in the process that
generated the reported values.

This function provides an interface to all of scrutiny’s rounding functions as well as base::round().
It is used as a helper within grim() and debit(), and it might find use in other places for consis-
tency testing or reconstruction of statistical analyses.

Usage

reround(
x,
digits = 0L,
rounding = "up_or_down",
threshold = 5,
symmetric = FALSE

)

Arguments

x Numeric. Vector of possibly original values.

digits Integer. Number of decimal places in the reported key values (i.e., mean or
percentage within grim(), or standard deviation within debit()).

rounding String. The rounding method that is supposed to have been used originally. See
documentation for grim(), section Rounding. Default is "up_or_down", which
returns two values: x rounded up and down.

threshold Integer. If rounding is set to "up_from", "down_from", or "up_from_or_down_from",
threshold must be set to the number from which the reconstructed values
should then be rounded up or down. Otherwise irrelevant. Default is 5.

symmetric Boolean. Set symmetric to TRUE if the rounding of negative numbers with
"up_or_down", "up", "down", "up_from_or_down_from", "up_from", or "down_from"
should mirror that of positive numbers so that their absolute values are always
equal. Otherwise irrelevant. Default is FALSE.

restore_zeros 71

Details

reround() internally calls the appropriate rounding function(s) determined by the rounding argu-
ment. See documentation for grim(), section Rounding, for a complete list of values that rounding
can take.

For the nine rounding functions themselves, see documentation at round_up(), round_ceiling(),
and base::round().

Value

Numeric vector of length 1 or 2. (It has length 1 unless rounding is "up_or_down", "up_from_or_down_from",
or"ceiling_or_floor", in which case it has length 2.)

restore_zeros Restore trailing zeros

Description

restore_zeros() takes a vector with values that might have lost trailing zeros, most likely from
being registered as numeric. It turns each value into a string and adds trailing zeros until the man-
tissa hits some limit.

The default for that limit is the number of digits in the longest mantissa of the vector’s values. The
length of the integer part plays no role.

Don’t rely on the default limit without checking: The original width could have been larger because
the longest extant mantissa might itself have lost trailing zeros.

restore_zeros_df() is a variant for data frames. It wraps restore_zeros() and, by default,
applies it to all columns that are coercible to numeric.

Usage

restore_zeros(x, width = NULL, sep_in = "\\.", sep_out = sep_in, sep = NULL)

restore_zeros_df(
data,
cols = everything(),
check_numeric_like = TRUE,
check_decimals = FALSE,
width = NULL,
sep_in = "\\.",
sep_out = NULL,
sep = NULL,
...

)

72 restore_zeros

Arguments

x Numeric (or string coercible to numeric). Vector of numbers that might have
lost trailing zeros.

width Integer. Number of decimal places the mantissas should have, including the
restored zeros. Default is NULL, in which case the number of characters in the
longest mantissa will be used instead.

sep_in Substring that separates the input’s mantissa from its integer part. Default is
"\\.", which renders a decimal point.

sep_out Substring that will be returned in the output to separate the mantissa from the
integer part. By default, sep_out is the same as sep_in.

sep [Deprecated] Use sep_in, not sep. If sep is specified nonetheless, sep_in takes
on sep’s value.

data Data frame or matrix. Only in restore_zeros_df(), and instead of x.

cols Only in restore_zeros_df(). Select columns from data using tidyselect. De-
fault is everything(), which selects all columns that pass the test of check_numeric_like.

check_numeric_like

Boolean. Only in restore_zeros_df(). If TRUE (the default), the function will
skip columns that are not numeric or coercible to numeric, as determined by
is_numeric_like().

check_decimals Boolean. Only in restore_zeros_df(). If set to TRUE, the function will skip
columns where no values have any decimal places. Default is FALSE.

... Only in restore_zeros_df(). These dots must be empty.

Details

These functions exploit the fact that groups of summary values such as means or percentages
are often reported to the same number of decimal places. If such a number is known but val-
ues were not entered as strings, trailing zeros will be lost. In this case, restore_zeros() or
restore_zeros_df() will be helpful to prepare data for consistency testing functions such as
grim_map() or grimmer_map().

Value

• For restore_zeros(), a string vector. At least some of the strings will have newly restored
zeros, unless (1) all input values had the same number of decimal places, and (2) width was
not specified as a number greater than that single number of decimal places.

• For restore_zeros_df(), a data frame.

Displaying decimal places

You might not see all decimal places of numeric values in a vector, and consequently wonder if
restore_zeros(), when applied to the vector, adds too many zeros. That is because displayed
numbers, unlike stored numbers, are often rounded.

For a vector x, you can count the characters of the longest mantissa from among its values like this:

x %>% decimal_places() %>% max()

https://tidyselect.r-lib.org/reference/language.html

reverse_map_seq 73

See Also

Wrapped functions: sprintf() and decimal_places().

Examples

By default, the target width is that of
the longest mantissa:
vec <- c(212, 75.38, 4.9625)
vec %>%

restore_zeros()

Alternatively, supply a number via `width`:
vec %>%

restore_zeros(width = 6)

For better printing:
iris <- tibble::as_tibble(iris)

Apply `restore_zeros()` to all numeric
columns, but not to the factor column:
iris %>%

restore_zeros_df()

Select columns as in `dplyr::select()`:
iris %>%

restore_zeros_df(starts_with("Sepal"), width = 3)

reverse_map_seq Reverse the *_map_seq() process

Description

reverse_map_seq() takes the output of a function created by function_map_seq() and recon-
structs the original data frame.

See audit_seq(), which takes reverse_map_seq() as a basis.

Usage

reverse_map_seq(data)

Arguments

data Data frame that inherits the "scr_map_seq" class.

Value

The reconstructed tibble (data frame) which a factory-made *_map_seq() function took as its data
argument.

74 reverse_map_total_n

Examples

Originally reported summary data...
pigs1

...GRIM-tested with varying inputs...
out <- grim_map_seq(pigs1, include_consistent = TRUE)

...and faithfully reconstructed:
reverse_map_seq(out)

reverse_map_total_n Reverse the *_map_total_n() process

Description

reverse_map_total_n() takes the output of a function created by function_map_total_n() and
reconstructs the original data frame.

See audit_total_n(), which takes reverse_map_total_n() as a basis.

Usage

reverse_map_total_n(data)

Arguments

data Data frame that inherits the "scr_map_total_n" class.

Value

The reconstructed tibble (data frame) which a factory-made *_map_total_n() function took as its
data argument.

Examples

Originally reported summary data...
df <- tibble::tribble(

~x1, ~x2, ~n,
"3.43", "5.28", 90,
"2.97", "4.42", 103

)
df

...GRIM-tested with dispersed `n` values...
out <- grim_map_total_n(df)
out

...and faithfully reconstructed:
reverse_map_total_n(out)

rounding-common 75

rounding-common Common rounding procedures

Description

round_up() rounds up from 5, round_down() rounds down from 5. Otherwise, both functions
work like base::round().

round_up() and round_down() are special cases of round_up_from() and round_down_from(),
which allow users to choose custom thresholds for rounding up or down, respectively.

Usage

round_up_from(x, digits = 0L, threshold, symmetric = FALSE)

round_down_from(x, digits = 0L, threshold, symmetric = FALSE)

round_up(x, digits = 0L, symmetric = FALSE)

round_down(x, digits = 0L, symmetric = FALSE)

Arguments

x Numeric. The decimal number to round.

digits Integer. Number of digits to round x to. Default is 0.

threshold Integer. Only in round_up_from() and round_down_from(). Threshold for
rounding up or down, respectively. Value is 5 in round_up()’s internal call to
round_up_from() and in round_down()’s internal call to round_down_from().

symmetric Boolean. Set symmetric to TRUE if the rounding of negative numbers should
mirror that of positive numbers so that their absolute values are equal. Default
is FALSE.

Details

These functions differ from base::round() mainly insofar as the decision about rounding 5 up or
down is not based on the integer portion of x (i.e., no "rounding to even"). Instead, in round_up_from(),
that decision is determined by the threshold argument for rounding up, and likewise with round_down_from().
The threshold is constant at 5 for round_up() and round_down().

As a result, these functions are more predictable and less prone to floating-point number quirks
than base::round(). Compare round_down() and base::round() in the data frame for rounding
5 created in the Examples section below: round_down() yields a continuous sequence of final digits
from 0 to 9, whereas base::round() behaves in a way that can only be explained by floating point
issues.

However, this surprising behavior on the part of base::round() is not necessarily a flaw (see its
documentation, or this vignette: https://rpubs.com/maechler/Rounding). In the present version of
R (4.0.0 or later), base::round() works fine, and the functions presented here are not meant to

76 rounding-common

replace it. Their main purpose as helpers within scrutiny is to reconstruct the computations of
researchers who might have used different software. For example, SAS, SPSS, Stata, Matlab, and
Excel round up from 5, whereas Python rounds down from 5. Other use cases might possibly
include journal requirements.

Value

Numeric. x rounded to digits.

See Also

round_ceiling() always rounds up, round_floor() always rounds down, round_trunc() al-
ways rounds toward 0, and round_anti_trunc() always round away from 0.

Examples

Both `round_up()` and `round_down()` work like
`base::round()` unless the closest digit to be
cut off by rounding is 5:

round_up(x = 9.273, digits = 1) # 7 cut off
round_down(x = 9.273, digits = 1) # 7 cut off

base::round(x = 9.273, digits = 1) # 7 cut off

round_up(x = 7.584, digits = 2) # 4 cut off
round_down(x = 7.584, digits = 2) # 4 cut off

base::round(x = 7.584, digits = 2) # 4 cut off

Here is the borderline case of 5 rounded by
`round_up()`, `round_down()`, and `base::round()`:

original <- c(# Define example values
0.05, 0.15, 0.25, 0.35, 0.45,
0.55, 0.65, 0.75, 0.85, 0.95
)

tibble::tibble(# Output table
original,
round_up = round_up(x = original, digits = 1),
round_down = round_down(x = original, digits = 1),
base_round = base::round(x = original, digits = 1)
)

(Note: Defining `original` as `seq(0.05:0.95, by = 0.1)`
would lead to wrong results unless `original` is rounded
to 2 or so digits before it's rounded to 1.)

rounding-uncommon 77

rounding-uncommon Uncommon rounding procedures

Description

Always round up, down, toward zero, or away from it:

• round_ceiling() always rounds up.

• round_floor() always rounds down.

• round_trunc() always rounds toward zero.

• round_anti_trunc() always rounds away from zero. (0 itself is rounded to 1.)

Despite not being widely used, they are featured here in case they are needed for reconstruction.

Usage

round_ceiling(x, digits = 0L)

round_floor(x, digits = 0L)

round_trunc(x, digits = 0L)

anti_trunc(x)

round_anti_trunc(x, digits = 0L)

Arguments

x Numeric. The decimal number to round.

digits Integer. Number of digits to round x to. Default is 0.

Details

round_ceiling(), round_floor(), and round_trunc() generalize the base functions ceiling(),
floor(), and trunc(), and include them as special cases: With the default value for digits, 0,
these round_* functions are equivalent to their respective base counterparts.

The last round_* function, round_anti_trunc(), generalizes another function presented here:
anti_trunc() works like trunc() except it moves away from 0, rather than towards it. That is,
whereas trunc() minimizes the absolute value of x (as compared to the other rounding functions),
anti_trunc() maximizes it. anti_trunc(x) is therefore equal to trunc(x) + 1 if x is positive,
and to trunc(x) - 1 if x is negative.

round_anti_trunc(), then, generalizes anti_trunc() just as round_ceiling() generalizes ceiling(),
etc.

Moreover, round_trunc() is equivalent to round_floor() for positive numbers and to round_ceiling()
for negative numbers. The reverse is again true for round_anti_trunc(): It is equivalent to
round_ceiling() for positive numbers and to round_floor() for negative numbers.

78 rounding_bias

Value

Numeric. x rounded to digits (except for anti_trunc(), which has no digits argument).

See Also

round_up() and round_down() round up or down from 5, respectively. round_up_from() and
round_down_from() allow users to specify custom thresholds for rounding up or down.

Examples

Always round up:
round_ceiling(x = 4.52, digits = 1) # 2 cut off

Always round down:
round_floor(x = 4.67, digits = 1) # 7 cut off

Always round toward 0:
round_trunc(8.439, digits = 2) # 9 cut off
round_trunc(-8.439, digits = 2) # 9 cut off

Always round away from 0:
round_anti_trunc(x = 8.421, digits = 2) # 1 cut off
round_anti_trunc(x = -8.421, digits = 2) # 1 cut off

rounding_bias Compute rounding bias

Description

Rounding often leads to bias, such that the mean of a rounded distribution is different from the mean
of the original distribution. Call rounding_bias() to compute the amount of this bias.

Usage

rounding_bias(
x,
digits,
rounding = "up",
threshold = 5,
symmetric = FALSE,
mean = TRUE

)

Arguments

x Numeric or string coercible to numeric.

digits Integer. Number of decimal digits to which x will be rounded.

row_to_colnames 79

rounding String. Rounding procedure that will be applied to x. See documentation for
grim(), section Rounding. Default is "up".

threshold, symmetric

Further arguments passed down to reround().

mean Boolean. If TRUE (the default), the mean total of bias will be returned. Set mean
to FALSE to get a vector of individual biases the length of x.

Details

Bias is calculated by subtracting the original vector, x, from a vector rounded in the specified way.

The function passes all arguments except for mean down to reround(). Other than there, however,
rounding is "up" by default, and it can’t be set to "up_or_down", "up_from_or_down_from",
or"ceiling_or_floor".

Value

Numeric. By default of mean, the length is 1; otherwise, it is the same length as x.

Examples

Define example vector:
vec <- seq_distance(0.01, string_output = FALSE)
vec

The default rounds `x` up from 5:
rounding_bias(x = vec, digits = 1)

Other rounding procedures are supported,
such as rounding down from 5...
rounding_bias(x = vec, digits = 1, rounding = "down")

...or rounding to even with `base::round()`:
rounding_bias(x = vec, digits = 1, rounding = "even")

row_to_colnames Turn row values into column names

Description

Data frames sometimes have wrong column names, while the correct column names are stored in
one or more rows in the data frame itself. To remedy this issue, call row_to_colnames() on the
data frame: It replaces the column names by the values of the specified rows (by default, only the
first one). These rows are then dropped by default.

Usage

row_to_colnames(data, row = 1L, collapse = " ", drop = TRUE)

80 sd-binary

Arguments

data Data frame or matrix.

row Integer. Position of the rows (one or more) that jointly contain the correct col-
umn names. Default is 1.

collapse String. If the length of row is greater than 1, each new column name will be that
many row values pasted together. collapse, then, is the substring between two
former row values in the final column names. Default is " " (a space).

drop Boolean. If TRUE (the default), the rows specified with row are removed.

Details

If multiple rows are specified, the row values for each individual column are pasted together. Some
special characters might then be missing.

This function might be useful when importing tables from PDF, e.g. with tabulizer. In R, these data
frames (converted from matrices) do sometimes have the issue described above.

Value

A tibble (data frame).

See Also

unheadr::mash_colnames(), a more sophisticated solution to the same problem.

sd-binary Standard deviation of binary data

Description

Compute the sample SD of binary data (i.e., only 0 and 1 values) in either of four ways, each based
on different inputs:

• sd_binary_groups() takes the cell sizes of both groups, those coded as 0 and those coded as
1.

• sd_binary_0_n() takes the cell size of the group coded as 0 and the total sample size.

• sd_binary_1_n() takes the cell size of the group coded as 1 and the total sample size.

• sd_binary_mean_n() takes the mean and the total sample size.

These functions are used as helpers inside debit(), and consequently debit_map().

https://cran.r-project.org/package=tabulizer
https://unheadr.liomys.mx/reference/mash_colnames.html

sd-binary 81

Usage

sd_binary_groups(group_0, group_1)

sd_binary_0_n(group_0, n)

sd_binary_1_n(group_1, n)

sd_binary_mean_n(mean, n)

Arguments

group_0 Integer. Cell size of the group coded as 0.

group_1 Integer. Cell size of the group coded as 1.

n Integer. Total sample size.

mean Numeric. Mean of the binary data.

Value

Numeric. Sample standard deviation.

References

Heathers, James A. J., and Brown, Nicholas J. L. 2019. DEBIT: A Simple Consistency Test For
Binary Data. https://osf.io/5vb3u/.

See Also

is_subset_of_vals(x, 0, 1) checks whether x (a list or atomic vector) contains nothing but bi-
nary numbers.

Examples

If 127 values are coded as 0 and 153 as 1...
sd_binary_groups(group_0 = 127, group_1 = 153)

...so that n = 280:
sd_binary_0_n(group_0 = 127, n = 280)
sd_binary_1_n(group_1 = 153, n = 280)

If only the mean and total sample size are
given, or these are more convenient to use,
they still lead to the same result as above
if the mean is given with a sufficiently
large number of decimal places:
sd_binary_mean_n(mean = 0.5464286, n = 280)

82 seq-decimal

seq-decimal Sequence generation at decimal level

Description

Functions that provide a smooth interface to generating sequences based on the input values’ dec-
imal depth. Each function creates a sequence with a step size of one unit on the level of the input
values’ ultimate decimal digit (e.g., 2.45, 2.46, 2.47, ...):

• seq_endpoint() creates a sequence from one input value to another. For step size, it goes by
the value with more decimal places.

• seq_distance() only takes the starting point and, instead of the endpoint, the desired output
length. For step size, it goes by the starting point by default.

seq_endpoint_df() and seq_distance_df() are variants that create a data frame. Further columns
can be added as in tibble::tibble(). Regular arguments are the same as in the respective non-df
function, but with a dot before each.

Usage

seq_endpoint(from, to, offset_from = 0L, offset_to = 0L, string_output = TRUE)

seq_distance(
from,
by = NULL,
length_out = 10L,
dir = 1,
offset_from = 0L,
string_output = TRUE

)

seq_endpoint_df(
.from,
.to,
...,
.offset_from = 0L,
.offset_to = 0L,
.string_output = TRUE

)

seq_distance_df(
.from,
.by = NULL,
...,
.length_out = 10L,
.dir = 1,
.offset_from = 0L,

seq-decimal 83

.string_output = TRUE
)

Arguments

from, .from Numeric (or string coercible to numeric). Starting point of the sequence.

to, .to Numeric (or string coercible to numeric). Endpoint of the sequence. Only in
seq_endpoint() and seq_endpoint_df().

offset_from, .offset_from

Integer. If set to a non-zero number, the starting point will be offset by that many
units on the level of the last decimal digit. Default is 0.

offset_to, .offset_to

Integer. If set to a non-zero number, the endpoint will be offset by that many
units on the level of the last decimal digit. Default is 0. Only in seq_endpoint()
and seq_endpoint_df().

string_output, .string_output

Boolean or string. If TRUE (the default), the output is a string vector. Decimal
places are then padded with zeros to match from’s (or to’s) number of decimal
places. "auto" works like TRUE if and only if from (.from) is a string.

by, .by Numeric. Only in seq_distance() and seq_distance_df(). Step size of the
sequence. If not set, inferred automatically. Default is NULL.

length_out, .length_out

Integer. Length of the output vector (i.e., the number of its values). Default is
10. Only in seq_distance() and seq_distance_df().

dir, .dir Integer. If set to -1, the sequence goes backward. Default is 1. Only in
seq_distance() and seq_distance_df().

... Further columns, added as in tibble::tibble(). Only in seq_endpoint_df()
and seq_distance_df().

Details

If either from or to ends on zero, be sure to enter that value as a string! This is crucial because
trailing zeros get dropped from numeric values. A handy way to format numeric values or number-
strings correctly is restore_zeros(). The output of the present functions is like that by default (of
string_output).

In seq_endpoint() and seq_endpoint_df(), the step size is determined by from and to, whichever
has more decimal places. In seq_distance() and seq_distance_df(), it’s determined by the dec-
imal places of from.

These functions are scrutiny’s take on base::seq(), and themselves wrappers around it.

Value

String by default of string_output, numeric otherwise.

See Also

seq_disperse() for sequences centered around the input.

84 seq-predicates

Examples

Sequence between two points:
seq_endpoint(from = 4.7, to = 5)

Sequence of some length; default is 10:
seq_distance(from = 0.93)
seq_distance(from = 0.93, length_out = 5)

Both of these functions can offset the
starting point...
seq_endpoint(from = 14.2, to = 15, offset_from = 4)
seq_distance(from = 14.2, offset_from = 4)

...but only `seq_endpoint()` can offset the
endpoint, because of its `to` argument:
seq_endpoint(from = 9.5, to = 10, offset_to = 2)

In return, `seq_distance()` can reverse its direction:
seq_distance(from = 20.03, dir = -1)

Both functions have a `_df` variant that returns
a data frame. Arguments are the same but with a
dot, and further columns can be added as in
`tibble::tibble()`:
seq_endpoint_df(.from = 4.7, .to = 5, n = 20)
seq_distance_df(.from = 0.43, .length_out = 5, sd = 0.08)

seq-predicates Is a vector a certain kind of sequence?

Description

Predicate functions that test whether x is a numeric vector (or coercible to numeric) with some
special properties:

• is_seq_linear() tests whether every two consecutive elements of x differ by some constant
amount.

• is_seq_ascending() and is_seq_descending() test whether the difference between ev-
ery two consecutive values is positive or negative, respectively. is_seq_dispersed() tests
whether x values are grouped around a specific central value, from, with the same distance
to both sides per value pair. By default (test_linear = TRUE), these functions also test for
linearity, like is_seq_linear().

NA elements of x are handled in a nuanced way. See Value section below and the examples in
vignette("infrastructure"), section NA handling.

seq-predicates 85

Usage

is_seq_linear(x, tolerance = .Machine$double.eps^0.5)

is_seq_ascending(x, test_linear = TRUE, tolerance = .Machine$double.eps^0.5)

is_seq_descending(x, test_linear = TRUE, tolerance = .Machine$double.eps^0.5)

is_seq_dispersed(
x,
from,
test_linear = TRUE,
tolerance = .Machine$double.eps^0.5

)

Arguments

x Numeric or coercible to numeric, as determined by is_numeric_like(). Vec-
tor to be tested.

tolerance Numeric. Tolerance of comparison between numbers when testing. Default is
circa 0.000000015 (1.490116e-08), as in dplyr::near().

test_linear Boolean. In functions other than is_seq_linear(), should x also be tested for
linearity? Default is TRUE.

from Numeric or coercible to numeric. Only in is_seq_dispersed(). It will test
whether from is at the center of x, and if every pair of other values is equidistant
to it.

Value

A single Boolean value. If x contains at least one NA element, the functions return either NA or
FALSE:

• If all elements of x are NA, the functions return NA.

• If some but not all elements are NA, they check if x might be a sequence of the kind in question:
Is it a linear (and / or ascending, etc.) sequence after the NAs were replaced by appropriate
values? If so, they return NA; otherwise, they return FALSE.

See Also

validate::is_linear_sequence(), which is much like is_seq_linear() but more permissive
with NA values. It comes with some additional features, such as support for date-times.

Examples

These are linear sequences...
is_seq_linear(x = 3:7)
is_seq_linear(x = c(3:7, 8))

...but these aren't:

86 seq_disperse

is_seq_linear(x = c(3:7, 9))
is_seq_linear(x = c(10, 3:7))

All other `is_seq_*()` functions
also test for linearity by default:
is_seq_ascending(x = c(2, 7, 9))
is_seq_ascending(x = c(2, 7, 9), test_linear = FALSE)

is_seq_descending(x = c(9, 7, 2))
is_seq_descending(x = c(9, 7, 2), test_linear = FALSE)

is_seq_dispersed(x = c(2, 3, 5, 7, 8), from = 5)
is_seq_dispersed(x = c(2, 3, 5, 7, 8), from = 5, test_linear = FALSE)

These fail their respective
individual test even
without linearity testing:
is_seq_ascending(x = c(1, 7, 4), test_linear = FALSE)
is_seq_descending(x = c(9, 15, 3), test_linear = FALSE)
is_seq_dispersed(1:10, from = 5, test_linear = FALSE)

seq_disperse Sequence generation with dispersion at decimal level

Description

seq_disperse() creates a sequence around a given number. It goes a specified number of steps up
and down from it. Step size depends on the number’s decimal places. For example, 7.93 will be
surrounded by values like 7.91, 7.92, and 7.94, 7.95, etc.

seq_disperse_df() is a variant that creates a data frame. Further columns can be added as in
tibble::tibble(). Regular arguments are the same as in seq_disperse(), but with a dot before
each.

Usage

seq_disperse(
from,
by = NULL,
dispersion = 1:5,
offset_from = 0L,
out_min = "auto",
out_max = NULL,
string_output = TRUE,
include_reported = TRUE,
track_var_change = FALSE

)

seq_disperse_df(

seq_disperse 87

.from,

.by = NULL,

...,

.dispersion = 1:5,

.offset_from = 0L,

.out_min = "auto",

.out_max = NULL,

.string_output = TRUE,

.include_reported = TRUE,

.track_var_change = FALSE
)

Arguments

from, .from Numeric (or string coercible to numeric). Starting point of the sequence.
by, .by Numeric. Step size of the sequence. If not set, inferred automatically. Default

is NULL.
dispersion, .dispersion

Numeric. Vector that determines the steps up and down, starting at from (or
.from, respectively) and proceeding on the level of its last decimal place. De-
fault is 1:5, i.e., five steps up and down.

offset_from, .offset_from

Integer. If set to a non-zero number, the starting point will be offset by that many
units on the level of the last decimal digit. Default is 0.

out_min, .out_min, out_max, .out_max

If specified, output will be restricted so that it’s not below out_min or above
out_max. Defaults are "auto" for out_min, i.e., a minimum of one decimal
unit above zero; and NULL for out_max, i.e., no maximum.

string_output, .string_output

Boolean or string. If TRUE (the default), the output is a string vector. Decimal
places are then padded with zeros to match from’s number of decimal places.
"auto" works like TRUE if and only if from (.from) is a string.

include_reported, .include_reported

Boolean. Should from (.from) itself be part of the sequence built around it?
Default is TRUE for the sake of continuity, but this can be misleading if the focus
is on the dispersed values, as opposed to the input.

track_var_change, .track_var_change

Boolean. In seq_disperse(), ignore this argument. In seq_disperse_df(),
default is TRUE, which creates the "var_change" output column.

... Further columns, added as in tibble::tibble(). Only in seq_disperse_df().

Details

Unlike seq_endpoint() and friends, the present functions don’t necessarily return continuous or
even regular sequences. The greater flexibility is due to the dispersion (.dispersion) argument,
which takes any numeric vector. By default, however, the output sequence is regular and continuous.

Underlying this difference is the fact that seq_disperse() and seq_disperse_df() do not wrap
around base::seq(), although they are otherwise similar to seq_endpoint() and friends.

88 seq_length

Value

• seq_disperse() returns a string vector by default (string_output = TRUE) and a numeric
otherwise.

• seq_disperse_df() returns a tibble (data frame). The sequence is stored in the x column. x
is string by default (.string_output = TRUE), numeric otherwise. Other columns might have
been added via the dots (...).

See Also

Conceptually, seq_disperse() is a blend of two function families: those around seq_endpoint()
and those around disperse(). The present functions were originally conceived for seq_disperse_df()
to be a helper within the function_map_seq() implementation.

Examples

Basic usage:
seq_disperse(from = 4.02)

If trailing zeros don't matter,
the output can be numeric:
seq_disperse(from = 4.02, string_output = FALSE)

Control steps up and down with
`dispersion` (default is `1:5`):
seq_disperse(from = 4.02, dispersion = 1:10)

Sequences might be discontinuous...
disp1 <- seq(from = 2, to = 10, by = 2)
seq_disperse(from = 4.02, dispersion = disp1)

...or even irregular:
disp2 <- c(2, 3, 7)
seq_disperse(from = 4.02, dispersion = disp2)

The data fame variant supports further
columns added as in `tibble::tibble()`:
seq_disperse_df(.from = 4.02, n = 45)

seq_length Set sequence length

Description

seq_length() seamlessly extends or shortens a linear sequence using the sequence’s own step size.

Alternatively, you can directly set the length of a linear sequence in this way: seq_length(x) <-
value.

seq_length 89

Usage

seq_length(x, value)

seq_length(x) <- value

Arguments

x Numeric or coercible to numeric. x must be linear, i.e., each of its elements must
differ from the next by the same amount.

value Numeric (whole number, length 1). The new length for x.

Value

A vector of the same type as x, with length value.

• If value > length(x), all original element of x are preserved. A number of new elements
equal to the difference is appended at the end.

• If value == length(x), nothing changes.

• If value < length(x), a number of elements of x equal to the difference is removed from the
end.

Examples

x <- 3:7

Increase the length of `x` from 5 to 10:
seq_length(x, 10)

Modify `x` directly (but get
the same results otherwise):
seq_length(x) <- 10
x

Likewise, decrease the length:
x <- 3:7
seq_length(x, 2)

seq_length(x) <- 2
x

The functions are sensitive to decimal levels.
They also return a string vector if (and only if)
`x` is a string vector:
x <- seq_endpoint(from = 0, to = 0.5)
x

seq_length(x, 10)

seq_length(x) <- 10
x

90 seq_test_ranking

Same with decreasing the length:
seq_length(x, 2)

seq_length(x) <- 2
x

seq_test_ranking Rank sequence test results

Description

Run this function after generating a sequence with seq_endpoint_df() or seq_distance_df()
and testing it with one of scrutiny’s mapping functions, such as grim_map(). It will rank the test’s
consistent and inconsistent results by their positions in the sequence.

Usage

seq_test_ranking(x, explain = TRUE)

Arguments

x Data frame.

explain If TRUE (the default), results come with an explanation.

Details

The function checks the provenance of the test results and throws a warning if it’s not correct.

Value

A tibble (data frame). The function will also print an explanation of the results. See examples.

Examples

seq_distance_df(.from = "0.00", n = 50) %>%
grim_map() %>%
seq_test_ranking()

split_by_parens 91

split_by_parens Split columns by parentheses, brackets, braces, or similar

Description

Summary statistics are often presented like "2.65 (0.27)". When working with tables copied into
R, it can be tedious to separate values before and inside parentheses. split_by_parens() does this
automatically.

By default, it operates on all columns. Output can optionally be pivoted into a longer format by
setting transform to TRUE.

Choose separators other than parentheses with the sep argument.

Usage

split_by_parens(
data,
cols = everything(),
check_sep = TRUE,
keep = FALSE,
transform = FALSE,
sep = "parens",
end1 = "x",
end2 = "sd",
...

)

Arguments

data Data frame.

cols Select columns from data using tidyselect. Default is everything(), which
selects all columns that pass check_sep.

check_sep Boolean. If TRUE (the default), columns are excluded if they don’t contain the
sep elements.

keep Boolean. If set to TRUE, the originally selected columns that were split by the
function also appear in the output. Default is FALSE.

transform Boolean. If set to TRUE, the output will be pivoted to be better suitable for typical
follow-up tasks. Default is FALSE.

sep String. What to split by. Either "parens", "brackets", or "braces"; or a
length-2 vector of custom separators (see Examples). Default is "parens".

end1, end2 Strings. Endings of the two column names that result from splitting a column.
Default is "x" for end1 and "sd" for end2.

... These dots must be empty.

https://tidyselect.r-lib.org/reference/language.html

92 split_by_parens

Value

Data frame.

See Also

• before_parens() and inside_parens() take a string vector and extract values from the
respective position.

• dplyr::across() powers the application of the two above functions within split_by_parens(),
including the creation of new columns.

• tidyr::separate() is a more general function, but it does not recognize closing elements
such as closed parentheses.

Examples

Call `split_by_parens()` on data like these:
df1 <- tibble::tribble(

~drone, ~selfpilot,
"0.09 (0.21)", "0.19 (0.13)",
"0.19 (0.28)", "0.53 (0.10)",
"0.62 (0.16)", "0.50 (0.11)",
"0.15 (0.35)", "0.57 (0.16)",

)

Basic usage:
df1 %>%

split_by_parens()

Name specific columns with `cols` to only split those:
df1 %>%

split_by_parens(cols = drone)

Pivot the data into a longer format
by setting `transform` to `TRUE`:
df1 %>%

split_by_parens(transform = TRUE)

Choose different column names or
name suffixes with `end1` and `end2`:
df1 %>%

split_by_parens(end1 = "beta", end2 = "se")

df1 %>%
split_by_parens(
transform = TRUE,
end1 = "beta", end2 = "se"

)

With a different separator...
df2 <- tibble::tribble(

~drone, ~selfpilot,
"0.09 [0.21]", "0.19 [0.13]",

subset-superset 93

"0.19 [0.28]", "0.53 [0.10]",
"0.62 [0.16]", "0.50 [0.11]",
"0.15 [0.35]", "0.57 [0.16]",

)

... specify `sep`:
df2 %>%

split_by_parens(sep = "brackets")

(Accordingly with `{}` and `"braces"`.)

If the separator is yet a different one...
df3 <- tibble::tribble(

~drone, ~selfpilot,
"0.09 <0.21>", "0.19 <0.13>",
"0.19 <0.28>", "0.53 <0.10>",
"0.62 <0.16>", "0.50 <0.11>",
"0.15 <0.35>", "0.57 <0.16>",

)

... `sep` should be a length-2 vector
that contains the separating elements:
df3 %>%

split_by_parens(sep = c("<", ">"))

subset-superset Test for subsets, supersets, and equal sets

Description

Predicate functions that take a vector and test whether it has some particular relation to another
vector. That second vector is entered in either of three ways –

Enter it directly (basic functions):
is_subset_of() tests if a vector is a subset of another vector; i.e., if all its elements are contained
in the second one. is_superset_of() does the reverse: It tests if the first vector contains all
elements of the second one. is_equal_set() tests if both vectors have exactly the same values.

Enter its values:
is_subset_of_vals(), is_superset_of_vals(), and is_equal_set_vals() are variants that
each take a single vector plus any number of other arguments. These are treated like elements of
the second vector in the basic functions above.

Enter multiple vectors that jointly contain its values:
Finally, is_subset_of_vecs(), is_superset_of_vecs(), and is_equal_set_vecs() take one
vector plus any number of other vectors and treat their elements (!) like elements of a second vector
in the basic functions above.

Each is_subset*() function has an is_proper_subset*() variant. These variants also test whether
the sets are unequal, so that x is a subset of y but y is not a subset of x. The same applies to
is_superset*() functions and their is_proper_superset*() variants.

94 subset-superset

Usage

is_subset_of(x, y)

is_superset_of(x, y)

is_equal_set(x, y)

is_proper_subset_of(x, y)

is_proper_superset_of(x, y)

is_subset_of_vals(x, ...)

is_superset_of_vals(x, ...)

is_equal_set_vals(x, ...)

is_proper_subset_of_vals(x, ...)

is_proper_superset_of_vals(x, ...)

is_subset_of_vecs(x, ...)

is_superset_of_vecs(x, ...)

is_equal_set_vecs(x, ...)

is_proper_subset_of_vecs(x, ...)

is_proper_superset_of_vecs(x, ...)

Arguments

x A vector.

y A vector. Only in the basic functions, not those with *_vals() or *_vecs().

... In the *_vals() functions, any number of values x might contain; in the *_vecs()
functions, any number of vectors the elements of which x might contain.

Details

The *_vals() variants are meant for flexible, interactive subset/superset testing. That is, in order
to test whether certain values collectively fulfill the role of the second vector, you can just add them
to the function call.

The *_vecs() variants likewise offer flexibility, but also bridge the gap between vectors and values
contained in them.

All functions simply check if values are present, regardless of how often a value occurs. In other
words, they look for types but don’t count tokens.

unnest_consistency_cols 95

Value

A single Boolean value. TRUE if the respective test was passed, FALSE otherwise.

Examples

Define example vectors:
ab <- c("a", "b")
abc <- c("a", "b", "c")
abcde <- c("a", "b", "c", "d", "e")

`is_subset_of()` tests if a vector is
completely covered by another one:
abc %>% is_subset_of(ab)
abc %>% is_subset_of(abc)
abc %>% is_subset_of(abcde)

To the contrary, `is_superset_of()` tests if the
first vector completely covers the second one:
abc %>% is_superset_of(ab)
abc %>% is_superset_of(abc)
abc %>% is_superset_of(abcde)

`is_equal_set()` tests both of the above --
i.e., if both vectors have exactly the
same values:
abc %>% is_equal_set(ab)
abc %>% is_equal_set(abc)
abc %>% is_equal_set(abcde)

Each of the three functions has a `*_vals()` variant
that doesn't take a second vector like the first
one, but any number of other arguments. These are
jointly treated like the elements of the second
vector in the basic functions:
abc %>% is_subset_of_vals("a", "b")
abc %>% is_subset_of_vals("a", "b", "c")
abc %>% is_subset_of_vals("a", "b", "c", "d", "e")

(... and likewise for supersets and equal sets.)

unnest_consistency_cols

Unnest a test result column

Description

Within a consistency test mapper function, it may become necessary to unpack a column resulting
from a basic *_scalar() testing function. That will be the case if a show_* argument of the mapper
function like show_rec in grim_map() is TRUE, and the *_scalar() function returns a list of values,
not just a single value.

96 unround

At the point where such as list is stored in a data frame column (most likely "consistency"), call
unnest_consistency_cols() to unnest the results into multiple columns.

Usage

unnest_consistency_cols(results, col_names, index = FALSE, col = "consistency")

Arguments

results Data frame containing a list-column by the name passed to col.

col_names String vector of new names for the unnested columns. It should start with the
same string that was given for col.

index Boolean. Should the list-column be indexed into? Default is FALSE.

col String (length 1). Name of the list-column within results to operate on. De-
fault is "consistency".

Details

This function is a custom workaround in place of tidyr::unnest_wider(), mirroring some of the
latter’s functionality. It was created because unnest_wider() can be too slow for use as a helper
function.

Value

Data frame. The column names are determined by col_names.

See Also

vignette("consistency-tests"), for context.

unround Reconstruct rounding bounds

Description

unround() takes a rounded number and returns the range of the original value: lower and upper
bounds for the hypothetical earlier number that was later rounded to the input number. It also
displays a range with inequation signs, showing whether the bounds are inclusive or not.

By default, the presumed rounding method is rounding up (or down) from 5. See the Rounding
section for other methods.

Usage

unround(x, rounding = "up_or_down", threshold = 5, digits = NULL)

unround 97

Arguments

x String or numeric. Rounded number. x must be a string unless digits is speci-
fied (most likely by a function that uses unround() as a helper).

rounding String. Rounding method presumably used to create x. Default is "up_or_down".
For more, see section Rounding.

threshold Integer. Number from which to round up or down. Other rounding methods are
not affected. Default is 5.

digits Integer. This argument is meant to make unround() more efficient to use as
a helper function so that it doesn’t need to redundantly count decimal places.
Don’t specify it otherwise. Default is NULL, in which case decimal places really
are counted internally and x must be a string.

Details

The function is vectorized over x and rounding. This can be useful to unround multiple numbers
at once, or to check how a single number is unrounded with different assumed rounding methods.

If both vectors have a length greater than 1, it must be the same length. However, this will pair
numbers with rounding methods, which can be confusing. It is recommended that at least one of
these input vectors has length 1.

Why does x need to be a string if digits is not specified? In that case, unround() must count
decimal places by itself. If x then was numeric, it wouldn’t have any trailing zeros because these
get dropped from numerics.

Trailing zeros are as important for reconstructing boundary values as any other trailing digits would
be. Strings don’t drop trailing zeros, so they are used instead.

Value

A tibble with seven columns: range, rounding, lower, incl_lower, x, incl_upper, and upper.
The range column is a handy representation of the information stored in the columns from lower
to upper, in the same order.

Rounding

Depending on how x was rounded, the boundary values can be inclusive or exclusive. The incl_lower
and incl_upper columns in the resulting tibble are TRUE in the first case and FALSE in the second.
The range column reflects this with equation and inequation signs.

However, these ranges are based on assumptions about the way x was rounded. Set rounding to
the rounding method that hypothetically lead to x:

Value of rounding Corresponding range
"up_or_down" (default) lower <= x <= upper
"up" lower <= x < upper
"down" lower < x <= upper
"even" (no fix range)
"ceiling" lower < x = upper
"floor" lower = x < upper
"trunc" (positive x) lower = x < upper

98 write_doc_audit

"trunc" (negative x) lower < x = upper
"trunc" (zero x) lower < x < upper
"anti_trunc" (positive x) lower < x = upper
"anti_trunc" (negative x) lower = x < upper
"anti_trunc" (zero x) (undefined; NA)

Base R’s own round() (R version >= 4.0.0), referenced by rounding = "even", is reconstructed
in the same way as "up_or_down", but whether the boundary values are inclusive or not is hard to
predict. Therefore, unround() checks if they are, and informs you about it.

See Also

For more about rounding "up", "down", or to "even", see documentation for round_up().

For more about the less likely rounding methods, "ceiling", "floor", "trunc", and "anti_trunc",
see documentation for round_ceiling().

Examples

By default, the function assumes that `x`
was either rounded up or down:
unround(x = "2.7")

If `x` was rounded up, run this:
unround(x = "2.7", rounding = "up")

Likewise with rounding down...
unround(x = "2.7", rounding = "down")

...and with `base::round()` which, broadly
speaking, rounds to the nearest even number:
unround(x = "2.7", rounding = "even")

Multiple input number-strings return
multiple rows in the output data frame:
unround(x = c(3.6, "5.20", 5.174))

write_doc_audit Documentation template for audit()

Description

write_doc_audit() creates a roxygen2 block section to be inserted into the documentation of a
mapper function such as grim_map() or debit_map(): functions for which there are, or should be,
audit() methods. The section informs users about the ways in which audit() summarizes the
results of the respective mapper function.

Copy the output from your console and paste it into the roxygen2 block of your *_map() function.
To preserve the numbered list structure when indenting roxygen2 comments with Ctrl+Shift+/,
leave empty lines between the pasted output and the rest of the block.

write_doc_audit_seq 99

Usage

write_doc_audit(sample_output, name_test)

Arguments

sample_output Data frame. Result of a call to audit() on a data frame that resulted from a
call to the mapper function for which you wrote the audit() method, such as
audit(grim_map(pigs1)) or audit(debit_map(pigs3)).

name_test String (length 1). Name of the consistency test which the mapper function ap-
plies, such as "GRIM" or "DEBIT".

Value

A string vector formatted by glue::glue().

Examples

Start by running `audit()`:
out_grim <- audit(grim_map(pigs1))
out_debit <- audit(debit_map(pigs3))

out_grim
out_debit

Documenting the `audit()` method for `grim_map()`:
write_doc_audit(sample_output = out_grim, name_test = "GRIM")

Documenting the `audit()` method for `debit_map()`:
write_doc_audit(sample_output = out_debit, name_test = "DEBIT")

write_doc_audit_seq Documentation template for audit_seq()

Description

write_doc_audit_seq() creates a roxygen2 block section to be inserted into the documentation of
functions created with function_map_seq(). The section informs users about the ways in which
audit_seq() summarizes the results of the manufactured *_map_seq() function.

Copy the output from your console and paste it into the roxygen2 block of your *_map_seq() func-
tion. To preserve the bullet-point structure when indenting roxygen2 comments with Ctrl+Shift+/,
leave empty lines between the pasted output and the rest of the block.

Usage

write_doc_audit_seq(key_args, name_test)

100 write_doc_audit_total_n

Arguments

key_args String vector with the names of the key columns that are tested for consistency
by the *_map_seq() function. The values need to have the same order as in that
function’s output.

name_test String (length 1). Name of the consistency test which the *_map_seq() function
applies, such as "GRIM".

Value

A string vector formatted by glue::glue().

See Also

The sister function write_doc_audit_total_n() and, for context, vignette("consistency-tests").

Examples

For GRIM and `grim_map_seq()`:
write_doc_audit_seq(key_args = c("x", "n"), name_test = "GRIM")

For DEBIT and `debit_map_seq()`:
write_doc_audit_seq(key_args = c("x", "sd", "n"), name_test = "DEBIT")

write_doc_audit_total_n

Documentation template for audit_total_n()

Description

write_doc_audit_total_n() creates a roxygen2 block section to be inserted into the documenta-
tion of functions created with function_map_total_n(). The section informs users about the ways
in which audit_seq() summarizes the results of the manufactured *_map_total_n() function.

Copy the output from your console and paste it into the roxygen2 block of your *_map_total_n()
function. To preserve the bullet-point structure when indenting roxygen2 comments with Ctrl+Shift+/,
leave empty lines between the pasted output and the rest of the block.

Usage

write_doc_audit_total_n(key_args, name_test)

Arguments

key_args String vector with the names of the key columns that are tested for consistency
by the *_map_seq() function. (These are the original variable names, without
"1" and "2" suffixes.) The values need to have the same order as in that func-
tion’s output.

name_test String (length 1). Name of the consistency test which the *_map_seq() function
applies, such as "GRIM".

write_doc_factory_map_conventions 101

Value

A string vector formatted by glue::glue().

See Also

The sister function write_doc_audit_seq() and, for context, vignette("consistency-tests").

Examples

For GRIM and `grim_map_total_n()`:
write_doc_audit_total_n(key_args = c("x", "n"), name_test = "GRIM")

For DEBIT and `debit_map_total_n()`:
write_doc_audit_total_n(key_args = c("x", "sd", "n"), name_test = "DEBIT")

write_doc_factory_map_conventions

Documentation template for *_map() function factory conventions

Description

write_doc_factory_map_conventions() creates a roxygen2 block section to be inserted into the
documentation of a function factory such as function_map_seq() or function_map_total_n().
It lays out the naming guidelines that users of your function factory should follow when creating
new manufactured functions.

Copy the output from your console and paste it into the roxygen2 block of your function factory.

Usage

write_doc_factory_map_conventions(
ending,
name_test1 = "GRIM",
name_test2 = "DEBIT"

)

Arguments

ending String (length 1). The part of your function factory’s name after function_map_.
name_test1, name_test2

Strings (length 1). Plain-text names of example consistency tests. Defaults are
"GRIM" and "DEBIT", respectively.

Value

A string vector formatted by glue::glue().

102 write_doc_factory_map_conventions

See Also

For context, see vignette("consistency-tests").

Examples

For `function_map_seq()`:
write_doc_factory_map_conventions(ending = "seq")

For `function_map_total_n()`:
write_doc_factory_map_conventions(ending = "total_n")

Index

∗ datasets
pigs1, 67
pigs2, 67
pigs3, 68
pigs4, 69
pigs5, 69

anti_trunc (rounding-uncommon), 77
audit, 4
audit_cols_minimal, 5
audit_list (audit), 4
audit_seq (audit), 4
audit_total_n (audit), 4

before_parens (parens-extractors), 66

check_audit_special, 6
check_mapper_input_colnames, 7

data-frame-predicates, 8
debit, 9
debit_map, 11
debit_map_seq, 12
debit_map_total_n, 14
debit_plot, 17
decimal_places, 19
decimal_places_df, 20
decimal_places_scalar (decimal_places),

19
Deprecated, 72
disperse, 22
disperse2 (disperse), 22
disperse_total (disperse), 22
duplicate_count, 24
duplicate_count_colpair, 26
duplicate_detect, 27

fractional-rounding, 29
function_map, 30
function_map_seq, 33
function_map_total_n, 36

grim, 39
grim-stats, 41
grim_granularity, 51
grim_items (grim_granularity), 51
grim_map, 53
grim_map_seq, 55
grim_map_total_n, 57
grim_plot, 60
grim_ratio (grim-stats), 41
grim_ratio_upper (grim-stats), 41
grim_total (grim-stats), 41
grimmer, 43
grimmer_map, 45
grimmer_map_seq, 47
grimmer_map_total_n, 49

inside_parens (parens-extractors), 66
is_equal_set (subset-superset), 93
is_equal_set_vals (subset-superset), 93
is_equal_set_vecs (subset-superset), 93
is_map_basic_df

(data-frame-predicates), 8
is_map_df (data-frame-predicates), 8
is_map_seq_df (data-frame-predicates), 8
is_map_total_n_df

(data-frame-predicates), 8
is_numeric_like, 62
is_proper_subset_of (subset-superset),

93
is_proper_subset_of_vals

(subset-superset), 93
is_proper_subset_of_vecs

(subset-superset), 93
is_proper_superset_of

(subset-superset), 93
is_proper_superset_of_vals

(subset-superset), 93
is_proper_superset_of_vecs

(subset-superset), 93
is_seq_ascending (seq-predicates), 84

103

104 INDEX

is_seq_descending (seq-predicates), 84
is_seq_dispersed (seq-predicates), 84
is_seq_linear (seq-predicates), 84
is_subset_of (subset-superset), 93
is_subset_of_vals (subset-superset), 93
is_subset_of_vecs (subset-superset), 93
is_superset_of (subset-superset), 93
is_superset_of_vals (subset-superset),

93
is_superset_of_vecs (subset-superset),

93

manage_helper_col, 64
manage_key_colnames, 65

parens-extractors, 66
pigs1, 67
pigs2, 67
pigs3, 68
pigs4, 69
pigs5, 69

reround, 70
reround_to_fraction

(fractional-rounding), 29
reround_to_fraction_level

(fractional-rounding), 29
restore_zeros, 71
restore_zeros_df (restore_zeros), 71
reverse_map_seq, 73
reverse_map_total_n, 74
round_anti_trunc (rounding-uncommon), 77
round_ceiling (rounding-uncommon), 77
round_down (rounding-common), 75
round_down_from (rounding-common), 75
round_floor (rounding-uncommon), 77
round_trunc (rounding-uncommon), 77
round_up (rounding-common), 75
round_up_from (rounding-common), 75
rounding-common, 75
rounding-uncommon, 77
rounding_bias, 78
row_to_colnames, 79

sd-binary, 80
sd_binary_0_n (sd-binary), 80
sd_binary_1_n (sd-binary), 80
sd_binary_groups (sd-binary), 80
sd_binary_mean_n (sd-binary), 80

seq-decimal, 82
seq-predicates, 84
seq_disperse, 86
seq_disperse_df (seq_disperse), 86
seq_distance (seq-decimal), 82
seq_distance_df (seq-decimal), 82
seq_endpoint (seq-decimal), 82
seq_endpoint_df (seq-decimal), 82
seq_length, 88
seq_length<- (seq_length), 88
seq_test_ranking, 90
split_by_parens, 91
subset-superset, 93

unnest_consistency_cols, 95
unround, 96

write_doc_audit, 98
write_doc_audit_seq, 99
write_doc_audit_total_n, 100
write_doc_factory_map_conventions, 101

	audit
	audit_cols_minimal
	check_audit_special
	check_mapper_input_colnames
	data-frame-predicates
	debit
	debit_map
	debit_map_seq
	debit_map_total_n
	debit_plot
	decimal_places
	decimal_places_df
	disperse
	duplicate_count
	duplicate_count_colpair
	duplicate_detect
	fractional-rounding
	function_map
	function_map_seq
	function_map_total_n
	grim
	grim-stats
	grimmer
	grimmer_map
	grimmer_map_seq
	grimmer_map_total_n
	grim_granularity
	grim_map
	grim_map_seq
	grim_map_total_n
	grim_plot
	is_numeric_like
	manage_helper_col
	manage_key_colnames
	parens-extractors
	pigs1
	pigs2
	pigs3
	pigs4
	pigs5
	reround
	restore_zeros
	reverse_map_seq
	reverse_map_total_n
	rounding-common
	rounding-uncommon
	rounding_bias
	row_to_colnames
	sd-binary
	seq-decimal
	seq-predicates
	seq_disperse
	seq_length
	seq_test_ranking
	split_by_parens
	subset-superset
	unnest_consistency_cols
	unround
	write_doc_audit
	write_doc_audit_seq
	write_doc_audit_total_n
	write_doc_factory_map_conventions
	Index

