sdmTMB: Spatial and Spatiotemporal SPDE-Based GLMMs with 'TMB'

Implements spatial and spatiotemporal predictive-process GLMMs (Generalized Linear Mixed Effect Models) using 'TMB', 'INLA', and the SPDE (Stochastic Partial Differential Equation) approximation to Gaussian random fields. One common application is for spatially explicit (and optionally dynamic) species distribution models (SDMs). See Anderson et al. (2022) <doi:10.1101/2022.03.24.485545>.

Version: 0.2.1
Depends: R (≥ 3.5.0)
Imports: assertthat, clisymbols, cli, fishMod, generics, glmmTMB, graphics, lifecycle, Matrix, methods, mgcv, mvtnorm, nlme, rlang, stats, TMB (≥ 1.8.0)
LinkingTo: RcppEigen, TMB
Suggests: bayesplot, DHARMa, dplyr, effects (≥ 4.0-1), estimability, emmeans (≥ 1.4), future.apply, ggeffects, ggforce, ggplot2, INLA, knitr, rgdal, rmarkdown, rstan, sf, splancs, testthat, tibble, tmbstan, visreg
Published: 2023-01-10
Author: Sean C. Anderson ORCID iD [aut, cre], Eric J. Ward ORCID iD [aut], Lewis A. K. Barnett ORCID iD [aut], Philina A. English ORCID iD [aut], James T. Thorson ORCID iD [ctb, cph] (VAST author), Joe Watson [ctb] (Censored Poisson), Julia Indivero [ctb] (Vignette writing), Cole C. Monnahan ORCID iD [ctb, cph] (VAST contributor), Mollie Brooks ORCID iD [ctb, cph] (glmmTMB author), Ben Bolker ORCID iD [ctb, cph] (glmmTMB author), Kasper Kristensen [ctb, cph] (TMB/glmmTMB author), Martin Maechler ORCID iD [ctb, cph] (glmmTMB author), Arni Magnusson ORCID iD [ctb, cph] (glmmTMB author), Hans J. Skaug [ctb, cph] (glmmTMB author, SPDE barrier), Anders Nielsen ORCID iD [ctb, cph] (glmmTMB author), Casper Berg ORCID iD [ctb, cph] (glmmTMB author), Koen van Bentham [ctb, cph] (glmmTMB author), Olav Nikolai Breivik [ctb, cph] (SPDE barrier), Simon Wood [ctb, cph] (mgcv: smoother prediction), Paul-Christian Bürkner [ctb, cph] (brms: smoother matrix parsing), His Majesty the King in Right of Canada, as represented by the Minister of the Department of Fisheries and Oceans [cph]
Maintainer: Sean C. Anderson <sean at seananderson.ca>
BugReports: https://github.com/pbs-assess/sdmTMB/issues
License: GPL-3
Copyright: inst/COPYRIGHTS
sdmTMB copyright details
URL: https://pbs-assess.github.io/sdmTMB/index.html, https://pbs-assess.github.io/sdmTMB/
NeedsCompilation: yes
SystemRequirements: GNU make, C++11
Additional_repositories: https://inla.r-inla-download.org/R/stable
Citation: sdmTMB citation info
Materials: NEWS
CRAN checks: sdmTMB results

Documentation:

Reference manual: sdmTMB.pdf
Vignettes: Intro to modelling with sdmTMB
Bayesian estimation with sdmTMB
Cross-validation for model evaluation and comparison
Fitting delta (hurdle) models with sdmTMB
Visualizing marginal effects in sdmTMB models with ggeffects
Index standardization with sdmTMB
sdmTMB model description
Making pretty maps with sdmTMB output
Residual checking with sdmTMB
Fitting spatial trend models with sdmTMB
Threshold modeling with sdmTMB
Visualizing sdmTMB conditional effects using visreg

Downloads:

Package source: sdmTMB_0.2.1.tar.gz
Windows binaries: r-devel: sdmTMB_0.2.1.zip, r-release: sdmTMB_0.2.1.zip, r-oldrel: sdmTMB_0.2.1.zip
macOS binaries: r-release (arm64): sdmTMB_0.2.1.tgz, r-oldrel (arm64): sdmTMB_0.2.1.tgz, r-release (x86_64): sdmTMB_0.2.1.tgz, r-oldrel (x86_64): sdmTMB_0.2.1.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=sdmTMB to link to this page.