standardizedSolution_boot_ci()
DoesIn lavaan
, if bootstrapping is requested, the standard
errors and confidence intervals in the standardized solutions are
computed by delta method using the variance-covariance matrix of the
bootstrap estimates. The intervals are symmetric about the point
estimates and are not the usual bootstrap percentile confidence
intervals users expect when bootstrapping is conducted.
standardizedSolution_boot_ci()
accepts a
lavaan::lavaan-class
object fitted with
se = "bootstrap"
(or se = "boot"
) and forms
the percentile confidence intervals based on the bootstrap estimates
stored in the object.
A mediation model example adapted from the official
lavaan
website is used (https://lavaan.ugent.be/tutorial/mediation.html).
library(lavaan)
set.seed(1234)
<- 100
n <- runif(n) - .5
X <- 0.20*X + rnorm(n)
M <- 0.17*M + rnorm(n)
Y <- data.frame(X = X, Y = Y, M = M)
Data <- ' # direct effect
model Y ~ c*X
# mediator
M ~ a*X
Y ~ b*M
# indirect effect (a*b)
ab := a*b
# total effect
total := c + (a*b)
'
This model is fitted with se = "bootstrap"
:
<- sem(model,
fit data = Data,
se = "bootstrap",
bootstrap = 5000,
parallel ="snow", ncpus = 8)
This is the standardized solution with delta-method confidence intervals (results may be different when the code is ran again because seed is not set).
standardizedSolution(fit)
#> lhs op rhs label est.std se z pvalue ci.lower ci.upper
#> 1 Y ~ X c 0.018 0.097 0.185 0.853 -0.172 0.207
#> 2 M ~ X a 0.046 0.100 0.456 0.648 -0.150 0.241
#> 3 Y ~ M b 0.102 0.102 1.001 0.317 -0.098 0.302
#> 4 Y ~~ Y 0.989 0.021 48.205 0.000 0.949 1.029
#> 5 M ~~ M 0.998 0.009 109.591 0.000 0.980 1.016
#> 6 X ~~ X 1.000 0.000 NA NA 1.000 1.000
#> 7 ab := a*b ab 0.005 0.010 0.448 0.654 -0.016 0.025
#> 8 total := c+(a*b) total 0.023 0.096 0.234 0.815 -0.167 0.212
To form bootstrap percentile confidence intervals for the
standardized solution, simply use
standardizedSolution_boot_ci()
instead of
lavaan::standardizedSolution()
:
library(semhelpinghands)
<- standardizedSolution_boot_ci(fit)
ci_boot
ci_boot#> lhs op rhs label est.std se z pvalue ci.lower ci.upper boot.ci.lower boot.ci.upper
#> 1 Y ~ X c 0.018 0.097 0.185 0.853 -0.172 0.207 -0.168 0.208
#> 2 M ~ X a 0.046 0.100 0.456 0.648 -0.150 0.241 -0.150 0.243
#> 3 Y ~ M b 0.102 0.102 1.001 0.317 -0.098 0.302 -0.095 0.297
#> 4 Y ~~ Y 0.989 0.021 48.205 0.000 0.949 1.029 0.898 0.999
#> 5 M ~~ M 0.998 0.009 109.591 0.000 0.980 1.016 0.941 1.000
#> 6 X ~~ X 1.000 0.000 NA NA 1.000 1.000 NA NA
#> 7 ab := a*b ab 0.005 0.010 0.448 0.654 -0.016 0.025 -0.029 0.036
#> 8 total := c+(a*b) total 0.023 0.096 0.234 0.815 -0.167 0.212 -0.165 0.210
The bootstrap percentile confidence intervals are appended to the
right of the original output of
lavaan::standardizedSolution()
.
The function standardizedSolution_boot_ci()
takes some
time to run because it retrieves the estimates of the unstandardized
solution in each bootstrap sample and computes the estimates in the
standardized solution. Therefore, if 5,000 bootstrap samples are
requested, this process is repeated 5,000 times. Nevertheless, it is
still much faster than fitting the model 5,000 times again.
This function was originally proposed in an issue
at GitHub, inspired by a discussion at the Google
group for lavaan. It is not a versatile function and used some
“tricks” to do the work. A more reliable way is to use function like
lavaan::bootstrapLavaan()
. Nevertheless, this simple
function is good enough for the cases I encountered in my work.