shorts

CRAN status DOI

This package creates short sprint (<6sec) profiles using the split times, or the radar gun data. Mono-exponential equation is used to estimate maximal sprinting speed (MSS), relative acceleration (TAU), and other parameters. These parameters can be used to predict kinematic and kinetics variables and to compare individuals.

Installation

# Install from CRAN
install.packages("shorts")

# Or the development version from GitHub
# install.packages("devtools")
devtools::install_github("mladenjovanovic/shorts")

Examples

{shorts} comes with two sample data sets: split_times and radar_gun_data with N=5 athletes. Let’s load them both:

require(shorts)
require(tidyverse)
require(knitr)

data("split_times", "radar_gun_data")

Profiling using split times

To model sprint performance using split times, distance will be used as predictor and time as target. Since split_times contains data for multiple athletes, let’s extract only one athlete and model it using shorts::model_timing_gates() function.

kimberley_data <- filter(split_times, athlete == "Kimberley")

kable(kimberley_data)
athlete bodyweight distance time
Kimberley 55 5 1.158
Kimberley 55 10 1.893
Kimberley 55 15 2.541
Kimberley 55 20 3.149
Kimberley 55 30 4.313
Kimberley 55 40 5.444

shorts::model_timing_gates() returns an object with parameters, model_fit, model returned from minpack.lm::nlsLM() function and data used to estimate parameters. Parameters estimated using mono-exponential equation are maximal sprinting speed (MSS), and relative acceleration (TAU). Additional parameters computed from MSS and TAU are maximal acceleration (MAC) and maximal relative power (PMAX) (which is calculated as MAC*MSS/4).

kimberley_profile <- shorts::model_timing_gates(
  distance = kimberley_data$distance,
  time = kimberley_data$time
)

kimberley_profile
#> Estimated model parameters
#> --------------------------
#>   MSS   TAU   MAC  PMAX 
#>  8.59  0.81 10.59 22.74 
#> 
#> Model fit estimators
#> --------------------
#>       RSE R_squared    minErr    maxErr maxAbsErr      RMSE       MAE      MAPE 
#>     0.034     1.000    -0.053     0.027     0.053     0.028     0.023     1.193

summary(kimberley_profile)
#> 
#> Formula: time ~ TAU * I(LambertW::W(-exp(1)^(-distance/(MSS * TAU) - 1))) + 
#>     distance/MSS + TAU
#> 
#> Parameters:
#>     Estimate Std. Error t value Pr(>|t|)    
#> MSS   8.5911     0.1225    70.1  2.5e-07 ***
#> TAU   0.8113     0.0458    17.7  6.0e-05 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Residual standard error: 0.034 on 4 degrees of freedom
#> 
#> Number of iterations to convergence: 5 
#> Achieved convergence tolerance: 1.49e-08

coef(kimberley_profile)
#>   MSS   TAU   MAC  PMAX 
#>  8.59  0.81 10.59 22.74

To return the predicted outcome (in this case time variable), use predict() function:

predict(kimberley_profile)
#> [1] 1.2 1.9 2.5 3.1 4.3 5.5

To create a simple plot, use S3 plot() method:

plot(kimberley_profile) +
  theme_bw()

If you are interested in calculating average split velocity, use shorts::format_splits()

kable(shorts::format_splits(
  distance = kimberley_data$distance,
  time = kimberley_data$time
))
split split_distance_start split_distance_stop split_distance split_time_start split_time_stop split_time split_mean_velocity split_mean_acceleration
1 0 5 5 0 1.158 1.158 4.317789…. 3.728660….
2 5 10 5 1.158 1.893 0.735 6.802721…. 3.380859….
3 10 15 5 1.893 2.541 0.648 7.716049…. 1.409457….
4 15 20 5 2.541 3.149 0.608 8.223684…. 0.834925….
5 20 30 10 3.149 4.313 1.164 8.591065…. 0.315619….
6 30 40 10 4.313 5.444 1.131 8.841732…. 0.221633….

Let’s plot observed vs fitted split times. For this we can use data returned from shorts::model_timing_gates() since it contains pred_time column.

ggplot(kimberley_profile$data, aes(x = distance)) +
  theme_bw() +
  geom_point(aes(y = time)) +
  geom_line(aes(y = pred_time)) +
  xlab("Distance (m)") +
  ylab("Time (s)")

To plot predicted velocity, acceleration, air resistance, force, and power over distance, use shorts:predict_XXX(). Please note that to calculate force, air resistance, and power, we need Kimberley’s bodymass and height (as well as other characteristics such as air pressure, temperature and wind - see get_air_resistance() function).

kimberley_bodymass <- 60 # in kilograms
kimberley_bodyheight <- 1.7 # in meters

kimberley_pred <- tibble(
  distance = seq(0, 40, length.out = 1000),

  # Velocity
  pred_velocity = shorts::predict_velocity_at_distance(
    distance,
    kimberley_profile$parameters$MSS,
    kimberley_profile$parameters$TAU
  ),

  # Acceleration
  pred_acceleration = shorts::predict_acceleration_at_distance(
    distance,
    kimberley_profile$parameters$MSS,
    kimberley_profile$parameters$TAU
  ),

  # Air resistance
  pred_air_resistance = shorts::predict_air_resistance_at_distance(
    distance,
    kimberley_profile$parameters$MSS,
    kimberley_profile$parameters$TAU,
    bodymass = kimberley_bodymass,
    bodyheight = kimberley_bodyheight
  ),

  # Force
  pred_force = shorts::predict_force_at_distance(
    distance,
    kimberley_profile$parameters$MSS,
    kimberley_profile$parameters$TAU,
    bodymass = kimberley_bodymass,
    bodyheight = kimberley_bodyheight
  ),

  # Power
  pred_power = shorts::predict_power_at_distance(
    distance,
    kimberley_profile$parameters$MSS,
    kimberley_profile$parameters$TAU,
    bodymass = kimberley_bodymass,
    bodyheight = kimberley_bodyheight
  ),
)

# Convert to long
kimberley_pred <- gather(kimberley_pred, "metric", "value", -distance)

ggplot(kimberley_pred, aes(x = distance, y = value)) +
  theme_bw() +
  geom_line() +
  facet_wrap(~metric, scales = "free_y") +
  xlab("Distance (m)") +
  ylab(NULL)

To do prediction simpler, use shorts::predict_kinematics() function. This will provide kinetics and kinematics for 0-6s sprint using 100Hz.

predicted_kinematics <- predict_kinematics(
  kimberley_profile,
  bodymass = kimberley_bodymass,
  bodyheight = kimberley_bodyheight
)

kable(head(predicted_kinematics))
time distance velocity acceleration bodymass net_horizontal_force air_resistance horizontal_force horizontal_force_relative vertical_force resultant_force resultant_force_relative power relative_power RF force_angle
0.00 0.00 0.00 11 60 635 0.00 635 11 589 866 14 0 0.0 0.73 43
0.01 0.00 0.11 10 60 628 0.00 628 10 589 860 14 66 1.1 0.73 43
0.02 0.00 0.21 10 60 620 0.01 620 10 589 855 14 130 2.2 0.73 44
0.03 0.00 0.31 10 60 612 0.02 612 10 589 849 14 191 3.2 0.72 44
0.04 0.01 0.41 10 60 605 0.04 605 10 589 844 14 250 4.2 0.72 44
0.05 0.01 0.51 10 60 597 0.06 597 10 589 839 14 307 5.1 0.71 45

To get model residuals, use residuals() function:

residuals(kimberley_profile)
#> [1] -0.053 -0.004  0.020  0.027  0.014 -0.022

Package {shorts} comes with find_XXX() family of functions that allow finding peak power and it’s location, as well as critical distance over which velocity, acceleration, or power drops below certain threshold:

# Peak power and location
shorts::find_max_power_distance(
  kimberley_profile$parameters$MSS,
  kimberley_profile$parameters$TAU
)
#> $max_power
#> [1] 163
#> 
#> $distance
#> [1] 30

# Distance over which power is over 50%
shorts::find_power_critical_distance(
  MSS = kimberley_profile$parameters$MSS,
  MAC = kimberley_profile$parameters$MAC,
  percent = 0.5
)
#> $lower
#> [1] 0.086
#> 
#> $upper
#> [1] 8.4

# Distance over which acceleration is under 50%
shorts::find_acceleration_critical_distance(
  MSS = kimberley_profile$parameters$MSS,
  MAC = kimberley_profile$parameters$MAC,
  percent = 0.5
)
#> [1] 1.3

# Distance over which velocity is over 95%
shorts::find_velocity_critical_distance(
  MSS = kimberley_profile$parameters$MSS,
  MAC = kimberley_profile$parameters$MAC,
  percent = 0.95
)
#> [1] 14

Profiling using radar gun data

The radar gun data is modeled using measured velocity as target variable and time as predictor. Individual analysis is performed using shorts::model_radar_gun() function. Let’s do analysis for Jim:

jim_data <- filter(radar_gun_data, athlete == "Jim")

jim_profile <- shorts::model_radar_gun(
  time = jim_data$time,
  velocity = jim_data$velocity
)

jim_profile
#> Estimated model parameters
#> --------------------------
#>     MSS     TAU     MAC    PMAX      TC 
#> 8.0e+00 8.9e-01 9.0e+00 1.8e+01 1.1e-04 
#> 
#> Model fit estimators
#> --------------------
#>       RSE R_squared    minErr    maxErr maxAbsErr      RMSE       MAE      MAPE 
#>     0.051     0.999    -0.164     0.151     0.164     0.051     0.039       Inf

summary(jim_profile)
#> 
#> Formula: velocity ~ MSS * (1 - exp(1)^(-(time + TC)/TAU))
#> 
#> Parameters:
#>     Estimate Std. Error t value Pr(>|t|)    
#> MSS  7.99801    0.00319 2504.54   <2e-16 ***
#> TAU  0.88880    0.00218  407.81   <2e-16 ***
#> TC   0.00011    0.00123    0.09     0.93    
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Residual standard error: 0.051 on 597 degrees of freedom
#> 
#> Number of iterations to convergence: 6 
#> Achieved convergence tolerance: 1.49e-08

plot(jim_profile) +
  theme_bw()

The object returned from shorts::model_radar_gun() is same as object returned from shorts::model_timing_gates(). Let’s plot Jim’s measured velocity and predicted velocity:

ggplot(jim_profile$data, aes(x = time)) +
  theme_bw() +
  geom_line(aes(y = velocity), alpha = 0.5) +
  geom_line(aes(y = pred_velocity), color = "red", alpha = 0.5) +
  xlab("Time (s)") +
  ylab("Velocity (m/s)")

Profiling using tether devices

Some tether devices provide data out in a velocity-at-distance format. In this case, velocity is the outcome variable and distance is the predictor. To estimate sprint profiles from tether data, use model_tether() function:

distance <- c(5, 10, 20, 30, 40)

velocity <- predict_velocity_at_distance(distance, MSS = 10, MAC = 8) +
  rnorm(length(distance), 0, 0.1)

m1 <- model_tether(distance = distance, velocity = velocity)

df <- data.frame(
  distance = distance,
  obs_velocity = velocity
)

plot(m1) +
  geom_point(data = df, aes(x = distance, y = obs_velocity))

Force-Velocity Profiling

To estimate Force-Velocity profile using approach by Samozino et al. (2016, 2022) use shorts::make_FV_profile():

kimberley_fv <- shorts::make_FV_profile(
  MSS = kimberley_profile$parameters$MSS,
  MAC = kimberley_profile$parameters$MAC,
  # These are needed to estimate air resistance
  bodymass = kimberley_bodymass,
  bodyheight = kimberley_bodyheight
)

kimberley_fv
#> Estimated Force-Velocity Profile
#> --------------------------------
#>      bodymass            F0        F0_rel            V0          Pmax 
#>       6.0e+01       6.3e+02       1.1e+01       8.8e+00       1.4e+03 
#>      Pmax_rel      FV_slope  RFmax_cutoff         RFmax           Drf 
#>       2.3e+01      -1.2e+00       3.0e-01       6.0e-01      -1.0e-01 
#>        RSE_FV       RSE_Drf       F0_poly   F0_poly_rel       V0_poly 
#>       1.0e+00       9.5e-03       6.4e+02       1.1e+01       8.8e+00 
#>     Pmax_poly Pmax_poly_rel FV_slope_poly 
#>       1.4e+03       2.3e+01      -1.2e+00

plot(kimberley_fv) +
  theme_bw()

Using corrections

You have probably noticed that estimated MSS and TAU were a bit too high for splits data. Biased estimates are due to differences in starting positions and timing triggering methods for certain measurement approaches (e.g. starting behind first timing gate, or allowing for body rocking).

Here I will provide quick summary. Often, this bias in estimates is dealt with by using heuristic rule of thumb of adding time correction (time_correction) to split times (e.g. from 0.3-0.5sec; see more in Haugen et al., 2012). To do this, just add time correction to time split:

kimberley_profile_fixed_TC <- shorts::model_timing_gates(
  distance = kimberley_data$distance,
  time = kimberley_data$time + 0.3
)

kimberley_profile_fixed_TC
#> Estimated model parameters
#> --------------------------
#>  MSS  TAU  MAC PMAX 
#>  9.1  1.4  6.6 15.1 
#> 
#> Model fit estimators
#> --------------------
#>       RSE R_squared    minErr    maxErr maxAbsErr      RMSE       MAE      MAPE 
#>    0.0100    1.0000   -0.0077    0.0164    0.0164    0.0081    0.0064    0.2857

summary(kimberley_profile_fixed_TC)
#> 
#> Formula: time ~ TAU * I(LambertW::W(-exp(1)^(-distance/(MSS * TAU) - 1))) + 
#>     distance/MSS + TAU
#> 
#> Parameters:
#>     Estimate Std. Error t value Pr(>|t|)    
#> MSS   9.1278     0.0536   170.4  7.1e-09 ***
#> TAU   1.3776     0.0213    64.7  3.4e-07 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Residual standard error: 0.01 on 4 degrees of freedom
#> 
#> Number of iterations to convergence: 5 
#> Achieved convergence tolerance: 1.49e-08

coef(kimberley_profile_fixed_TC)
#>  MSS  TAU  MAC PMAX 
#>  9.1  1.4  6.6 15.1

Instead of providing for TC, this parameter can be estimated using shorts::model_timing_gates_TC().

kimberley_profile_TC <- shorts::model_timing_gates_TC(
  distance = kimberley_data$distance,
  time = kimberley_data$time
)

kimberley_profile_TC
#> Estimated model parameters
#> --------------------------
#>   MSS   TAU   MAC  PMAX    TC 
#>  8.97  1.23  7.27 16.31  0.23 
#> 
#> Model fit estimators
#> --------------------
#>       RSE R_squared    minErr    maxErr maxAbsErr      RMSE       MAE      MAPE 
#>   0.00113   1.00000  -0.00118   0.00121   0.00121   0.00080   0.00066   0.02824

Instead of estimating TC, {shorts} package features a method of estimating flying start distance (FD):

kimberley_profile_FD <- shorts::model_timing_gates_FD(
  distance = kimberley_data$distance,
  time = kimberley_data$time
)

kimberley_profile_FD
#> Estimated model parameters
#> --------------------------
#>  MSS  TAU  MAC PMAX   FD 
#>  9.0  1.3  7.0 15.7  0.3 
#> 
#> Model fit estimators
#> --------------------
#>       RSE R_squared    minErr    maxErr maxAbsErr      RMSE       MAE      MAPE 
#>   0.00039   1.00000  -0.00040   0.00046   0.00046   0.00028   0.00024   0.00783

Cross-Validation (CV)

model_timing_gates_() family of functions come with LOOCV feature that is performed by setting the function parameter LOOCV = TRUE. This feature is very useful for checking model parameters robustness and model predictions on unseen data. LOOCV involve iterative model building and testing by removing observation one by one and making predictions for them. Let’s use Kimberley again, but this time perform LOOCV:

kimberley_profile_LOOCV <- shorts::model_timing_gates(
  distance = kimberley_data$distance,
  time = kimberley_data$time,
  LOOCV = TRUE
)

kimberley_profile_LOOCV
#> Estimated model parameters
#> --------------------------
#>   MSS   TAU   MAC  PMAX 
#>  8.59  0.81 10.59 22.74 
#> 
#> Model fit estimators
#> --------------------
#>       RSE R_squared    minErr    maxErr maxAbsErr      RMSE       MAE      MAPE 
#>     0.034     1.000    -0.053     0.027     0.053     0.028     0.023     1.193 
#> 
#> 
#> Cross-Validation
#> ------------------------------
#> Parameters:
#> # A tibble: 6 × 4
#>     MSS   TAU   MAC  PMAX
#>   <dbl> <dbl> <dbl> <dbl>
#> 1  8.69 0.856  10.2  22.1
#> 2  8.60 0.815  10.5  22.7
#> 3  8.56 0.795  10.8  23.0
#> 4  8.57 0.797  10.8  23.0
#> 5  8.61 0.813  10.6  22.8
#> 6  8.39 0.760  11.1  23.2
#> 
#> Testing model fit:
#>       RSE R_squared    minErr    maxErr maxAbsErr      RMSE       MAE      MAPE 
#>        NA     0.999    -0.080     0.034     0.080     0.047     0.039     1.723

Box-plot is suitable method for plotting estimated parameters:

LOOCV_parameters <- gather(kimberley_profile_LOOCV$CV$parameters)

ggplot(LOOCV_parameters, aes(y = value)) +
  theme_bw() +
  geom_boxplot() +
  facet_wrap(~key, scales = "free") +
  ylab(NULL) +
  theme(axis.ticks.x = element_blank(), axis.text.x = element_blank())

Let’s plot model LOOCV predictions and training (when using all data set) predictions against observed performance:

kimberley_data <- kimberley_data %>%
  mutate(
    pred_time = predict(kimberley_profile_LOOCV),
    LOOCV_time = kimberley_profile_LOOCV$CV$data$pred_time
  )

ggplot(kimberley_data, aes(x = distance)) +
  theme_bw() +
  geom_point(aes(y = time)) +
  geom_line(aes(y = pred_time), color = "black") +
  geom_line(aes(y = LOOCV_time), color = "red") +
  xlab("Distance (m)") +
  ylab("Time (s)")

Let’s plot predicted velocity using LOOCV estimate parameters to check robustness of the model predictions:

plot_data <- kimberley_profile_LOOCV$CV$parameters %>%
  mutate(LOOCV = row_number())

plot_data <- expand_grid(
  data.frame(time = seq(0, 6, length.out = 100)),
  plot_data
) %>%
  mutate(
    LOOCV_velocity = predict_velocity_at_time(
      time = time,
      MSS = MSS,
      MAC = MAC
    ),
    velocity = predict_velocity_at_time(
      time = time,
      MSS = kimberley_profile_LOOCV$parameters$MSS,
      MAC = kimberley_profile_LOOCV$parameters$MAC
    )
  )

ggplot(plot_data, aes(x = time, y = LOOCV_velocity, group = LOOCV)) +
  theme_bw() +
  geom_line(alpha = 0.8) +
  geom_line(aes(y = velocity), color = "red", size = 0.5) +
  xlab("Time (sec)") +
  ylab("Velocity (m/s)")

Cross-validation implemented in model_radar_gun() function involves using n-folds, set by using CV= parameter:

jim_profile_CV <- shorts::model_radar_gun(
  time = jim_data$time,
  velocity = jim_data$velocity,
  CV = 10
)

jim_profile_CV
#> Estimated model parameters
#> --------------------------
#>     MSS     TAU     MAC    PMAX      TC 
#> 8.0e+00 8.9e-01 9.0e+00 1.8e+01 1.1e-04 
#> 
#> Model fit estimators
#> --------------------
#>       RSE R_squared    minErr    maxErr maxAbsErr      RMSE       MAE      MAPE 
#>     0.051     0.999    -0.164     0.151     0.164     0.051     0.039       Inf 
#> 
#> 
#> Cross-Validation
#> ------------------------------
#> Parameters:
#> # A tibble: 10 × 5
#>      MSS   TAU   MAC  PMAX         TC
#>    <dbl> <dbl> <dbl> <dbl>      <dbl>
#>  1  8.00 0.889  9.00  18.0 -0.0000351
#>  2  8.00 0.889  9.00  18.0  0.0000291
#>  3  8.00 0.889  8.99  18.0  0.000133 
#>  4  8.00 0.888  9.01  18.0  0.0000355
#>  5  8.00 0.888  9.01  18.0 -0.000148 
#>  6  8.00 0.888  9.00  18.0  0.000105 
#>  7  8.00 0.889  8.99  18.0  0.000298 
#>  8  8.00 0.890  8.99  18.0  0.000483 
#>  9  8.00 0.890  8.99  18.0  0.000221 
#> 10  8.00 0.888  9.00  18.0 -0.0000143
#> 
#> Testing model fit:
#>       RSE R_squared    minErr    maxErr maxAbsErr      RMSE       MAE      MAPE 
#>        NA     0.999    -0.164     0.153     0.164     0.051     0.040       Inf

Optimization

Using the method outlined in Samozino et al (2022), one can find the optimal profiles, as well as the profile imbalance (compared to the optimal), for both sprint profiles (i.e., MSS and MAC) and Force-Velocity (FV). In addition to this, one can probe the profiles (i.e., increase V0/F0 or MSS/MAC for say 2.5% to check which improvement yield more improvement in sprint time). The following graph depicts estimate profile imbalances. Note that >100% is velocity deficit (i.e., increasing velocity; MSS or V0; will yield more improvement in sprint times), while <100% is force deficit.

MSS <- 10
MAC <- 8
bodymass <- 75

fv <- make_FV_profile(MSS, MAC, bodymass)

opt_df <- tibble(
  dist = seq(5, 50, by = 5)
) %>%
  mutate(
    `Sprint Profile` = optimal_MSS_MAC(
      distance = dist,
      MSS,
      MAC
    )[["profile_imb"]],
    `FV Profile` = optimal_FV(
      distance = dist,
      fv$F0_poly,
      fv$V0_poly,
      bodymass
    )[["profile_imb"]],
    `FV Profile (PeakPower)` = optimal_FV(
      distance = dist,
      fv$F0_poly,
      fv$V0_poly,
      bodymass,
      method = "peak"
    )[["profile_imb"]],
    `Probe FV` = probe_FV(
      distance = dist,
      fv$F0_poly,
      fv$V0_poly,
      bodymass
    )[["profile_imb"]],
    `Probe MSS/MAC` = probe_MSS_MAC(
      distance = dist,
      MSS,
      MAC
    )[["profile_imb"]]
  ) %>%
  pivot_longer(-dist, names_to = "profile")

opt_dist <- tibble(
  `Sprint Profile` = find_optimal_distance(
    MSS,
    MAC,
    optimal_func = optimal_MSS_MAC
  ),
  `FV Profile` = find_optimal_distance(
    fv$F0_poly,
    fv$V0_poly,
    bodymass,
    optimal_func = optimal_FV
  ),
  `FV Profile (PeakPower)` = find_optimal_distance(
    fv$F0_poly,
    fv$V0_poly,
    bodymass,
    optimal_func = optimal_FV,
    method = "peak"
  ),
  `Probe FV` = find_optimal_distance(
    fv$F0_poly,
    fv$V0_poly,
    bodymass,
    optimal_func = probe_FV
  ),
  `Probe MSS/MAC` = find_optimal_distance(
    MSS,
    MAC,
    optimal_func = probe_MSS_MAC
  )
) %>%
  pivot_longer(cols = 1:5, names_to = "profile")

ggplot(opt_df, aes(x = dist, y = value, color = profile)) +
  theme_bw() +
  geom_hline(yintercept = 100, linetype = "dashed", alpha = 0.6) +
  geom_line() +
  geom_point(data = opt_dist, aes(x = value, y = 100), size = 2) +
  xlab("Distance (m)") +
  ylab("Profile imbalance")

Publications

  1. Jovanović, M., Vescovi, J.D. (2020). {shorts}: An R Package for Modeling Short Sprints. International Journal of Strength and Conditioning, 2(1). https://doi.org/10.47206/ijsc.v2i1.74

  2. Vescovi, JD and Jovanović, M. (2021). Sprint Mechanical Characteristics of Female Soccer Players: A Retrospective Pilot Study to Examine a Novel Approach for Correction of Timing Gate Starts. Front Sports Act Living 3: 629694, 2021. https://doi.org/10.3389/fspor.2021.629694

  3. Jovanovic M. (2022). Bias in estimated short sprint profiles using timing gates due to the flying start: Simulation study and proposed solutions. SportRxiv https://doi.org/10.51224/SRXIV.179

Citation

To cite {shorts}, please use the following command to get the BibTex entry:

citation("shorts")

References

Please refer to these publications for more information on short sprints modeling using mono-exponential equation:

Chelly SM, Denis C. 2001. Leg power and hopping stiffness: relationship with sprint running performance: Medicine and Science in Sports and Exercise:326–333. DOI: 10.1097/00005768-200102000-00024.

Clark KP, Rieger RH, Bruno RF, Stearne DJ. 2017. The NFL Combine 40-Yard Dash: How Important is Maximum Velocity? Journal of Strength and Conditioning Research:1. DOI: 10.1519/JSC.0000000000002081.

Furusawa K, Hill AV, and Parkinson JL. The dynamics of” sprint” running. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character 102 (713): 29-42, 1927

Greene PR. 1986. Predicting sprint dynamics from maximum-velocity measurements. Mathematical Biosciences 80:1–18. DOI: 10.1016/0025-5564(86)90063-5.

Haugen TA, Tønnessen E, Seiler SK. 2012. The Difference Is in the Start: Impact of Timing and Start Procedure on Sprint Running Performance: Journal of Strength and Conditioning Research 26:473–479. DOI: 10.1519/JSC.0b013e318226030b.

Samozino P, Rabita G, Dorel S, Slawinski J, Peyrot N, Saez de Villarreal E, Morin J-B. 2016. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running: Simple method to compute sprint mechanics. Scandinavian Journal of Medicine & Science in Sports 26:648–658. DOI: 10.1111/sms.12490.

Samozino P. 2018. A Simple Method for Measuring Force, Velocity and Power Capabilities and Mechanical Effectiveness During Sprint Running. In: Morin J-B, Samozino P eds. Biomechanics of Training and Testing. Cham: Springer International Publishing, 237–267. DOI: 10.1007/978-3-319-05633-3_11.

Samozino P, Peyrot N, Edouard P, Nagahara R, Jimenez‐Reyes P, Vanwanseele B, Morin J. 2022. Optimal mechanical force‐velocity profile for sprint acceleration performance.Scandinavian Journal of Medicine & Science in Sports 32:559–575. DOI: 10.1111/sms.14097.