singR package is built on SING method https://github.com/thebrisklab/SING. SING is used to extract joint and individual non-gaussian components from different datasets. This is a tutorial example supporting the paper Simultaneous Non-Gaussian Component Analysis (SING) for Data Integration in Neuroimaging Benjamin Risk, Irina Gaynanova https://arxiv.org/abs/2005.00597v1
You can install singR from github with:
library(devtools)
install_github("thebrisklab/singR")
If you want to install it on Mac OS, the installation tips is here:
1.Make sure all the R packages used in singR are updated to the recommended version.
2.Try to install singR, if there is an error saying:
: warning: directory not found for option '-L/opt/R/arm64/gfortran/lib/gcc/aarch64-apple-darwin20.2.0/11.0.0'
ld: warning: directory not found for option '-L/opt/R/arm64/gfortran/lib'
ld: library not found for -lgfortran
ld: error: linker command failed with exit code 1 (use -v to see invocation) clang
Then go to: /Library/Frameworks/R.framework/Resources/etc/Makeconf Change FLIBS from
= -L/opt/R/arm64/gfortran/lib/gcc/aarch64-apple-darwin20.2.0/11.0.0 -L/opt/R/arm64/gfortran/lib -lgfortran -lemutls_w -lm FLIBS
to
= -L/usr/local/gfortran/lib/gcc/aarch64-apple-darwin20.2.0/11.0.0 -L/usr/local/gfortran/lib -lgfortran -lm FLIBS
3.Download the .tar.xz file from https://github.com/fxcoudert/gfortran-for-macOS/releases/tag/11-arm-alpha2 using the browser, unpack it under /usr/local so that the “gfortran” folder is there.
4.Install singR again, it should be installed successfully.
To illustrate the use of , we provide an example .
The tutorial dataset exampledata
are included in the package. We generate the SING model in @ref(eq:two) as follows. We generate joint subject scores \(M_{J}=[m_{J1},m_{J2}]\in \mathbb{R}^{n\times2}\) with \(m_{J1}\sim N(\mu_{1},I_{n}),m_{J2}\sim N(\mu_{2},I_{n})\), \(\mu_{1}=(1_{24}^{\top},-1_{24}^{\top})^{\top}\) and \(\mu_{2}=(-1_{24}^{\top},1_{24}^{\top})^{\top}\). We set \(D_{x}=I\) and \(D_{y}=diag(-5,2)\) to have differences in both sign and scale between the two datasets. We generate \(M_{Ix}\) and \(M_{Iy}\) similar to \(M_{J}\) using iid unit variance Gaussian entries with means equal to \(\mu_{3y}=(-1_{6}^{\top},1_{6}^{\top},-1_{6}^{\top},1_{6}^{\top},-1_{6}^{\top},1_{6}^{\top}-1_{6}^{\top},-1_{6}^{\top})^{\top}\), \(\mu_{4y}=(1_{24}^{\top},-1_{24}^{\top})^{\top}\), \(\mu_{3x}=(-1_{12}^{\top},1_{12}^{\top},-1_{12}^{\top},1_{12}^{\top})^{\top}\), \(\mu_{4x}=(1_{12}^{\top},-1_{12}^{\top},1_{12}^{\top},-1_{12}^{\top})^{\top}\). These means result in various degrees of correlation between the columns of the mixing matrices. For the Gaussian noise, we generate \(M_{Nx}\), \(M_{Ny}\), \(N_{x}\) and \(N_{y}\) using iid standard Gaussian mean zero entries.
library(singR)
data(exampledata)
<- exampledata
data
= 33
lgrid par(mfrow = c(2, 4))
# Components for X
image(matrix(data$sjX[1, ], lgrid, lgrid), col = heat.colors(12), xaxt = "n",
yaxt = "n", main = expression("True S"["Jx"] * ", 1"))
image(matrix(data$sjX[2, ], lgrid, lgrid), col = heat.colors(12), xaxt = "n",
yaxt = "n", main = expression("True S"["Jx"] * ", 2"))
image(matrix(data$siX[1, ], lgrid, lgrid), col = heat.colors(12), xaxt = "n",
yaxt = "n", main = expression("True S"["Ix"] * ", 1"))
image(matrix(data$siX[2, ], lgrid, lgrid), col = heat.colors(12), xaxt = "n",
yaxt = "n", main = expression("True S"["Ix"] * ", 2"))
# Components for Y
image(vec2net(data$sjY[1, ]), col = heat.colors(12), xaxt = "n", yaxt = "n",
main = expression("True S"["Jy"] * ", 1"))
image(vec2net(data$sjY[2, ]), col = heat.colors(12), xaxt = "n", yaxt = "n",
main = expression("True S"["Jy"] * ", 2"))
image(vec2net(data$siY[1, ]), col = heat.colors(12), xaxt = "n", yaxt = "n",
main = expression("True S"["Iy"] * ", 1"))
image(vec2net(data$siY[2, ]), col = heat.colors(12), xaxt = "n", yaxt = "n",
main = expression("True S"["Iy"] * ", 2"))
True loadings in example 1.
Function singR performs all steps in the SING pipeline as a single function
We first illustrate the use of the wrapper function singR
using the default settings. We will describe optional arguments in more detail in example 2.
= singR(dX = data$dX, dY = data$dY, individual = T) example1
Details of the SING pipeline
We next explain each of the steps involved in SING estimation. Using these individual functions in place of the high-level singR
function allows additional fine-tuning and can be helpful for large datasets.
Estimate the number of non-Gaussian components in datasets dX and dY using FOBIasymp
from :
= NG_number(data$dX)
n.comp.X = NG_number(data$dY) n.comp.Y
Apply lngca
separately to each dataset using the JB statistic as the measure of non-Gaussianity:
# JB on X
= lngca(xData = data$dX, n.comp = n.comp.X, whiten = "sqrtprec",
estX_JB restarts.pbyd = 20, distribution = "JB")
<- estX_JB$U
Uxfull = est.M.ols(sData = estX_JB$S, xData = data$dX)
Mx_JB
# JB on Y
= lngca(xData = data$dY, n.comp = n.comp.Y, whiten = "sqrtprec",
estY_JB restarts.pbyd = 20, distribution = "JB")
<- estY_JB$U
Uyfull = est.M.ols(sData = estY_JB$S, xData = data$dY) My_JB
Use greedymatch
to reorder \(\widehat{U}_{x}\) and \(\widehat{U}_{y}\) by descending matched correlations and use permTestJointRank
to estimate the number of joint components:
= greedymatch(scale(Mx_JB, scale = F), scale(My_JB, scale = F),
matchMxMy Ux = Uxfull, Uy = Uyfull)
<- permTestJointRank(matchMxMy$Mx, matchMxMy$My)
permJoint = permJoint$rj joint_rank
For preparing input to curvilinear_c
, manually prewhiten dX and dY to get \(\widehat{L}_{x}^{-1}\) and \(\widehat{L}_{y}^{-1}\):
# Center X and Y
= data$dX
dX = data$dY
dY = nrow(dX)
n = ncol(dX)
pX = ncol(dY)
pY <- dX - matrix(rowMeans(dX), n, pX, byrow = F)
dXcentered <- dY - matrix(rowMeans(dY), n, pY, byrow = F)
dYcentered
# For X Scale rowwise
= tcrossprod(dXcentered)/(pX - 1)
est.sigmaXA = est.sigmaXA %^% (-0.5)
whitenerXA = whitenerXA %*% dXcentered
xDataA = est.sigmaXA %^% (0.5)
invLx
# For Y Scale rowwise
= tcrossprod(dYcentered)/(pY - 1)
est.sigmaYA = est.sigmaYA %^% (-0.5)
whitenerYA = whitenerYA %*% dYcentered
yDataA = est.sigmaYA %^% (0.5) invLy
Obtain a reasonable value for the penalty \(\rho\) by calculating the JB statistics for all the joint components:
# Calculate the Sx and Sy.
= matchMxMy$Ux[1:joint_rank, ] %*% xDataA
Sx = matchMxMy$Uy[1:joint_rank, ] %*% yDataA
Sy
= calculateJB(Sx) + calculateJB(Sy)
JBall
# Penalty used in curvilinear algorithm:
= JBall/10 rho
Estimate \(\widehat{U}_{x}\) and \(\widehat{U}_{y}\) with curvilinear_c
:
# alpha=0.8 corresponds to JB weighting of skewness and kurtosis (can
# customize to use different weighting):
= 0.8
alpha # tolerance:
= 1e-10
tol
<- curvilinear_c(invLx = invLx, invLy = invLy, xData = xDataA, yData = yDataA,
out Ux = matchMxMy$Ux, Uy = matchMxMy$Uy, rho = rho, tol = tol, alpha = alpha,
maxiter = 1500, rj = joint_rank)
Obtain the final result:
# Estimate Sx and Sy and true S matrix
= out$Ux[1:joint_rank, ] %*% xDataA
Sjx = out$Ux[(joint_rank + 1):n.comp.X, ] %*% xDataA
Six = out$Uy[1:joint_rank, ] %*% yDataA
Sjy = out$Uy[(joint_rank + 1):n.comp.Y, ] %*% yDataA
Siy
# Estimate Mj and true Mj
= tcrossprod(invLx, out$Ux[1:joint_rank, ])
Mxjoint = tcrossprod(invLx, out$Ux[(joint_rank + 1):n.comp.X, ])
Mxindiv = tcrossprod(invLy, out$Uy[1:joint_rank, ])
Myjoint = tcrossprod(invLy, out$Uy[(joint_rank + 1):n.comp.Y, ])
Myindiv
# signchange to keep all the S and M skewness positive
= signchange(Sjx, Mxjoint)
Sjx_sign = signchange(Sjy, Myjoint)
Sjy_sign = signchange(Six, Mxindiv)
Six_sign = signchange(Siy, Myindiv)
Siy_sign
= Sjx_sign$S
Sjx = Sjy_sign$S
Sjy = Six_sign$S
Six = Siy_sign$S
Siy
= Sjx_sign$M
Mxjoint = Sjy_sign$M
Myjoint = Six_sign$M
Mxindiv = Siy_sign$M
Myindiv
= aveM(Mxjoint, Myjoint)
est.Mj
<- data.frame(mj1 = data$mj[, 1], mj2 = data$mj[, 2], number = 1:48)
trueMj <- data.frame(mj1 = est.Mj[, 1], mj2 = est.Mj[, 2], number = 1:48) SINGMj
Plot \(\widehat{S}_{Jx}\), \(\widehat{S}_{Jy}\), \(\widehat{S}_{Ix}\), and \(\widehat{S}_{Iy}\) in figure @ref(fig:estiexample1).
Estimated joint loadings in example 1.
Plot \(\widehat{M}_J\) in figure @ref(fig:mjex1).
library(tidyverse)
library(ggpubr)
<- ggplot(data = trueMj) + geom_point(mapping = aes(y = mj1, x = number)) +
t1 ggtitle(expression("True M"["J"] * ", 1")) + theme_bw() + theme(panel.grid = element_blank())
<- ggplot(data = trueMj) + geom_point(mapping = aes(y = mj2, x = number)) +
t2 ggtitle(expression("True M"["J"] * ", 2")) + theme_bw() + theme(panel.grid = element_blank())
# SING mj
<- ggplot(data = SINGMj) + geom_point(mapping = aes(y = mj1, x = number)) +
S1 ggtitle(expression("Estimated M"["J"] * ", 1")) + theme_bw() + theme(panel.grid = element_blank())
<- ggplot(data = SINGMj) + geom_point(mapping = aes(y = mj2, x = number)) +
S2 ggtitle(expression("Estimated M"["J"] * ", 2")) + theme_bw() + theme(panel.grid = element_blank())
ggarrange(t1, t2, S1, S2, ncol = 2, nrow = 2)
Estimated joint subject scores in example 1.
Research reported in this publication was supported by the National Institute of Mental Health of the National Institutes of Health under award number R01MH129855 to BBR. The research was also supported by the Division of Mathematical Sciences of the National Science Foundation under award number DMS-2044823 to IG. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health and National Science Foundation.