
Package ‘snowfall’
October 14, 2022

Type Package

Title Easier Cluster Computing (Based on 'snow')

Version 1.84-6.2

Date 2013-12-18

Author Jochen Knaus

Maintainer Jochen Knaus <jo@imbi.uni-freiburg.de>

Description Usability wrapper around snow for easier development of
parallel R programs. This package offers e.g. extended error
checks, and additional functions. All functions work in
sequential mode, too, if no cluster is present or wished.
Package is also designed as connector to the cluster management
tool sfCluster, but can also used without it.

Depends R (>= 2.10), snow

Suggests Rmpi

License GPL

Encoding latin1

Repository CRAN

Date/Publication 2022-07-05 11:36:28 UTC

NeedsCompilation no

R topics documented:
snowfall-package . 2
snowfall-calculation . 4
snowfall-data . 6
snowfall-init . 7
snowfall-tools . 10

Index 15

1

2 snowfall-package

snowfall-package Toplevel useability wrapper for snow to make parallel programming
even more easy and comfortable. All functions are able to run without
cluster in sequential mode. Also snowfall works as connector to the
cluster management program sfCluster, but can also run without it.

Description

snowfall is designed to make setup and usage of snow more easier. It also is made ready to work
together with sfCluster, a ressource management and runtime observation tool for R-cluster us-
age.

Details

Package: snowfall
Type: Package
Version: 1.61
Date: 2008-11-01
License: GPL

Initialisation

Initalisation via sfInit must be called before the usage of any of the snowfall internal functions.
sfStop stopps the current cluster. Some additional functions give access to build-in functions (like
sfParallel, sfCpus etc.).

Calculations

The are plenty of function to execute parallel calculations via snowfall. Most of them are wrap-
pers to the according snow functions, but there are additional functions as well. Most likely the
parallel versions of the R-buildin applies are interesting: sfLapply, sfSapply and sfApply. For
better cluster take a look at the load balanced sfClusterApplyLB and the function with restore
possibilities: sfClusterApplySR.

Tools

Various tools allow an easier access to parallel computing: sfLibrary and sfSource for loading
code on the cluster, sfExport, sfExportAll, sfRemoveAll and sfRemoveAll for variable sperad-
ing on the cluster. And some more.

sfCluster

snowfall is also the R-connector to the cluster management program sfCluster. Mostly all of
the communication to this tool is done implicit and directly affecting the initialisation via sfInit.

snowfall-package 3

Using sfCluster makes the parallel programming with snowfall even more practicable in real life
environments.

For futher informations about the usage of sfCluster look at its documentation.

Author(s)

Jochen Knaus

Maintainer: Jochen Knaus <jo@imbi.uni-freiburg.de>,

References

snow (Simple Network of Workstations):
http://cran.r-project.org/src/contrib/Descriptions/snow.html

sfCluster (Unix management tool for snowfall clusters):
http://www.imbi.uni-freiburg.de/parallel

See Also

Snowfall Initialisation: snowfall-init
Snowfall Calculation: snowfall-calculation
Snowfall Tools: snowfall-tools

Optional links to other man pages, e.g. snow-cluster

Examples

Not run:
Init Snowfall with settings from sfCluster
##sfInit()

Init Snowfall with explicit settings.
sfInit(parallel=TRUE, cpus=2)

if(sfParallel())
cat("Running in parallel mode on", sfCpus(), "nodes.\n")

else
cat("Running in sequential mode.\n")

Define some global objects.
globalVar1 <- c("a", "b", "c")
globalVar2 <- c("d", "e")
globalVar3 <- c(1:10)
globalNoExport <- "dummy"

Define stupid little function.
calculate <- function(x) {

cat(x)

4 snowfall-calculation

return(2 ^ x)
}

Export all global objects except globalNoExport
List of exported objects is listed.
Work both parallel and sequential.
sfExportAll(except=c("globalNoExport"))

List objects on each node.
sfClusterEvalQ(ls())

Calc something with parallel sfLappy
cat(unlist(sfLapply(globalVar3, calculate)))

Remove all variables from object.
sfRemoveAll(except=c("calculate"))

End(Not run)

snowfall-calculation Parallel calculation functions

Description

Parallel calculation functions. Execution is distributed automatically over the cluster.
Most of this functions are wrappers for snow functions, but all can be used directly in sequential
mode.

Usage

sfClusterApply(x, fun, ...)
sfClusterApplyLB(x, fun, ...)
sfClusterApplySR(x, fun, ..., name="default", perUpdate=NULL, restore=sfRestore())

sfClusterMap(fun, ..., MoreArgs = NULL, RECYCLE = TRUE)

sfLapply(x, fun, ...)
sfSapply(x, fun, ..., simplify = TRUE, USE.NAMES = TRUE)
sfApply(x, margin, fun, ...)
sfRapply(x, fun, ...)
sfCapply(x, fun, ...)

sfMM(a, b)

sfRestore()

snowfall-calculation 5

Arguments

x vary depending on function. See function details below.

fun function to call

margin vector speficying the dimension to use

... additional arguments to pass to standard function

simplify logical; see sapply

USE.NAMES logical; see sapply

a matrix

b matrix

RECYCLE see snow documentation

MoreArgs see snow documentation

name a character string indicating the name of this parallel execution. Naming is only
needed if there are more than one call to sfClusterApplySR in a program.

perUpdate a numerical value indicating the progress printing. Values range from 1 to 100
(no printing). Value means: any X percent of progress status is printed. Default
(on given value ‘NULL’) is 5).

restore logical indicating whether results from previous runs should be restored or not.
Default is coming from sfCluster. If running without sfCluster, default is FALSE,
if yes, it is set to the value coming from the external program.

Details

sfClusterApply calls each index of a given list on a seperate node, so length of given list must be
smaller than nodes. Wrapper for snow function clusterApply.

sfClusterApplyLB is a load balanced version of sfClusterApply. If a node finished it’s list seg-
ment it immidiately starts with the next segment. Use this function in infrastructures with machines
with different speed. Wrapper for snow function clusterApplyLB.

sfClusterApplySR saves intermediate results and is able to restore them on a restart. Use this
function on very long calculations or it is (however) foreseeable that cluster will not be able to finish
it’s calculations (e.g. because of a shutdown of a node machine). If your program use more than
one parallised part, argument name must be given with a unique name for each loop. Intermediate
data is saved depending on R-filename, so restore of data must be explicit given for not confusing
changes on your R-file (it is recommended to only restore on fully tested programs). If restores,
sfClusterApplySR continues calculation after the first non-null value in the saved list. If your
parallized function can return null values, you probably want to change this.

sfLapply, sfSapply and sfApply are parallel versions of lapply, sapply and apply. The first
two use an list or vector as argument, the latter an array.

parMM is a parallel matrix multiplication. Wrapper for snow function parMM.

sfRapply and sfCapply are not implemented atm.

See Also

See snow documentation for details on commands: snow-parallel

6 snowfall-data

Examples

Not run:
restoreResults <- TRUE

sfInit(parallel=FALSE)

Execute in cluster or sequential.
sfLapply(1:10, exp)

Execute with intermediate result saving and restore on wish.
sfClusterApplySR(1:100, exp, name="CALC_EXP", restore=restoreResults)
sfClusterApplySR(1:100, sum, name="CALC_SUM", restore=restoreResults)

sfStop()

##
Small bootstrap example.
##
sfInit(parallel=TRUE, cpus=2)

require(mvna)
data(sir.adm)

sfExport("sir.adm", local=FALSE)
sfLibrary(cmprsk)

wrapper <- function(a) {
index <- sample(1:nrow(sir.adm), replace=TRUE)
temp <- sir.adm[index,]
fit <- crr(temp$time, temp$status, temp$pneu, failcode=1, cencode=0)
return(fit$coef)

}

result <- sfLapply(1:100, wrapper)

mean(unlist(rbind(result)))
sfStop()

End(Not run)

snowfall-data Internal configuration and test data

Description

Internal configuration and test data. Only used for internal setup and testing.

snowfall-init 7

Usage

config
f1
f2
sfOption

Format

A matrix containing basic predefined configuration informations.

snowfall-init Initialisation of cluster usage

Description

Initialisation and organisation code to use snowfall.

Usage

sfInit(parallel=NULL, cpus=NULL, type=NULL, socketHosts=NULL, restore=NULL,
slaveOutfile=NULL, nostart=FALSE, useRscript=FALSE)

sfStop(nostop=FALSE)

sfParallel()
sfIsRunning()
sfCpus()
sfNodes()
sfGetCluster()
sfType()
sfSession()
sfSocketHosts()
sfSetMaxCPUs(number=32)

Arguments

parallel Logical determinating parallel or sequential execution. If not set values from
commandline are taken.

cpus Numerical amount of CPUs requested for the cluster. If not set, values from the
commandline are taken.

nostart Logical determinating if the basic cluster setup should be skipped. Needed for
nested use of snowfall and usage in packages.

type Type of cluster. Can be ’SOCK’, ’MPI’, ’PVM’ or ’NWS’. Default is ’SOCK’.

socketHosts Host list for socket clusters. Only needed for socketmode (SOCK) and if using
more than one machines (if using only your local machine (localhost) no list is
needed).

8 snowfall-init

restore Globally set the restore behavior in the call sfClusterApplySR to the given
value.

slaveOutfile Write R slave output to this file. Default: no output (Unix: /dev/null, Win-
dows: :nul). If using sfCluster this argument has no function, as slave logs are
defined using sfCluster.

useRscript Change startup behavior (snow>0.3 needed): use shell scripts or R-script for
startup (R-scripts beeing the new variant, but not working with sfCluster.

nostop Same as noStart for ending.

number Amount of maximum CPUs useable.

Details

sfInit initialisise the usage of the snowfall functions and - if running in parallel mode - setup the
cluster and snow. If using sfCluster management tool, call this without arguments. If sfInit
is called with arguments, these overwrite sfCluster settings. If running parallel, sfInit set up
the cluster by calling makeCluster from snow. If using with sfCluster, the initialisation also
contains management of lockfiles. If this function is called more than once and current cluster is
yet running, sfStop is called automatically.

Note that you should call sfInit before using any other function from snowfall, with the only
exception sfSetMaxCPUs. If you do not call sfInit first, on calling any snowfall function sfInit
is called without any parameters, which is equal to sequential mode in snowfall only mode or the
settings from sfCluster if used with sfCluster.

This also means, you cannot check if sfInit was called from within your own program, as any
call to a function will initialize again. Therefore the function sfIsRunning gives you a logical if a
cluster is running. Please note: this will not call sfInit and it also returns true if a previous running
cluster was stopped via sfStop in the meantime.

If you use snowfall in a package argument nostart is very handy if mainprogram uses snowfall as
well. If set, cluster setup will be skipped and both parts (package and main program) use the same
cluster.

If you call sfInit more than one time in a program without explicit calling sfStop, stopping of
the cluster will be executed automatically. If your R-environment does not cover required libraries,
sfInit automatically switches to sequential mode (with a warning). Required libraries for parallel
usage are snow and depending on argument type the libraries for the cluster mode (none for socket
clusters, Rmpi for MPI clusters, rpvm for PVM clusters and nws for NetWorkSpaces).

If using Socket or NetWorkSpaces, socketHosts can be used to specify the hosts you want to have
your workers running. Basically this is a list, where any entry can be a plain character string with
IP or hostname (depending on your DNS settings). Also for real heterogenous clusters for any host
pathes are setable. Please look to the acccording snow documentation for details. If you are not
giving an socketlist, a list with the required amount of CPUs on your local machine (localhost) is
used. This would be the easiest way to use parallel computing on a single machine, like a laptop.

Note there is limit on CPUs used in one program (which can be configured on package installation).
The current limit are 32 CPUs. If you need a higher amount of CPUs, call sfSetMaxCPUs before
the first call to sfInit. The limit is set to prevent inadvertently request by single users affecting the
cluster as a whole.

Use slaveOutfile to define a file where to write the log files. The file location must be available on
all nodes. Beware of taking a location on a shared network drive! Under *nix systems, most likely

snowfall-init 9

the directories /tmp and /var/tmp are not shared between the different machines. The default is no
output file. If you are using sfCluster this argument have no meaning as the slave logs are always
created in a location of sfClusters choice (depending on it’s configuration).

sfStop stop cluster. If running in parallel mode, the LAM/MPI cluster is shut down.

sfParallel, sfCpus and sfSession grant access to the internal state of the currently used cluster.
All three can be configured via commandline and especially with sfCluster as well, but given
arguments in sfInit always overwrite values on commandline. The commandline options are
‘--parallel’ (empty option. If missing, sequential mode is forced), ‘--cpus=X’ (for nodes, where
X is a numerical value) and ‘--session=X’ (with X a string).

sfParallel returns a logical if program is running in parallel/cluster-mode or sequential on a single
processor.

sfCpus returns the size of the cluster in CPUs (equals the CPUs which are useable). In sequential
mode sfCpus returns one. sfNodes is a deprecated similar to sfCpus.

sfSession returns a string with the session-identification. It is mainly important if used with the
sfCluster tool.

sfGetCluster gets the snow-cluster handler. Use for direct calling of snow functions.

sfType returns the type of the current cluster backend (if used any). The value can be SOCK, MPI,
PVM or NWS for parallel modes or "- sequential -" for sequential execution.

sfSocketHosts gives the list with currently used hosts for socket clusters. Returns empty list if not
used in socket mode (means: sfType() != 'SOCK').

sfSetMaxCPUs enables to set a higher maximum CPU-count for this program. If you need higher
limits, call sfSetMaxCPUs before sfInit with the new maximum amount.

See Also

See snow documentation for details on commands: link[snow]{snow-cluster}

Examples

Not run:
Run program in plain sequential mode.
sfInit(parallel=FALSE)
stopifnot(sfParallel() == FALSE)
sfStop()

Run in parallel mode overwriting probably given values on
commandline.
Executes via Socket-cluster with 4 worker processes on
localhost.
This is probably the best way to use parallel computing
on a single machine, like a notebook, if you are not
using sfCluster.
Uses Socketcluster (Default) - which can also be stated
using type="SOCK".
sfInit(parallel=TRUE, cpus=4)
stopifnot(sfCpus() == 4)
stopifnot(sfParallel() == TRUE)
sfStop()

10 snowfall-tools

Run parallel mode (socket) with 4 workers on 3 specific machines.
sfInit(parallel=TRUE, cpus=4, type="SOCK",

socketHosts=c("biom7", "biom7", "biom11", "biom12"))
stopifnot(sfCpus() == 4)
stopifnot(sfParallel() == TRUE)
sfStop()

Hook into MPI cluster.
Note: you can use any kind MPI cluster Rmpi supports.
sfInit(parallel=TRUE, cpus=4, type="MPI")
sfStop()

Hook into PVM cluster.
sfInit(parallel=TRUE, cpus=4, type="PVM")
sfStop()

Run in sfCluster-mode: settings are taken from commandline:
Runmode (sequential or parallel), amount of nodes and hosts which
are used.
sfInit()

Session-ID from sfCluster (or XXXXXXXX as default)
session <- sfSession()

Calling a snow function: cluster handler needed.
parLapply(sfGetCluster(), 1:10, exp)

Same using snowfall wrapper, no handler needed.
sfLapply(1:10, exp)

sfStop()

End(Not run)

snowfall-tools Cluster tools

Description

Tools for cluster usage. Allow easier handling of cluster programming.

Usage

sfLibrary(package, pos=2,
lib.loc=NULL, character.only=FALSE,
warn.conflicts=TRUE,
keep.source=NULL,
verbose=getOption("verbose"), version,
stopOnError=TRUE)

snowfall-tools 11

sfSource(file, encoding = getOption("encoding"), stopOnError = TRUE)
sfExport(..., list=NULL, local=TRUE, namespace=NULL, debug=FALSE, stopOnError = TRUE)
sfExportAll(except=NULL, debug=FALSE)

sfRemove(..., list=NULL, master=FALSE, debug=FALSE)
sfRemoveAll(except=NULL, debug=FALSE, hidden=TRUE)

sfCat(..., sep=" ", master=TRUE)

sfClusterSplit(seq)
sfClusterCall(fun, ..., stopOnError=TRUE)
sfClusterEval(expr, stopOnError=TRUE)

sfClusterSetupRNG(type="RNGstream", ...)
sfClusterSetupRNGstream(seed=rep(12345,6), ...)
sfClusterSetupSPRNG(seed=round(2^32*runif(1)), prngkind="default", para=0, ...)

sfTest()

Arguments

expr expression to evaluate

seq vector to split

fun function to call

list character vector with names of objects to export

local a logical indicating if variables should taken from local scope(s) or only from
global.

namespace a character given a namespace where to search for the object.

debug a logical indicating extended information is given upon action to be done (e.g.
print exported variables, print context of local variables etc.).

except character vector with names of objects not to export/remove

hidden also remove hidden names (starting with a dot)?

sep a character string separating elements in x

master a logical indicating if executed on master as well

... additional arguments to pass to standard function

package name of the package. Check library for details.

pos position in search path to load library.

warn.conflicts warn on conflicts (see "library").

keep.source see "library". Please note: this argument has only effect on R-2.x, starting with
R-3.0 it will only be a placeholder for backward compatibility.

verbose enable verbose messages.

version version of library to load (see "library").

encoding encoding of library to load (see "library").

12 snowfall-tools

lib.loc a character vector describing the location of the R library trees to search through,
or ’NULL’. Check library for details.

character.only a logical indicating package can be assumed to be a character string. Check
library for details.

file filename of file to read. Check source for details

stopOnError a logical indicating if function stops on failure or still returns. Default is TRUE.

type a character determine which random number generator should be used for clus-
ters. Allowed values are "RNGstream" for L’Ecuyer’s RNG or "SPRNG" for
Scalable Parallel Random Number Generators.

para additional parameters for the RNGs.

seed Seed for the RNG.

prngkind type of RNG, see snow documentation.

Details

The current functions are little helpers to make cluster programming easier. All of these functions
also work in sequential mode without any further code changes.

sfLibrary loads an R-package on all nodes, including master. Use this function if slaves need this
library, too. Parameters are identically to the R-build in funtion library. If a relative path is given
in lib.loc, it is converted to an absolute path.\ As default sfLibrary stops on any error, but this
can be prevented by setting stopOnError=FALSE, the function is returning FALSE then. On success
TRUE is returned.

sfSource loads a sourcefile on all nodes, including master. Use this function if the slaves need
the code as well. Make sure the file is accessible on all nodes under the same path. The loading
is done on slaves using source with fixes parameters: local=FALSE, chdir=FALSE, echo=FALSE,
so the files is loaded global without changing of directory.\ As default sfSource stops on any error,
but this can be prevented by setting stopOnError=FALSE, the function is returning FALSE then. On
success TRUE is returned.

sfExport exports variables from the master to all slaves. Use this function if slaves need acccess
to these variables as well. sfExport features two execution modes: local and global. If using
local mode (default), variables for export are searched backwards from current environment to
globalenv(). Use this mode if you want to export local variables from functions or other scopes
to the slaves. In global mode only global variables from master are exported.\ Note: all exported
variables are global on the slaves!\ If you have many identical named variables in different scopes,
use argument debug=TRUE to view the context the exported variable is coming from.\ Variables are
given as their names or as a character vector with their names using argument list.

sfExportAll exports all global variables from the master to all slaves with exception of the given
list. Use this functions if you want to export mostly all variables to all slaves.\Argument list is a
character vector with names of the variables not to export.

sfRemove removes a list of global (previous exported or generated) variables from slaves and (op-
tional) master. Use this function if there are large further unused variables left on slave. Basically
this is only interesting if you have more than one explicit parallel task in your program - where the
danger is slaves memory usage exceed.\ If argument master is given, the variables are removed
from master as well (default is FALSE).\ Give names of variables as arguments, or use argument
list as a character vector with the names. For deep cleaning of slave memory use sfRemoveAll.

snowfall-tools 13

sfRemoveAll removes all global variables from the slaves. Use this functions if you want to remove
mostly all variables on the slaves. Argument list is a character vector with names of the variables
not to remove.

sfCat is a debugging function printing a message on all slaves (which appear in the logfiles).

sfClusterSplit splits a vector into one consecutive piece for each cluster and returns as a list with
length equal to the number of cluster nodes. Wrapper for snow function clusterSplit.

sfClusterCall calls a function on each node and returns list of results. Wrapper for snow function
clusterCall.

sfClusterEvalQ evaluates a literal expression on all nodes. Wrapper for snow function clusterEvalQ.

sfTest is a simple unit-test for most of the build in functions. It runs tests and compares the results
for the correct behavior. Note there are some warnings if using, this is intended (as behavior for
some errors is tested, too). use this if you are not sure all nodes are running your R-code correctly
(but mainly it is implemented for development).

See Also

See snow documentation for details on wrapper-commands: snow-parallel

Examples

Not run:
sfInit(parallel=FALSE)

Now works both in parallel as in sequential mode without
explicit cluster handler.
sfClusterEval(cat("yummie\n"));

Load a library on all slaves. Stop if fails.
sfLibrary(tools)
sfLibrary("tools", character.only=TRUE) ## Alternative.

Execute in cluster or sequential.
sfLapply(1:10, exp)

Export global Var
gVar <- 99
sfExport("gVar")

If there are local variables with same name which shall not
be exported.
sfExport("gVar", local=FALSE)

Export local variables
var1 <- 1 ## Define global
var2 <- "a"

f1 <- function() {
var1 <- 2
var3 <- "x"

14 snowfall-tools

f2 <- function() {
var1 <- 3

sfExport("var1", "var2", "var3", local=TRUE)
sfClusterCall(var1) ## 3
sfClusterCall(var2) ## "a"
sfClusterCall(var3) ## "x"

}

f2()
}

f1()

Init random number streams (snows functions, build upon
packages rlecuyer/rsprng).
sfClusterCall(runif, 4)

sfClusterSetupRNG() ## L'Ecuyer is default.
sfClusterCall(runif, 4)

sfClusterSetupRNG(type="SPRNG", seed = 9876)
sfClusterCall(runif, 4)

Run unit-test on main functions.
sfTest()

End(Not run)

Index

∗ datasets
snowfall-data, 6

∗ package
snowfall-calculation, 4
snowfall-init, 7
snowfall-package, 2
snowfall-tools, 10

config (snowfall-data), 6

f1 (snowfall-data), 6
f2 (snowfall-data), 6

library, 12

sfApply (snowfall-calculation), 4
sfCapply (snowfall-calculation), 4
sfCat (snowfall-tools), 10
sfClusterApply (snowfall-calculation), 4
sfClusterApplyLB

(snowfall-calculation), 4
sfClusterApplySR

(snowfall-calculation), 4
sfClusterCall (snowfall-tools), 10
sfClusterEval (snowfall-tools), 10
sfClusterEvalQ (snowfall-tools), 10
sfClusterMap (snowfall-calculation), 4
sfClusterSetupRNG (snowfall-tools), 10
sfClusterSetupRNGstream

(snowfall-tools), 10
sfClusterSetupSPRNG (snowfall-tools), 10
sfClusterSplit (snowfall-tools), 10
sfCpus (snowfall-init), 7
sfExport (snowfall-tools), 10
sfExportAll (snowfall-tools), 10
sfGetCluster (snowfall-init), 7
sfInit (snowfall-init), 7
sfIsRunning (snowfall-init), 7
sfLapply (snowfall-calculation), 4
sfLibrary (snowfall-tools), 10

sfMM (snowfall-calculation), 4
sfNodes (snowfall-init), 7
sfOption (snowfall-data), 6
sfParallel (snowfall-init), 7
sfRapply (snowfall-calculation), 4
sfRemove (snowfall-tools), 10
sfRemoveAll (snowfall-tools), 10
sfRestore (snowfall-calculation), 4
sfSapply (snowfall-calculation), 4
sfSession (snowfall-init), 7
sfSetMaxCPUs (snowfall-init), 7
sfSocketHosts (snowfall-init), 7
sfSource (snowfall-tools), 10
sfStop (snowfall-init), 7
sfTest (snowfall-tools), 10
sfType (snowfall-init), 7
snowfall (snowfall-package), 2
snowfall-calculation, 4
snowfall-data, 6
snowfall-init, 7
snowfall-package, 2
snowfall-tools, 10

15

	snowfall-package
	snowfall-calculation
	snowfall-data
	snowfall-init
	snowfall-tools
	Index

