Package 'spatialTIME'

November 22, 2022

Title Spatial Analysis of Vectra Immunoflourescent Data

Version 1.2.2

Description Visualization and analysis of Vectra Immunoflourescent data. Options for calculating both the univariate and bivariate Ripley's K are included. Calculations are performed using a permutation-based approach presented by Wilson et al. <doi:10.1101/2021.04.27.21256104>.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.2.2

Imports magrittr, dplyr, tidyr, ggplot2, scales, grDevices, purrr, rlang, plyr, spatstat.geom, spatstat.explore, RColorBrewer, furrr, gridExtra, future, tidyselect, crayon, pheatmap

Depends R (>= 3.5.0)

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

URL https://github.com/FridleyLab/spatialTIME

BugReports https://github.com/FridleyLab/spatialTIME/issues

NeedsCompilation no

Author Jordan Creed [aut], Ram Thapa [aut], Christopher Wilson [aut], Alex Soupir [aut], Oscar Ospina [aut], Brooke Fridley [cph], Fridley Lab [cre]

Maintainer Fridley Lab <fridley.lab@moffitt.org>

Repository CRAN

Date/Publication 2022-11-22 17:30:02 UTC

R topics documented:

	15
ubset_mif	 13
pleys_k	 11
lot_immunoflo	 10
$N_G \ldots \ldots$	 8
xample_summary	 8
xample_spatial	 7
xample_clinical	 7
reate_mif	 6
$i_{ripleys_k}$	 4
i_NN_G	 2

Index

```
bi_NN_G
```

Bivariate Nearest Neighbor Based Measures of Spatial Clustering for IF data

Description

This function computes the nearest neighbor distribution for a particular marker relative to another marker for the observed and permuted point processes.

Usage

```
bi_NN_G(
 mif,
 mnames,
 r_range = seq(0, 100, 50),
 num_permutations = 50,
  edge_correction = "rs",
  keep_perm_dis = FALSE,
  exhaustive = TRUE,
 workers = 1,
  overwrite = FALSE,
 xloc = NULL,
 yloc = NULL
)
```

Arguments

mif	An MIF object
mnames	Character vector of marker names to estimate degree of nearest neighbor distribution
r_range	Numeric vector of potential r values this range must include 0. Note that the range selected is very different than count based measures. See details.

bi_NN_G

num_permutations		
	Numeric value indicating the number of permutations used. Default is 50.	
edge_correction	1	
	Character value indicating the type of edge correction to use. Options include "rs" or "hans".	
keep_perm_dis	Logical value determining whether or not to keep the full distribution of per- muted G values	
exhaustive	Logical. If TRUE then markers must be a vector and spatial measures will be computed all pairs of unique markers. If FALSE then markers must be a data.frame with the desired combinations.	
workers	Integer value for the number of workers to spawn	
overwrite	Logical value determining if you want the results to replace the current output (TRUE) or be to be appended (FALSE).	
xloc	a string corresponding to the \boldsymbol{x} coordinates. If null the average of XMin and XMax will be used	
yloc	a string corresponding to the y coordinates. If null the average of YMin and YMax will be used	

Value

Returns a data frame

anchor	Marker for which the distances are measured from
counted Theoretical CSR	Marker for which the distances are measured to
	Expected value assuming complete spatial randomness
Permuted CSR	Average observed G for the permuted point process
Observed	Observed value for the observed point process
Degree of Cluste	ring Permuted
	Degree of spatial clustering where the reference is the permuted estimate of CSR
Degree of Cluste	ring Theoretical
	Degree of spatial clustering where the reference is the theoretical estimate of CSR

Examples

```
#' #Create mif object
library(dplyr)
x <- create_mif(clinical_data = example_clinical %>%
mutate(deidentified_id = as.character(deidentified_id)),
sample_data = example_summary %>%
mutate(deidentified_id = as.character(deidentified_id)),
spatial_list = example_spatial,
patient_id = "deidentified_id",
sample_id = "deidentified_sample")
```

#Nearest Neighbor distribution for the colocalization of CD3+CD8+ positive

```
#cells and CD3+FOXP3+ positive cells where CD3+FOXP3+ is the reference cell
#type at neighborhood size of 10,20,...,100 (zero must be included in the
#input).
x <- bi_NN_G(mif = x, mnames = c("CD3..CD8.", "CD3..FOXP3."),
num_permutations = 1, edge_correction = 'rs', r = seq(0,100,10),</pre>
```

```
keep_perm_dis = FALSE, workers = 1, exhaustive = TRUE)
```

bi_ripleys_k	Bivariate Count Based Measures of Spatial Clustering function for IF
	data

Description

This function calculates count based Measures (Ripley's K, Besag L, and Marcon's M) of IF data to characterize correlation of the observed and permyted spatial point processes for two markers.

Usage

```
bi_ripleys_k(
  mif,
  mnames,
  r_range = seq(0, 100, 50),
  num_permutations = 50,
  edge_correction = "translation",
  method = "K",
  keep_perm_dis = FALSE,
  exhaustive = TRUE,
  workers = 1,
  overwrite = FALSE,
  xloc = NULL,
  yloc = NULL
)
```

Arguments

mif	An MIF object	
mnames	Character vector of marker names to estimate degree of spatial clustering. Spa- tial clustering will be computed between each combination of markers in this list.	
r_range	Numeric vector of potential r values this range must include 0	
num_permutations		
	Numeric value indicating the number of permutations used. Default is 50.	
edge_correction		
	Character value indicating the type of edge correction to use. Options include "theoretical", "translation", "isotropic" or "border". Various edges corrections are most appropriate in different settings. Default is "translation".	

4

bi_ripleys_k

method	Character value indicating which measure (K, L, M) used to estimate the degree of spatial clustering. Description of the methods can be found in Details section.
keep_perm_dis	Logical value determining whether or not to keep the full distribution of per- muted K values
exhaustive	Logical. If TRUE then markers must be a vector and spatial measures will be computed all pairs of unique markers. If FALSE then markers must be a data.frame with the desired combinations.
workers	Integer value for the number of workers to spawn
overwrite	Logical value determining if you want the results to replace the current output (TRUE) or be to be appended (FALSE).
xloc	a string corresponding to the x coordinates. If null the average of XMin and XMax will be used
yloc	a string corresponding to the y coordinates. If null the average of YMin and YMax will be used

Value

Returns a data frame

Marker for which the distances are measured from		
Marker for which the distances are measured to		
Expected value assuming complete spatial randomness		
Average observed K, L, or M for the permuted point process		
Observed value for the observed point process		
Degree of Clustering Permuted		
Degree of spatial clustering where the reference is the permuted estimate of CSR		
Degree of Clustering Theoretical		
Degree of spatial clustering where the reference is the theoretical estimate of		
CSR		

Examples

```
#' #Create mif object
library(dplyr)
x <- create_mif(clinical_data = example_clinical %>%
mutate(deidentified_id = as.character(deidentified_id)),
sample_data = example_summary %>%
mutate(deidentified_id = as.character(deidentified_id)),
spatial_list = example_spatial,
patient_id = "deidentified_id",
sample_id = "deidentified_sample")
```

```
#Ripley's K for the colocalization of CD3+CD8+ positive cells and
#CD3+FOXP3+ positive cells where CD3+FOXP3+ is the reference cell type at
#neighborhood size of 10,20,...,100 (zero must be included in the input).
```

```
x <- bi_ripleys_k(mif = x, mnames = c("CD3..CD8.", "CD3..FOXP3."),
num_permutations = 1, edge_correction = 'translation', r = seq(0,100,10),
keep_perm_dis = FALSE, workers = 1, exhaustive = TRUE)
```

create_mif

Create Multiplex Immunoflourescent object

Description

Creates an MIF object for use in spatialIF functions

Usage

```
create_mif(
  clinical_data,
  sample_data,
  spatial_list = NULL,
  patient_id = "patient_id",
  sample_id = "image_tag"
)
```

Arguments

clinical_data	A data frame containing patient level data with one row per participant.
sample_data	A data frame containing sample level data with one row per sample. Should at a minimum contain a 2 columns: one for sample names and one for the corresponding patient name.
spatial_list	A named list of data frames with the spatial data from each sample making up each individual data frame
patient_id	A character string indicating the column name for patient id in sample and clin- ical data frames.
sample_id	A character string indicating the column name for sample id in the sample data frame

Value

Returns a custom MIF

clinical	Data frame of clinical data
sample	Data frame of sample data
spatial	Named list of spatial data
derived	List of data derived using the MIF object
patient_id	The column name for sample id in the sample data frame with the clinical data
sample_id	The column name for sample id in the sample data frame to merge with the spatial data

6

example_clinical

Examples

```
#Create mif object
library(dplyr)
x <- create_mif(clinical_data = example_clinical %>%
mutate(deidentified_id = as.character(deidentified_id)),
sample_data = example_summary %>%
mutate(deidentified_id = as.character(deidentified_id)),
spatial_list = example_spatial,
patient_id = "deidentified_id",
sample_id = "deidentified_sample")
```

example_clinical Clinical variables of 229 patients

Description

A tibble wuith clinical characteristics for 229 patients

Usage

example_clinical

Format

A tibble with 229 rows and 6 variables

age age at diagnosis

race self-idenitifed race

sex patient biological sex

status disease status

deidenitifed_sample sample identifier

deidentified_id patient identifier

example_spatial Example list of 5 spatial TMA data

Description

A list containing 5 spatial data frames

Usage

example_spatial

Format

A list of 5 data frames:

- TMA_[3,B].tiff
- TMA_[6,F].tiff
- TMA_[7,B].tiff
- TMA_[9,K].tiff
- TMA_[8,U].tiff

example_summary Marker summaries of 229 samples

Description

A dataset containing summaries of 25 markers and 229 samples

Usage

```
example_summary
```

Format

A tibble with 229 rows and 29 variables:

deidentified_id patient-level id

deidentified_sample sample-level id ...

NN_G

Nearest Neighbor Based Measures of Spatial Clustering for IF data

Description

For a given cell type, this function computes proportion of cells that have nearest neighbor less than r for the observed and permuted point processes.

NN_G

Usage

```
NN_G(
    mif,
    mnames,
    r_range = seq(0, 100, 50),
    num_permutations = 50,
    edge_correction = "rs",
    keep_perm_dis = FALSE,
    workers = 1,
    overwrite = FALSE,
    xloc = NULL,
    yloc = NULL
)
```

Arguments

mif	An MIF object
mnames	Character vector of marker names to estimate degree of nearest neighbor distribution
r_range	Numeric vector of potential r values this range must include 0.
num_permutation	S
	Numeric value indicating the number of permutations used. Default is 50.
edge_correction	
	Character value indicating the type of edge correction to use. Options include "rs" or "hans".
keep_perm_dis	Logical value determining whether or not to keep the full distribution of per- muted G values
workers	Integer value for the number of workers to spawn
overwrite	Logical value determining if you want the results to replace the current output (TRUE) or be to be appended (FALSE).
xloc	a string corresponding to the \boldsymbol{x} coordinates. If null the average of XMin and XMax will be used
yloc	a string corresponding to the y coordinates. If null the average of YMin and YMax will be used

Value

Returns a data.frar	ne
Theoretical CSR	
	Expected value assuming complete spatial randomnessn
Permuted CSR	Average observed G for the permuted point process
Observed	Observed value for the observed point process
Degree of Cluste	ring Permuted
	Degree of spatial eluctoring where the reference is the permuted estimate of CSP

Degree of Clustering Theoretical

Degree of spatial clustering where the reference is the theoretical estimate of CSR

Examples

```
#Create mif object
library(dplyr)
x <- create_mif(clinical_data = example_clinical %>%
mutate(deidentified_id = as.character(deidentified_id)),
sample_data = example_summary %>%
mutate(deidentified_id = as.character(deidentified_id)),
spatial_list = example_spatial,
patient_id = "deidentified_id",
sample_id = "deidentified_sample")
# Define the set of markers to study
markers <- c("CD3..0pal.570..Positive","CD8..0pal.520..Positive",</pre>
"FOXP3..Opal.620..Positive", "CD3..CD8.", "CD3..FOXP3.")
# Nearest Neighbor distribution for all markers with a neighborhood size
# of 10,20,...,100 (zero must be included in the input).
x <- NN_G(mif = x, mnames = markers, num_permutations = 1,</pre>
edge_correction = 'rs', r = seq(0,100,10),
keep_perm_dis = FALSE, workers = 1)
```

plot_immunofic Generate plot of IMA	point	process
-------------------------------------	-------	---------

Description

This function generates plot of point process in rectangular or circular window.

Usage

```
plot_immunoflo(
  mif,
  plot_title,
  mnames,
  mcolors = NULL,
  cell_type = NULL,
  filename = NULL,
  path = NULL
)
```

ripleys_k

Arguments

o serve as
s serve us
ingle .pdf
??

Value

mif object and the ggplot objects can be viewed form the derived slot of the mif object

Examples

```
#Create mif object
library(dplyr)
x <- create_mif(clinical_data = example_clinical %>%
mutate(deidentified_id = as.character(deidentified_id)),
sample_data = example_summary %>%
mutate(deidentified_id = as.character(deidentified_id)),
spatial_list = example_spatial,
patient_id = "deidentified_id",
sample_id = "deidentified_sample")
mnames_good <- c("CD3..Opal.570..Positive", "CD8..Opal.520..Positive",
"FOXP3..Opal.620..Positive", "PDL1..Opal.540..Positive",
"FOXP3..Opal.620..Positive", "CD3..CD8.", "CD3..FOXP3.")
x <- plot_immunoflo(x, plot_title = "deidentified_sample", mnames = mnames_good,
cell_type = "Classifier.Label")
x[["derived"]][["spatial_plots"]][[4]]
```

ripleys_k

Calculate Count Based Measures of Spatial Clustering for IF data

Description

This function calculates count based Measures (Ripley's K, Besag L, and Marcon's M) of IF data to characterize correlation of spatial point process.

Usage

```
ripleys_k(
  mif,
  mnames,
  r_range = seq(0, 100, 50),
  num_permutations = 50,
  edge_correction = "translation",
  method = "K",
  keep_perm_dis = FALSE,
  workers = 1,
  overwrite = FALSE,
  xloc = NULL,
  yloc = NULL
)
```

Arguments

mif	An MIF object			
mnames	Character vector of marker names to estimate degree of spatial clustering.			
r_range	Numeric vector of potential r values this range must include 0.			
num_permutations				
	Numeric value indicating the number of permutations used. Default is 50.			
edge_correction				
	Character value indicating the type of edge correction to use. Options include "translation" or "isotropic".			
method	Character value indicating which measure (K, L, M) used to estimate the degree of spatial clustering. Description of the methods can be found in Details section.			
keep_perm_dis	Logical value determining whether or not to keep the full distribution of per- muted K values			
workers	Integer value for the number of workers to spawn			
overwrite	Logical value determining if you want the results to replace the current output (TRUE) or be to be appended (FALSE).			
xloc	a string corresponding to the \boldsymbol{x} coordinates. If null the average of XMin and XMax will be used			
yloc	a string corresponding to the y coordinates. If null the average of YMin and YMax will be used			

Value

Returns a data.frame

Theoretical CSR	
	Expected value assuming complete spatial randomnessn
Permuted CSR	Average observed K, L, or M for the permuted point process
Observed	Observed value for the observed point process

12

Degree of Clustering Permuted Degree of spatial clustering where the reference is the permutated estimate of CSR Degree of Clustering Theoretical Degree of spatial clustering where the reference is the theoretical estimate of CSR

Examples

```
#Create mif object
library(dplyr)
x <- create_mif(clinical_data = example_clinical %>%
mutate(deidentified_id = as.character(deidentified_id)),
sample_data = example_summary %>%
mutate(deidentified_id = as.character(deidentified_id)),
spatial_list = example_spatial,
patient_id = "deidentified_id",
sample_id = "deidentified_sample")
# Define the set of markers to study
markers <- c("CD3..0pal.570..Positive","CD8..0pal.520..Positive",</pre>
"FOXP3..Opal.620..Positive", "CD3..CD8.", "CD3..FOXP3.")
# Ripley's K for all markers with a neighborhood size
# of 10,20,...,100 (zero must be included in the input).
x <- ripleys_k(mif = x, mnames = markers, num_permutations = 1,</pre>
edge_correction = 'translation', r = seq(0,100,10),
```

```
keep_perm_dis = FALSE, workers = 1)
```

subset_mif

Subset mif object on cellular level

Description

This function allows to subset the mif object into compartments. For instance a mif object includes all cells and the desired analysis is based on only the tumor or stroma compartment then this function will subset the spatial list to just the cells in the desired compartment

Usage

```
subset_mif(mif, classifier, level, markers)
```

Arguments

mif	An MIF object
classifier	Column name for spatial dataframe to subset
level	Determines which level of the classifier to keep.
markers	vector of

Value

mif object where the spatial list only as the cell that are the specified level.

Examples

```
#' #Create mif object
library(dplyr)
x <- create_mif(clinical_data = example_clinical %>%
mutate(deidentified_id = as.character(deidentified_id)),
sample_data = example_summary %>%
mutate(deidentified_id = as.character(deidentified_id)),
spatial_list = example_spatial,
patient_id = "deidentified_id",
sample_id = "deidentified_sample")
markers = c("CD3..0pal.570..Positive", "CD8..0pal.520..Positive",
"FOXP3..0pal.620..Positive", "PD11..0pal.540..Positive",
"PD1..0pal.650..Positive", "CD3..CD8.", "CD3..FOXP3.")
```

level = 'Tumor', markers = markers)

Index

* datasets example_clinical, 7 example_spatial, 7 example_summary, 8 bi_NN_G, 2 bi_ripleys_k, 4 create_mif, 6 example_clinical, 7 example_spatial, 7 example_summary, 8 NN_G, 8 plot_immunoflo, 10 ripleys_k, 11

subset_mif, 13