
Package ‘splot’
October 14, 2022

Type Package

Title Split Plot

Version 0.5.2

Author Micah Iserman

Maintainer Micah Iserman <micah.iserman@gmail.com>

Description Automates common plotting tasks to ease data exploration.
Makes density plots (potentially overlaid on histograms),
scatter plots with prediction lines, or bar or line plots with error bars.
For each type, y, or x and y variables can be plotted at levels of other variables,
all with minimal specification.

URL https://miserman.github.io/splot/

BugReports https://github.com/miserman/splot/issues

Depends R (>= 3.1), graphics, stats, grDevices

License GPL (>= 2)

RoxygenNote 7.1.2

Suggests knitr, rmarkdown

NeedsCompilation no

Repository CRAN

Date/Publication 2022-01-30 23:30:02 UTC

R topics documented:
splot . 2
splot.bench . 10
splot.color . 12
splot.colormean . 14

Index 15

1

https://miserman.github.io/splot/
https://github.com/miserman/splot/issues

2 splot

splot Split Plot

Description

A plotting function aimed at automating some common visualization tasks in order to ease data
exploration.

Usage

splot(y, data = NULL, su = NULL, type = "", split = "median",
levels = list(), sort = NULL, error = "standard",
error.color = "#585858", error.lwd = 2, lim = 9, lines = TRUE, ...,
colors = "pastel", colorby = NULL, colorby.leg = TRUE,
color.lock = FALSE, color.offset = 1.1, color.summary = "mean",
opacity = 1, dark = FALSE, x = NULL, by = NULL, between = NULL,
cov = NULL, line.type = "l", mv.scale = "none", mv.as.x = FALSE,
save = FALSE, format = cairo_pdf, dims = dev.size(),
file.name = "splot", myl = NULL, mxl = NULL, autori = TRUE,
xlas = 0, ylas = 1, xaxis = TRUE, yaxis = TRUE, breaks = "sturges",
density.fill = TRUE, density.opacity = 0.4, density.args = list(),
leg = "outside", lpos = "auto", lvn = TRUE, leg.title = TRUE,
leg.args = list(), title = TRUE, labx = TRUE, laby = TRUE,
lty = TRUE, lwd = 2, sub = TRUE, ndisp = TRUE, note = TRUE,
font = c(title = 2, sud = 1, leg = 1, leg.title = 2, note = 3),
cex = c(title = 1.5, sud = 0.9, leg = 0.9, note = 0.7, points = 1),
sud = TRUE, labels = TRUE, labels.filter = "_", labels.trim = 20,
points = TRUE, points.first = TRUE, byx = TRUE, drop = c(x = TRUE, by
= TRUE, bet = TRUE), prat = c(1, 1), check.height = TRUE,
model = FALSE, options = NULL, add = NULL)

Arguments

y a formula (see note), or the primary variable(s) to be shown on the y axis (unless
x is not specified). When not a formula, this can be one or more variables as
objects, or names in data.

data a data.frame to pull variables from. If variables aren’t found in data, they will
be looked for in the environment.

su a subset to all variables, applied after they are all retrieved from data or the
environment.

type determines the type of plot to make, between "bar", "line", "density", or
"scatter". If "density", x is ignored. Anything including the first letter of
each is accepted (e.g., type='l').

split how to split any continuous variables (those with more than lim levels as fac-
tors). Default is "median", with "mean", "standard deviation", "quantile",
or numbers as options. If numbers, the variable is either cut at each value in a

splot 3

vector, or broken into roughly equal chunks. Entering an integer (e.g., split =
3L) that is greater than 1 will force splitting into segments. Otherwise variables
will be split by value if you enter a single value for split and there are at least
two data less than or equal to and greater than the split, or if you enter more than
1 value for split. If a numeric split is not compatible with splitting by value or
segment, splitting will default to the median.

levels a list with entries corresponding to variable names, used to rename and/or re-
order factor levels. To reorder a factor, enter a vector of either numbers or ex-
isting level names in the new order (e.g., levels = list(var = c(3,2,1))). To
rename levels of a factor, enter a character vector the same length as the number
of levels. To rename and reorder, enter a list, with names as the first entry, and
order as the second entry (e.g., levels = list(var = list(c('a','b','c'),
c(3,2,1)))). This happens after variables are split, so names and orders should
correspond to the new split levels of split variables. For example, if a continu-
ous variable is median split, it now has two levels (’Under Median’ and ’Over
Median’), which are the levels reordering or renaming would apply to. Multiple
variables entered as y can be renamed and sorted with an entry titled ’mv’.

sort specified the order of character or factor x levels. By default, character or factor
x levels are sorted alphabetically. FALSE will prevent this (preserving entered
order). TRUE or 'd' will sort by levels of y in decreasing order, and anything
else will sort in increasing order.

error string; sets the type of error bars to show in bar or line plots, or turns them off. If
FALSE, no error bars will be shown. Otherwise, the default is "standard error"
('^s'), with "confidence intervals" (anything else) as an option.

error.color color of the error bars. Default is '#585858'.

error.lwd line weight of error bars. Default is 2.

lim numeric; checked against the number of factor levels of each variable. Used to
decide which variables should be split, which colors to use, and when to turn off
the legend. Default is 9. If set over 20, lim is treated as infinite (set to Inf).

lines logical or a string specifying the type of lines to be drawn in scatter plots. By de-
fault (and whenever cov is not missing, or if lines matches '^li|^lm|^st'), a
prediction line is fitted with lm. For (potentially) bendy lines, 'loess' (match-
ing '^loe|^po|^cu') will use loess, and 'spline' ('^sm|^sp|^in') will use
smooth.spline. If y is not numeric and has only 2 levels, 'probability'
('^pr|^log') will draw probabilities estimated by a logistic regression (glm(y
~ x, binomial)). 'connected' ('^e|^co|^d') will draw lines connecting all
points, and FALSE will not draw any lines.

... passes additional arguments to par or legend. Arguments before this can be
named partially; those after must by fully named.

colors sets a color theme or manually specifies colors. Default theme is "pastel",
with "dark" and "bright" as options; these are passed to splot.color. If set
to "grey", or if by has more than 9 levels, a grey scale is calculated using gray.
See the col parameter in par for acceptable manual inputs. To set text and
axis colors, col sets outside texts (title, sud, labx, laby, and note), col.sub or
col.main sets the frame titles, and col.axis sets the axis text and line colors.
To set the color of error bars, use error.color. For histograms, a vector of

4 splot

two colors would apply to the density line and bars separately (e.g., for color
= c('red','green'), the density line would be red and the histogram bars
would be green). See the color.lock and color.offset arguments for more
color controls.

colorby a variable or list of arguments used to set colors and the legend, alternatively to
by. If by is not missing, colorby will be reduced to only the unique combina-
tions of by and colorby. For example, if by is a participant ID with multiple
observations per participant, and by is a condition ID which is the same for
all observations from a given participant, colorby would assign a single color
to each participant based on their condition. A list will be treated as a call
to link{splot.color}, so arguments can be entered positionally or by name.
Data entered directly into splot can be accessed by position name preceded by
a period. For example, splot(rnorm(100), colorby=.y) would draw a his-
togram, with bars colored by the value of y (rnorm(100) in this case).

colorby.leg logical; if FALSE, a legend for colorby is never drawn. Otherwise, a legend
for colorby will be drawn if there is no specified by, or for non-scatter plots
(overwriting the usual legend).

color.lock logical; if FALSE, colors will not be adjusted to offset lines from points or his-
togram bars.

color.offset how much points or histogram bars should be offset from the initial color used
for lines. Default is 1.1; values greater than 1 lighten, and less than 1 darken.

color.summary specifies the function used to collapse multiple colors for a single display. Ei-
ther a string matching one of 'mean' (which uses splot.colormean to average
RGB values), 'median' (which treats codes as ordered, and selects that at the
rounded median), or 'mode' (which selects the most common code), or a func-
tion which takes color codes in its first argument, and outputs a single color code
as a character.

opacity a number between 0 and 1; sets the opacity of points, lines, and bars. Semi-
opaque lines will sometimes not be displayed in the plot window, but will show
up when the plot is written to a file.

dark logical; if TRUE, sets text and axis colors to "white".

x secondary variable, to be shown in on the x axis. If not specified, type will be
set to 'density'. If x is a factor or vector of characters, or has fewer than lim
levels when treated as a factor, type will be set to 'line' unless specified.

by the ’splitting’ variable within each plot, by which the plotted values of x and y
will be grouped.

between a single object or name, or two in a vector (e.g., c(b1, b2)), the levels of which
will determine the number of plot windows to be shown at once (the cells in a
matrix of plots; levels of the first variable as rows, and levels of the second as
columns).

cov additional variables used for adjustment. Bar and line plots include all cov vari-
ables in their regression models (via lm, e.g., lm(y ~ 0 + x + cov1 + cov2)) as
covariates. Scatter plots with lines include all cov variables in the regression
model to adjust the prediction line (e.g., lm(y ~ x + x^2)). par options col,
mfrow, oma, mar, mgp, font.main, cex.main, font.lab, tcl, pch, lwd, and

splot 5

xpd are all set within the function, but will be overwritten if they are included
in the call. For example, col sets font colors in this case (as opposed to colors
which sets line and point colors). The default is '#303030' for a nice dark grey,
but maybe you want to lighten that up: col='#606060'. After arguments have
been applied to par, if any have not been used and match a legend argument,
these will be applied to legend.

line.type a character setting the style of line (e.g., with points at joints) to be drawn in
line plots. Default is 'b' if error is FALSE, and 'l' otherwise. See the line
argument of plot.default for options. line.type='c' can look nice when
there aren’t a lot of overlapping error bars.

mv.scale determines whether to center and scale multiple y variables. Does not center or
scale by default. Anything other than 'none' will mean center each numeric y
variable. Anything matching '^t|z|sc' will also scale.

mv.as.x logical; if TRUE, variable names are displayed on the x axis, and x is treated as
by.

save logical; if TRUE, an image of the plot is saved to the current working directory.

format the type of file to save plots as. Default is cairo_pdf; see Devices for options.

dims a vector of 2 values (c(width, height)) specifying the dimensions of a plot to
save in inches or pixels depending on format. Defaults to the dimensions of the
plot window.

file.name a string with the name of the file to be save (excluding the extension, as this is
added depending on format).

myl sets the range of the y axis (ylim of plot or barplot). If not specified, this will
be calculated from the data.

mxl sets the range of the x axis (xlim of plot). If not specified, this will be calculated
from the data.

autori logical; if FALSE, the origin of plotted bars will be set to 0. Otherwise, bars are
adjusted such that they extend to the bottom of the y axis.

xlas, ylas numeric; sets the orientation of the x- and y-axis labels. See par.

xaxis, yaxis logical; if FALSE, the axis will not be drawn.

breaks determines the width of histogram bars. See hist.

density.fill logical; FALSE will turn off polygon fills when they are displayed, TRUE will
replace histograms with polygons.

density.opacity

opacity of the density polygons, between 0 and 1.

density.args list of arguments to be passed to density.

leg sets the legend inside or outside the plot frames (when a character matching
'^i', or a character matching '^o' or a number respectively), or turns it off
(when FALSE). When inside, a legend is drawn in each plot frame. When outside,
a single legend is drawn either to the right of all plot frames, or within an empty
plot frame. By default, this will be determined automatically, tending to set
legends outside when there are multiple levels of between. A number will try
and set the legend in an empty frame within the grid of plot frames. If there are
no empty frames, the legend will just go to the side as if leg='outside'.

6 splot

lpos sets the position of the legend within its frame (whether inside or outside of the
plot frames) based on keywords (see legend. By default, when the legend is
outside, lpos is either 'right' when the legend is in a right-hand column, or
'center' when in an empty plot frame. When the legend is inside and lpos is
not specified, the legend will be placed automatically based on the data. Set to
'place' to manually place the legend; clicking the plot frame will set the top
left corner of the legend.

lvn level variable name. Logical: if FALSE, the names of by and between variables
will not be shown before their level (e.g., for a sex variable with a "female" level,
"sex: female" would become "female" above each plot window).

leg.title sets the title of the legend (which is the by variable name by default), or turns it
off with FALSE.

leg.args a list passing arguments to the legend call.

title logical or a character: if FALSE, the main title is turned off. If a character, this
will be shown as the main title.

labx, laby logical or a character: if FALSE, the label on the x axis is turned off. If a charac-
ter, this will be shown as the axis label.

lty logical or a vector: if FALSE, lines are always solid. If a vector, changes line type
based on each value. Otherwise loops through available line types, see par.

lwd numeric; sets the weight of lines in line, density, and scatter plots. Default is 2.
See par.

sub affects the small title above each plot showing between levels; text replaces it,
and FALSE turns it off.

ndisp logical; if FALSE, n per level is no longer displayed in the subheadings.

note logical; if FALSE, the note at the bottom about splits and/or lines or error bars is
turned off.

font named numeric vector: c(title,sud,leg,leg.title,note). Sets the font of
the title, su display, legend levels and title, and note. In addition, font.lab sets
the x and y label font, font.sub sets the font of the little title in each panel,
font.axis sets the axis label font, and font.main sets the between level/n
heading font; these are passed to par. See the input section.

cex named numeric vector: c(title,sud,leg,note,points). Sets the font size of
the title, su display, legend, note, and points. In addition, cex.lab sets the x and
y label size, cex.sub sets the size of the little title in each panel, cex.axis sets
the axis label size, and cex.main sets the between level/n heading size; these
are passed to par. See the input section.

sud affects the heading for subset and covariates/line adjustments (su display); text
replaces it, and FALSE turns it off.

labels logical; if FALSE, sets all settable text surrounding the plot to FALSE (just so you
don’t have to set all of them if you want a clean frame).

labels.filter a regular expression string to be replaced in label texts with a blank space. De-
fault is '_', so underscores appearing in the text of labels are replace with blank
spaces. Set to FALSE to prevent all filtering.

splot 7

labels.trim numeric or logical; the maximum length of label texts (in number of characters).
Default is 20, with any longer labels being trimmed. Set to FALSE to prevent any
trimming.

points logical; if FALSE, the points in a scatter plot are no longer drawn.

points.first logical; if FALSE, points are plotted after lines are drawn in a scatter plot, placing
lines behind points. This does not apply to points or lines added in add, as that
is always evaluated after the main points and lines are drawn.

byx logical; if TRUE (default) and by is specified, regressions for bar or line plots
compare levels of by for each level of x. This makes for more intuitive error
bars when comparing levels of by within a level of x; otherwise, the model is
comparing the difference between the first level of x and each of its other levels.

drop named logical vector: c(x,by,bet). Specifies how levels with no data should
be treated. All are TRUE by default, meaning only levels with data will be pre-
sented, and the layout of between levels will be minimized. x only applies to
bar or line plots. by relates to levels presented in the legend. If bet is FALSE, the
layout of between variables will be strict, with levels of between[1] as rows,
and levels of between[2] as columns – if there are no data at an intersection of
levels, the corresponding panel will be blank. See the input section.

prat panel ratio, referring to the ratio between plot frames and the legend frame when
the legend is out. A single number will make all panels of equal width. A vector
of two numbers will adjust the ratio between plot panels and the legend panel.
For example, prat=c(3,1) makes all plot panels a relative width of 3, and the
legend frame a relative width of 1.

check.height logical; if FALSE, the height of the plot frame will not be checked before plotting
is attempted. The check tries to avoid later errors, but may prevent plotting when
a plot is possible.

model logical; if TRUE, the summary of an interaction model will be printed. This
model won’t always align with what is plotted since variables may be treated
differently, particularly in the case of interactions.

options a list with named arguments, useful for setting temporary defaults if you plan
on using some of the same options for multiple plots (e.g., opt = list(type =
'bar', colors = 'grey', bg = '#999999'); splot(x ~ y, options = opt)).
use quote to include options that are to be evaluated within the function (e.g.,
opt = list(su = quote(y > 0))).

add evaluated within the function, so you can refer to the objects that are returned, to
variable names (those from an entered data frame or entered as arguments), or
entered data by their position, preceded by ’.’ (e.g., mod = lm(.y~.x)). Useful
for adding things like lines to a plot while the parameters are still those set by
the function (e.g., add = abline(v = mean(x), xpd = FALSE) for a vertical line
at the mean of x).

Value

A list containing data and settings is invisibly returned, which might be useful to check for errors.
Each of these objects can also be pulled from within add:

dat a data.frame of processed, unsegmented data.

8 splot

cdat a list of lists of data.frames of processed, segmented data.
txt a list of variable names. used mostly to pull variables from data or the environment.
ptxt a list of processed variable and level names. Used mostly for labeling.
seg a list containing segmentation information (such as levels) for each variable.
ck a list of settings.
lega a list of arguments that were or would have been passed to legend.
fmod an lm object if model is TRUE, and the model succeeded.

Input

formulas
When y is a formula (has a ~), other variables will be pulled from it:

y ~ x * by * between[1] * between[2] + cov[1] + cov[2] + cov[n]

If y has multiple variables, by is used to identify the variable (it becomes a factor with variable
names as levels), so anything entered as by is treated as between[1], between[1] is moved to
between[2], and between[2] is discarded with a message.

named vectors
Named vector arguments like font, cex, and drop can be set with a single value, positionally, or
with names. If a single value is entered (e.g., drop = FALSE), this will be applied to each level
(i.e., c(x = FALSE, by = FALSE, bet = FALSE)). If more than one value is entered, these will be
treated positionally (e.g., cex = c(2, 1.2) would be read as c(title = 2, sud = 1.2, leg = .9,
note = .7, points = 1)). If values are named, only named values will be set, with other defaults
retained (e.g., cex = c(note = 1.2) would be read as c(title = 1.5, sud = .9, leg = .9, note =
1.2, points = 1)).

Note

x-axis levels text
If the text of x-axis levels (those corresponding to the levels of x) are too long, they are hidden before
overlapping. To try and avoid this, by default longer texts are trimmed (dictated by labels.trim),
and at some point the orientation of level text is changed (settable with xlas), but you may still
see level text missing. To make these visible, you can reduce labels.trim from the default of 20
(or rename the levels of that variable), make the level text vertical (xlas = 3), or expand your plot
window if possible.

missing levels, lines, and/or error bars
By default (if drop = TRUE), levels of x with no data are dropped, so you may not see every level
of your variable, at all or at a level of by or between. Sometimes error bars cannot be estimated
(if, say, there is only one observation at the given level), but lines are still drawn in these cases, so
you may sometimes see levels without error bars even when error bars are turned on. Sometimes
(particularly when drop['x'] is FALSE), you might see floating error bars with no lines drawn to
them, or what appear to be completely empty levels. This happens when there is a missing level of
x between two non-missing levels, potentially making an orphaned level (if a non-missing level is
surrounded by missing levels). If there are no error bars for this orphaned level, by default nothing
will be drawn to indicate it. If you set line.type to 'b' (or any other type with points), a point
will be drawn at such error-bar-less, orphaned levels.

unexpected failures

splot 9

splot tries to clean up after itself in the case of an error, but you may still run into errors that break
things before this can happen. If after a failed plot you find that you’re unable to make any new
plots, or new plots are drawn over old ones, you might try entering dev.off() into the console. If
new plots look off (splot’s par settings didn’t get reset), you may have to close the plot window to
reset par (if you’re using RStudio, Plots > "Remove Plot..." or "Clear All..."), or restart R.

Examples

simulating data
n=2000
dat=data.frame(sapply(c('by','bet1','bet2'),function(c)sample(0:1,n,TRUE)))
dat$x=with(dat,

rnorm(n)+by*-.4+by*bet1*-.3+by*bet2*.3+bet1*bet2*.9-.8+rnorm(n,0,by)
)
dat$y=with(dat,

x*.2+by*.3+bet2*-.6+bet1*bet2*.8+x*by*bet1*-.5+x*by*bet1*bet2*-.5
+rnorm(n,5)+rnorm(n,-1,.1*x^2)

)

looking at the distribution of y between bets split by by
splot(y, by=by, between=c(bet1, bet2), data=dat)

looking at quantile splits of y in y by x
splot(y~x*y, dat, split='quantile')

looking at y by x between bets
splot(y~x, dat, between=c(bet1, bet2))

sequentially adding levels of split
splot(y~x*by, dat)
splot(y~x*by*bet1, dat)
splot(y~x*by*bet1*bet2, dat)

same as the last but entered by name
splot(y, x=x, by=by, between=c(bet1, bet2), data=dat)

zooming in on one of the windows
splot(y~x*by, dat, bet1==1&bet2==0)

comparing an adjusted lm prediction line with a loess line
this could also be entered as y ~ poly(x,3)
splot(y~x+x^2+x^3, dat, bet1==1&bet2==0&by==1, add={

lines(x[order(x)], loess(y~x)$fitted[order(x)], lty=2)
legend('topright', c('lm', 'loess'), lty=c(1, 2), lwd=c(2, 1), bty='n')

})

looking at different versions of x added to y
splot(cbind(

Raw=y+x,
Sine=y+sin(x),
Cosine=y+cos(x),
Tangent=y+tan(x)

10 splot.bench

)~x, dat, myl=c(-10,15), lines='loess', laby='y + versions of x')

splot.bench splot benchmarker

Description

Time one or more expressions over several iteration, then plot the distributions of their times.

Usage

splot.bench(..., runs = 20, runsize = 200, cleanup = FALSE,
print.names = FALSE, limit.outliers = TRUE, check_output = TRUE,
check_args = list(), options = list())

Arguments

... accepts any number of expressions to be timed. See examples.

runs the number of overall iterations. Increase to stabilize estimates.

runsize the number of times each expression is evaluated within each run. Increase to
differentiate estimates (particularly for very fast operations).

cleanup logical; if TRUE, garbage collection will be performed before each run. Garbage
collection greatly increases run time, but may result in more stable timings.

print.names logical; if FALSE, the entered expressions will be included in the plot as legend
names. Otherwise, (and if the number of expressions is over 5 or the length
of any expression is over 50 characters) expressions are replaced with numbers
corresponding to their entered position.

limit.outliers logical; if TRUE (default), times over an upper bound for the given expression
will be set to that upper bound, removing aberrant extremes.

check_output logical; if TRUE, the output of each expression is checked with all.equal against
that of the first. A warning indicates if any are not equal, and results are invisibly
returned.

check_args a list of arguments to be passed to all.equal, if check_output is TRUE.

options a list of options to pass on to splot.

Value

A list:

plot splot output
checks a list of result from all.equal, if check_output was TRUE
expressions a list of the entered expressions
summary a matrix of the printed results

splot.bench 11

Examples

increase the number of runs for more stable estimates

compare ways of looping through a vector
splot.bench(

sapply(1:100, '*', 10),
mapply('*', 1:100, 10),
vapply(1:100, '*', 0, 10),
unlist(lapply(1:100, '*', 10)),
runs = 20, runsize = 200, check_output = TRUE

)

compare ways of setting all but the maximum value of each row in a matrix to 0
Not run:

mat = matrix(c(rep(1, 4), rep(0, 8)), 4, 3)
splot.bench(

t(vapply(seq_len(4), function(r){
mat[r, mat[r,] < max(mat[r,])] = 0
mat[r,]

}, numeric(ncol(mat)))),
do.call(rbind, lapply(seq_len(4), function(r){

mat[r, mat[r,] < max(mat[r,])] = 0
mat[r,]

})),
do.call(rbind, lapply(seq_len(4), function(r){

nr = mat[r,]
nr[nr < max(nr)] = 0
nr

})),
{nm = mat; for(r in seq_len(4)){

nr = nm[r,]
nm[r, nr < max(nr)] = 0

}; nm},
{nm = mat; for(r in seq_len(4)) nm[r, nm[r,] < max(nm[r,])] = 0; nm},
{nm = matrix(0, dim(mat)[1], dim(mat)[2]); for(r in seq_len(4)){

m = which.max(mat[r,])
nm[r, m] = mat[r, m]

}; nm},
{ck = do.call(rbind, lapply(seq_len(4), function(r){

nr = mat[r,]
nr < max(nr)

})); nm = mat; nm[ck] = 0; nm},
t(apply(mat, 1, function(r){

r[r < max(r)] = 0
r

})),
runs = 50, runsize = 200, check_output = TRUE

)

End(Not run)

12 splot.color

splot.color splot colors

Description

Get a prespecified set of 9 colors, or a set of graded or random, potentially grouped colors.

Usage

splot.color(x = NULL, by = NULL, seed = "pastel", brightness = 0,
luminance = 0, opacity = 1, extend = 0.7, lighten = FALSE,
shuffle = FALSE, flat = TRUE, method = "scale", grade = FALSE,
decreasing = FALSE, nas = "#000000")

Arguments

x dictates the number and shade of colors. If a single value, returns that many
samples of the first seed entry. If a vector, returns a color for each entry. If
numeric, a single seed color is sampled in order of the vector. If a character
or factor, a separate seed color is assigned to each level, then sampled within
levels. Values or vectors in a list are each assigned a seed color.

by a vector to group x by; each level is assigned a seed color.
seed a vector of color names or codes to adjust from, lining up with levels of x or by,

or the name of a palette, partially matching 'bright', 'dark', 'pastel', or
'grey'.

brightness adjusts the RGB values of the seed color, usually between -1 and 1.
luminance adjusts the white levels of the seed color, usually between -1 and 1.
opacity sets the opacity of the seed color, between 0 and 1.
extend if method='scale', extends the range of the gradient beyond the sampled range,

making for more similar colors (defaults is .5, with 0 sampling the full range).
If method='related', increases the amount any of the RGB values can be ad-
justed, making for potentially more different colors (default is 2).

lighten logical; if TRUE, scaled colors are lightened instead of darkened. Only applicable
if method='scale'.

shuffle logical; if TRUE, scaled colors are shuffled. Only applicable if method='scale'.
flat logical; if FALSE and x is a character, factor, or list, or by is not missing, a list is

returned.
method a character setting the sampling method: If 'related' ('^rel|^ran|^o'), RGB

values are freely adjusted, resulting in similar colors. If 'none' ('^no|^f|^bin'),
Seed colors are simply repeated in each level (sampling is off). Otherwise, RGB
values are adjusted together, resulting in a gradient.

grade logical; if TRUE, seeds are adjusted on the scale of numeric xs. Otherwise, seeds
are adjusted in even steps along numeric xs.

decreasing logical; if FALSE, assigns colors to numeric xs in increasing order.
nas value to replace missing values with.

splot.color 13

Details

If x and by are not specified (or are characters with a length of 1, in which case they are treated as
seed), only the seed palette is returned.

To expand on a palette, seed colors are assigned to groups, and variants of each seed are assigned to
values or levels within groups, or randomly or as a gradient if there are no values or level to assign
to.

Seed colors are assigned to groups. If x is a character or factor and no by has been specified, groups
are the unique levels of x. If by is specified and is a character or factor, or has fewer than 10 unique
levels, groups are levels of by. If x is a list, groups are list entries.

The number of variants for each seed color is determined either by a value (if the value has a length
of 1; e.g., x=10), the vector’s length (if x is numeric), or the count of the given level (if x is a factor
or character vector).

Examples

including no arguments or just a palette name will only return
the palette as a character vector
pastel_palette = splot.color()
dark_palette = splot.color('dark')

entering a number for x will generate that many variants of the first seed color
red_scale = splot.color(10, 'red')

entering a list of values as x will return that many variants of the associated seed
red_and_green_scales = splot.color(list(10,10), seed=c('red','green'))

this shows gradients of each color in the default palette
a list entered as colorby is treated as arguments to splot.color
periods before the position name refer to the internally assembled data
splot(

rep(splot.color(),each=100)~rep.int(seq.int(.01,1,.01),9),colorby=list(.x,.y),
lines=FALSE,mar=c(2,4,0,0),cex=c(points=3),leg=FALSE,pch=15,
title="'pastel' palette",labx='value of x',laby='seed color'

)

colors graded by value, entered in a list
plot(1:30,numeric(30),pch=15,cex=10,col=splot.color(list(1:8,c(7:1,1:7),8:1)))

comparing sampling methods:
on top are 1000 similar colors, with different RGB ratios
on bottom are 268 colors with the same RGB ratio at different levels
splot(

c(rnorm(1000),rnorm(1000,10))~rnorm(2000),lines=FALSE,
colors=c(splot.color(1000),splot.color(1000,method='related'))

)

14 splot.colormean

splot.colormean splot color average

Description

Calculates the average of a set of colors, returning its Hex code.

Usage

splot.colormean(...)

Arguments

... color codes or names as characters.

Examples

average of red and blue
plot(

1:3, numeric(3), pch = 15, cex = 20, xlim = c(0, 4),
col = c('red', splot.colormean('red', 'blue'), 'blue')

)

average of a set
x = rnorm(100)
set = splot.color(x, method = 'related')
splot(

x ~ rnorm(100), colors = set,
add = points(0, 0, pch = 15, cex = 10, col = splot.colormean(set))

)

Index

all.equal, 10

barplot, 5

density, 5
Devices, 5

gray, 3

hist, 5

legend, 3, 5, 6, 8
lm, 3, 4
loess, 3

par, 3–6, 9
plot, 5
plot.default, 5

quote, 7

smooth.spline, 3
splot, 2
splot.bench, 10
splot.color, 3, 12
splot.colormean, 4, 14

15

	splot
	splot.bench
	splot.color
	splot.colormean
	Index

