Package ‘squat’

December 22, 2022

Title Statistics for Quaternion Temporal Data
Version 0.1.0

Description An implementation of statistical tools for the analysis
of unit quaternion time series. It relies on pre-existing
quaternion data structure provided by the 'Eigen' C++ library.

License GPL (>=3)

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

LinkingTo Rcpp, ReppArmadillo, ReppEigen, fdacluster

Imports cli, dtw, fdacluster, funData, furrr, ggplot2, ggrepel, MFPCA,
progressr, purrr, Repp, roahd, scales, tibble, tidyr

Depends R (>=4.1.0)

Suggests covr, future, gganimate, gghighlight, testthat (>= 3.0.0),
vdiffr, withr

Config/testthat/edition 3
URL https://1mjl-alea.github.io/squat/

NeedsCompilation yes

Author Lise Bellanger [aut],
Pierre Drouin [aut],
Aymeric Stamm [aut, cre] (<https://orcid.org/0000-0002-8725-3654>),
Benjamin Martineau [ctb]

Maintainer Aymeric Stamm <aymeric.stamm@math.cnrs.fr>
Repository CRAN
Date/Publication 2022-12-22 11:20:02 UTC

R topics documented:

append e e e e
CENtIING v v vt e e e e e e

https://lmjl-alea.github.io/squat/
https://orcid.org/0000-0002-8725-3654

2 append
differentiate 4
distDTW . . e 4
DTW . e 5
XD+ v e e e e e e e e e e e e e e e e e e e 6
hemispherize 7
kmeans 8
log . . o e e 9
mean.qts_sample L. e 10
median.qts_sample L 11
MOVING_AVETAZE . . .« « v o o e v vt e e e e e e e e e e e e e e e 11
normalize 12
plotkma_qgts. e e e e e 13
PlOLPICOMP_QES o v o o e e e e e e e e e 13
PIOLQLS . . o e e 14
plot.gts_sample 15
preomp.qts_sample e 16
QUS . o e e e e e e e 17
QES2ALS . . . o e e e e e e e e e e e e e e e 18
qQES2aVES . . . L e e e e 18
qQEs2dtso e 19
QUS2NES . . . o e e e e e e e e e e e 20
qgrs_sample e e e e e e e e e 20
TEOTIENE v i e e e e e e e 21
resample L e 22
0 10) w10 T | £ 23
scale 24
SmMooth L e 25
straighten L L e e e 26
VESPA o v e 27
vespabd ..o e 27

Index 29

append QTS Sample Concatenation

Description

QTS Sample Concatenation

Usage

append(x, ...)

Default S3 method:
append(x, values, after = length(x),

S3 method for class 'qts_sample'
append(x, y, ...)

.2

centring 3

Arguments
X An object of class qts_sample.
Extra arguments to be passed on to next methods.
values to be included in the modified vector.
after a subscript, after which the values are to be appended.
y Either an object of class qts_sample or an object of class gts.
Examples

append(vespa64$igp, vespa64$igpl[1])
append(vespab64$igp, vespa64$igpl[[1]1])

centring QTS Centering and Standardization

Description

This function operates a centering of the QTS around the geometric mean of its quaternions. This
is effectively achieved by left-multiplying each quaternion by the inverse of their geometric mean.

Usage

centring(x, standardize = FALSE, keep_summary_stats = FALSE)

Arguments
X An object of class gts.
standardize A boolean specifying whether to standardize the QTS in addition to centering it.

Defaults to FALSE.
keep_summary_stats

A boolean specifying whether the mean and standard deviation used for stan-
dardizing the data should be stored in the output object. Defaults to FALSE in
which case only the centered qts is returned.

Value

If keep_summary_stats = FALSE, an object of class qts in which quaternions have been centered

(and possibly standardized) around their geometric mean. If keep_summary_stats = TRUE, a list
with three components:

* gts: an object of class qts in which quaternions have been centered (and possibly standard-
ized) around their geometric mean;

* mean: a numeric vector with the quaternion Fréchet mean;
* sd: a numeric value with the quaternion Fréchet standard deviation.

Examples

centring(vespa64$igpl[[11])

4 distDTW

differentiate QTS Differentiation

Description

This function computes the first derivative of quaternion time series with respect to time.

Usage

differentiate(x)

S3 method for class 'qts'
differentiate(x)

S3 method for class 'qts_sample'

differentiate(x)
Arguments

X An object of class qts or qts_sample.
Value

An object of the same class as the input argument x in which quaternions measure the rotation to be
applied to transform attitude at previous time point to attitude at current time point.

Examples

differentiate(vespa64$igpl[[1]1]1)
differentiate(vespa64$igp)

distDTW Distance Matrix for Quaternion Time Series Samples

Description

Distance Matrix for Quaternion Time Series Samples

Usage

distDTW(
qts_list,
normalize_distance = TRUE,
labels = NULL,
resample = TRUE,
disable_normalization = FALSE,
step_pattern = dtw::symmetric2

DTW 5

Arguments

gts_list An object of class qts_sample.

normalize_distance
A boolean specifying whether to compute normalized distance between QTS.
Please note that not all step patterns are normalizable. Defaults to FALSE.

labels A character vector specifying labels for each QTS. Defaults to NULL which uses
row numbers as labels.

resample A boolean specifying whether the QTS should be uniformly resampled on their
domain before computing distances. Defaults to TRUE.

disable_normalization
A boolean specifying whether quaternion normalization should be disabled. De-
faults to FALSE which ensures that we always deal with unit quaternions.

step_pattern A dtw::stepPattern specifying the local constraints on the warping path. Defaults
to dtw::symmetric2 which uses symmetric and normalizable warping paths with
no local slope constraints. See dtw::stepPattern for more information.

Value

A stats::dist object storing the distance matrix between QTS in a sample via DTW.

Examples

D <- distDTW(vespab64$igp)

DTW Dynamic Time Warping for Quaternion Time Series

Description

This function evaluates the Dynamic Time Warping (DTW) distance between two quaternion time
series (QTS).

Usage

DTW(
qtst,
qts2,
resample = TRUE,
disable_normalization = FALSE,
distance_only = FALSE,
step_pattern = dtw::symmetric?2

6 exp

Arguments
gts1 An object of class qts.
qts2 An object of class qts.
resample A boolean specifying whether the QTS should be uniformly resampled on their

domain before computing distances. Defaults to TRUE.
disable_normalization

A boolean specifying whether quaternion normalization should be disabled. De-

faults to FALSE which ensures that we always deal with unit quaternions.

distance_only A boolean specifying whether to only compute distance (no backtrack, faster).
Defaults to FALSE.

step_pattern A dtw::stepPattern specifying the local constraints on the warping path. Defaults
to dtw::symmetric2 which uses symmetric and normalizable warping paths with
no local slope constraints. See dtw::stepPattern for more information.
Details
If no evaluation grid is provided, the function assumes that the two input QTS are evaluated on the
same grid.
Value

An object of class dtw::dtw storing the dynamic time warping results.

Examples

DTW(vespa64$igp[[1]1], vespa64$igp[[2]1])

exp QTS Exponential

Description
This function computes the exponential of quaternion time series as the time series of the quaternion
exponentials.
Usage
S3 method for class 'qts'
exp(x, ...)

S3 method for class 'gts_sample'
exp(x, ...)
Arguments

X An object of class qts or qts_sample.

Extra arguments to be passed on to next methods.

hemispherize 7

Value

An object of the same class as the input argument x in which quaternions have been replaced by
their exponential.

Examples

x <- log(vespa64$igp[[11])
exp(x)

y <- log(vespab64$igp)
exp(y)

hemispherize QTS Hemispherization

Description

This function ensures that there are no discontinuities in QTS due to quaternion flips since two unit
quaternions q and -q encode the same rotation.

Usage

hemispherize(x)

S3 method for class 'qts'
hemispherize(x)

S3 method for class 'qts_sample'

hemispherize(x)

Arguments

X An object of class qts or qts_sample.

Value

An object of the same class as the input argument x with no quaternion flip discontinuities.

Examples

hemispherize(vespa64$igp[[11])
hemispherize(vespa64$igp)

8 kmeans
kmeans QTS K-Means Alignment Algorithm
Description
This function massages the input quaternion time series to feed them into the k-means alignment
algorithm for jointly clustering and aligning the input QTS.
Usage
kmeans(x, k, iter_max = 10, nstart =1, ...)
Default S3 method:
kmeans (
X ’
K,
iter_max = 10,
nstart = 1,
algorithm = c("Hartigan-Wong", "Lloyd"”, "Forgy", "MacQueen"),
trace = FALSE,
)
S3 method for class 'qts_sample'
kmeans (
X ’
k=1,
iter_max = 10,
nstart = 1,
centroid = "mean”,
dissimilarity = "12",
warping = "affine",
)
Arguments
X Either a numeric matrix of data, or an object that can be coerced to such a matrix
(such as a numeric vector or a data frame with all numeric columns) or an object
of class qts_sample.
k An integer value specifying the number of clusters to be look for.
iter_max An integer value specifying the maximum number of iterations for terminating
the k-mean algorithm. Defaults to 10L.
nstart An integer value specifying the number of random restarts of the algorithm. The

higher nstart, the more robust the result. Defaults to 1L.

not used.

algorithm character: may be abbreviated. Note that "Lloyd"” and "Forgy" are alternative
names for one algorithm.

trace logical or integer number, currently only used in the default method ("Hartigan-Wong"):
if positive (or true), tracing information on the progress of the algorithm is pro-
duced. Higher values may produce more tracing information.

centroid A string specifying which type of centroid should be used when applying kmeans
on a QTS sample. Choices are mean and medoid. Defaults to mean.

dissimilarity A string specifying which type of dissimilarity should be used when applying
kmeans on a QTS sample. Choices are 12 and pearson. Defaults to 12.

warping A string specifying which class of warping functions should be used when ap-
plying kmeans on a QTS sample. Choices are none, shift, dilation and
affine. Defaults to affine.

Value

An object of class stats: :kmeans if the input x is NOT of class qts_sample. Otherwise, an object
of class kma_qts which is effectively a list with three components:

* gts_aligned: An object of class qts_sample storing the sample of aligned QTS;
* gts_centers: A list of objects of class qts representing the centers of the clusters;

* best_kma_result: An object of class fdacluster::kma storing the results of the best k-mean
alignment result among all initialization that were tried.

Examples

res_kma <- kmeans(vespa64$igp, k = 2)

log QTS Logarithm

Description
This function computes the logarithm of quaternion time series as the time series of the quaternion
logarithms.
Usage
S3 method for class 'qts'
log(x, ...)

S3 method for class 'qts_sample'
log(x, ...)
Arguments

X An object of class qts or qts_sample.

Extra arguments to be passed on to next methods.

10 mean.qts_sample

Value

An object of the same class as the input argument x in which quaternions have been replaced by
their logarithm.

Examples

log(vespa64$igp[[1]1]1)
log(vespa64$igp)

mean.qts_sample QTS Geometric Mean

Description

This function computes the pointwise geometric mean of a QTS sample.

Usage
S3 method for class 'qts_sample'
mean(x, ...)
Arguments
X An object of class qts_sample.
Further arguments passed to or from other methods.
Value

An object of class gqts in which quaternions are the pointwise geometric mean of the input QTS
sample.

Examples

mean(vespa64$igp)

median.qts_sample 11

median.qts_sample QTS Geometric Median

Description

This function computes the pointwise geometric median of a QTS sample.

Usage
S3 method for class 'qts_sample'
median(x, na.rm = FALSE, ...)
Arguments
X An object of class qts_sample.
na.rm A logical value indicating whether NA values should be stripped before the com-

putation proceeds.

Further arguments passed to or from other methods.

Value

An object of class gts in which quaternions are the pointwise geometric median of the input QTS
sample.

Examples

median(vespa64$igp)

moving_average QTS Moving Average

Description

This function performs QTS smoothing via moving average.

Usage

moving_average(x, window_size = Q)
S3 method for class 'qts'

moving_average(x, window_size = Q)
S3 method for class 'qts_sample'
moving_average(x, window_size = 0)

12 normalize

Arguments
X An object of class qts or qts_sample.
window_size An integer value specifying the size of the sliding window used to compute the
median value. Defaults to OL.
Value

An object of the same class as the input argument x storing the smoothed QTS.

Examples

moving_average(vespa64$igp[[1]1], window_size = 5)
moving_average(vespa64$igp, window_size = 5)

normalize QTS Normalization

Description

This function ensures that all quaternions in the time series are unit quaternions.

Usage

normalize(x)

S3 method for class 'qts'
normalize(x)

S3 method for class 'qts_sample'’
normalize(x)
Arguments

X An object of class qts or qts_sample.

Value

An object of the same class as the input argument x in which quaternions are unit quaternions.

Examples

normalize(vespa64$igpl[[11]1)
normalize(vespa64$igp)

plot.kma_qts 13

plot.kma_qgts QTS K-Means Visualization

Description

QTS K-Means Visualization

Usage

S3 method for class 'kma_qts'
plot(x, ...)

S3 method for class 'kma_qts'

autoplot(x, ...)
Arguments
X An object of class kma_qts as produced by the kmeans () function.

Further arguments to be passed to other methods.

Value
The plot.kma_qts() method does not return anything while the autoplot.kma_qts() method
returns a ggplot2::ggplot object.

Examples

res_kma <- kmeans(vespa64$igp, k = 2, nstart = 1)
plot(res_kma)
ggplot2: :autoplot(res_kma)

plot.prcomp_gts QTS PCA Visualization

Description

QTS PCA Visualization

Usage
S3 method for class 'prcomp_qgts'
plot(x, what = "PC1", ...)

S3 method for class 'prcomp_qts'
autoplot(x, what = "PC1", ...)

S3 method for class 'prcomp_gts'
screeplot(x, ...)

14 plot.qts

Arguments

X An object of class prcomp_qts as produced by the prcomp. qts_sample () method.

what A string specifying what kind of visualization the user wants to perform. Choices
are words starting with PC and ending with a PC number (in which case the mean
QTS is displayed along with its perturbations due to the required PC) or scores
(in which case individuals are projected on the required plane). Defaults to PC1.

If what = "PC?", the user can specify whether to plot the QTS in the tangent
space or in the original space by providing a boolean argument original_space
which defaults to TRUE. If what = "scores”, the user can specify the plane onto
which the individuals will be projected by providing a length-2 integer vector
argument plane which defaults to 1:2.

Value

The plot.prcomp_qgts() method does not return anything while the autoplot.prcomp_gts()
method returns a ggplot2::ggplot object.

Examples

df <- as_qts_sample(vespa64$igp[1:16])
res_pca <- prcomp(df)

You can plot the effect of a PC on the mean
plot(res_pca, what = "PC1")

You can plot the data points in a PC plane
plot(res_pca, what = "scores")

You can color points according to a categorical variable
if (requireNamespace("ggplot2”, quietly = TRUE)) {

p <- ggplot2::autoplot(res_pca, what = "scores"”)

p + ggplot2::geom_point(ggplot2::aes(color = vespa64$V[1:16]1))
3

plot.qgts QTS Visualization

Description

QTS Visualization

Usage
S3 method for class 'qts'
plot(x, highlighted_points = NULL, ...)

S3 method for class 'qts'
autoplot(x, highlighted_points = NULL, ...)

plot.qts_sample 15

Arguments

X An object of class qts.

highlighted_points
An integer vector specifying point indices to be highlighted. Defaults to NULL,
in which case no point will be highlighted with respect to the others.

Further arguments to be passed on to next methods.

Value
The plot.qgts() method does not return anything while the autoplot.qts() method returns a
ggplot2::ggplot object.

Examples

plot(vespa64$igpl[1]1]1)
ggplot2: :autoplot(vespa64$igpl[111)

plot.qts_sample QTS Sample Visualization

Description

QTS Sample Visualization

Usage

S3 method for class 'qts_sample'
plot(x, memberships = NULL, highlighted = NULL, with_animation = FALSE, ...)

S3 method for class 'qts_sample'

autoplot(
X,
memberships = NULL,
highlighted = NULL,

with_animation = FALSE,

Arguments
X An object of class qts_sample.
memberships A vector coercible as factor specifying a group membership for each QTS in the

sample. Defaults to NULL, in which case no grouping structure is displayed.

highlighted A boolean vector specifying whether each QTS in the sample should be hight-
lighted. Defaults to NULL, in which case no QTS is hightlighted w.r.t. the others.

with_animation A boolean value specifying whether to create a an animated plot or a static gg-
plot2::ggplot object. Defaults to FALSE which will create a static plot.

Further arguments to be passed to methods.

16

Value

prcomp.qts_sample

The plot.qts_sample() method does not return anything while the autoplot.qgts_sample()

method returns a ggplot2::ggplot object.

Examples

plot(vespa64$igp)
ggplot2::autoplot(vespab4$igp)

prcomp.qts_sample PCA for QTS Sample

Description

PCA for QTS Sample

Usage
S3 method for class 'qts_sample'
prcomp(x, M =5, fit = FALSE, ...)
Arguments
X An object of class qts_sample.
M An integer value specifying the number of principal component to compute.

Defaults to 5L.

fit A boolean specifying whether the resulting prcomp_qgts object should store a
reconstruction of the sample from the retained PCs. Defaults to FALSE.

Arguments passed to or from other methods.

Value

An object of class prcomp_qts which is a list with the following components:

* tpca: An object of class MFPCAfit as produced by the function MFPCA: :MFPCA(),

e var_props: A numeric vector storing the percentage of variance explained by each PC,

* mean_gts: An object of class qts containing the mean QTS,

* principal_qgts: A list of gtss containing the required principal components.

Examples

res_pca <- prcomp(vespa64$igp)

qts 17

gts QTS Class

Description

A collection of functions that implements the QTS class. It currently provides the as_qts() func-
tion for QTS coercion of tibble::tibbles and the is_qts() function for checking if an object is
a QTS.

Usage

as_qgts(x)
is_qts(x)

S3 method for class 'qts'

format(x, digits =5, ...)
Arguments
X A tibble::tibble with columns time, w, x, y and z.
digits An integer value specifying the number of digits to keep for printing. Defaults
to 5L.

Further arguments passed to or from other methods.

Details
A quaternion time series (QTS) is stored as a tibble::tibble with 5 columns:

e time: A first column specifying the time points at which quaternions were collected;
* w: A second column specifying the first coordinate of the collected quaternions;
* x: A third column specifying the second coordinate of the collected quaternions;
* y: A fourth column specifying the third coordinate of the collected quaternions;

* z: A fifth column specifying the fourth coordinate of the collected quaternions.

Value

An object of class qgts.

Examples

gts1 <- vespa64%$igpl[[1]]
gts2 <- as_qts(qts1)
is_gts(qts1)
is_gts(qts2)

18 qts2avts

gts2ats QTS Transformation To Angle Time Series

Description

This function computes a univariate time series representing the angle between the first and other
attitudes.

Usage

gts2ats(x, disable_normalization = FALSE)

Arguments

X An object of class qts.

disable_normalization
A boolean specifying whether quaternion normalization should be disabled. De-
faults to FALSE.

Value

A time series stored as a tibble::tibble with columns time and angle in which angle measures the
angle between the current rotation and the first one.

Examples

qts2ats(vespa64$igpl[1]11)

gts2avts QTS Transformation to Angular Velocity Time Series

Description

This function projects a quaternion time series into the space of angular velocities.

Usage
gts2avts(x, body_frame = FALSE)

Arguments
X An object of class qts.
body_frame A boolean specifying whether the fixed frame with respect to which coordinates

of the angular velocity should be computed is the body frame or the global
frame. Defaults to FALSE.

qts2dts 19

Value

A time series stored as a tibble::tibble with columns time, x, y and z containing the angular velocity
at each time point.

Examples

gts2avts(vespa64$igpl[111)

gts2dts QTS Transformation To Distance Time Series

Description

This function computes a real-valued time series reporting the pointwise geodesic distance between
the two input QTS at each time point.

Usage

gts2dts(x, y)

Arguments
X An object of class qts.
y An object of class qts.
Details

The function currently expects that the two input QTS are evaluated on the same time grid.

Value

A time series stored as a tibble::tibble with columns time and distance in which distance mea-
sures the angular distance between the quaternions of both input QTS at a given time point.

Examples

qts2dts(vespab64$igpl[1]], vespa64$igp[[2]])

20 qts_sample

gts2nts QTS Transformation To Norm Time Series

Description

This function computes a univariate time series representing the norm of the quaternions.

Usage

gts2nts(x, disable_normalization = FALSE)

Arguments

X An object of class qts.
disable_normalization
A boolean specifying whether quaternion normalization should be disabled. De-

faults to FALSE.
Value
A time series stored as a tibble::tibble with columns time and norm in which norm measures the
angular distance between the current quaternion and the identity.
Examples

qts2nts(vespa64$igpl[1]1]1)

gts_sample QTS Sample Class

Description

A collection of functions that implements the QTS sample class. It currently provides the as_qts_sample()
function for QTS sample coercion of lists of qts objects, the is_qts_sample () function for check-
ing if an object is a QTS sample and the subset operator.

Usage
as_qts_sample(x)
is_qts_sample(x)

S3 method for class 'qts_sample'
x[i, simplify = FALSE]

reorient 21

Arguments
X A list of tibble: :tibbles, each of which with columns time, w, x, y and z.
i A valid expression to subset observations from a QTS sample.
simplify A boolean value specifying whether the resulting subset should be turned into a
single QTS in case the subset is of size 1. Defaults to FALSE.
Details

A QTS sample is a collection of quaternion time series (QTS), each of which is stored as a tibble: :tibble
with 5 columns:

e time: A first column specifying the time points at which quaternions were collected;

* w: A second column specifying the first coordinate of the collected quaternions;

* x: A third column specifying the second coordinate of the collected quaternions;

¢ y: A fourth column specifying the third coordinate of the collected quaternions;

* z: A fifth column specifying the fourth coordinate of the collected quaternions.

Value

An object of class qts_sample.

Examples

x <- vespab64$igp

y <- as_qgts_sample(x)
is_gts_sample(x)
is_qgts_sample(y)

x[1]

x[1, simplify = TRUE]

reorient QTS Reorientation

Description

This function reorients the quaternions in a QTS for representing attitude with respect to the orien-
tation of the sensor at the first time point.

Usage

reorient(x, disable_normalization = FALSE)

S3 method for class 'qts'
reorient(x, disable_normalization = FALSE)

S3 method for class 'qts_sample'
reorient(x, disable_normalization = FALSE)

22 resample

Arguments

X An object of class qts or qts_sample.
disable_normalization

A boolean specifying whether quaternion normalization should be disabled. De-
faults to FALSE.
Value
An object of the same class as the input argument x in which quaternions measure attitude with
respect to the orientation of the sensor at the first time point.
Examples

reorient(vespa64$igp[[11])
reorient(vespa64%$igp)

resample QTS Resampling

Description

This function performs uniform resampling using SLERP.

Usage

resample(x, tmin = NA, tmax = NA, nout = OL, disable_normalization = FALSE)

S3 method for class 'qts'
resample(x, tmin = NA, tmax = NA, nout

0L, disable_normalization = FALSE)

S3 method for class 'qts_sample'
resample(x, tmin = NA, tmax = NA, nout

0L, disable_normalization = FALSE)

Arguments

X An object of class qts or qts_sample.

tmin A numeric value specifying the lower bound of the time interval over which
uniform resampling should take place. It must satisfy tmin >=min(qts$time).
Defaults to NA in which case it is set to min(qts$time).

tmax A numeric value specifying the upper bound of the time interval over which
uniform resampling should take place. It must satisfy tmax <= max(qts$time).
Defaults to NA in which case it is set to max(qts$time).

nout An integer specifying the size of the uniform grid for time resampling. Defaults

to OL in which case it uses the same grid size as the input QTS.
disable_normalization

A boolean specifying whether quaternion normalization should be disabled. De-

faults to FALSE in which case the function makes sure that quaternions are nor-

malized prior to performing SLERP interpolation.

rnorm_qts 23

Value

An object of the same class as the input argument x in which quaternions are uniformly sampled in
the range [tmin, tmax].

Examples

resample(vespa64$igp[[11])
resample(vespa64$igp)

rnorm_qts QTS Random Sampling

Description

This function adds uncorrelated Gaussian noise to the logarithm QTS using an exponential covari-
ance function.

Usage

rnorm_qts(n, mean_qts, alpha = 0.01, beta = 0.001)

Arguments
n An integer specifying how many QTS should be generated.
mean_gts An object of class qts specifying the mean QTS.
alpha A positive scalar specifying the variance of each component of the log-QTS.
Defaults to 0.01.
beta A positive scalar specifying the exponential weight. Defaults to 0.001.
Details

See exp_cov_function for details about the roles of alpha and beta in the definition of the co-
variance operator.

Value

A list of n objects of class qts with added noise as specified by parameters alpha and beta.

Examples

rnorm_qts(1, vespa64$igp[[11])

24 scale
scale QTS Sample Centering and Standardization
Description
QTS Sample Centering and Standardization
Usage
scale(x, center = TRUE, scale = TRUE,
Default S3 method:
scale(x, center = TRUE, scale = TRUE,
S3 method for class 'qts_sample'
scale(
X,
center = TRUE,
scale = TRUE,
by_row = FALSE,
keep_summary_stats = FALSE,
)
Arguments
X An object coercible into a numeric matrix or an object of class qts_sample
representing a sample of observed QTS.
center A boolean specifying whether to center the sample. If set to FALSE, the original
sample is returned, meaning that no standardization is performed regardless of
whether argument scale was set to TRUE or not. Defaults to TRUE.
scale A boolean specifying whether to standardize the sample once it has been cen-
tered. Defaults to TRUE.
Extra arguments passed on to next methods.
by_row A boolean specifying whether the QTS scaling should happen for each data point

(by_row = TRUE) or for each time point (by_row = FALSE). Defaults to FALSE.

keep_summary_stats

A boolean specifying whether the mean and standard deviation used for stan-
dardizing the data should be stored in the output object. Defaults to FALSE in

which case only the list of properly rescaled QTS is returned.

Value

A list of properly rescaled QTS stored as an object of class qts_sample when keep_summary_stats

= FALSE. Otherwise a list with three components:

smooth 25

* rescaled_sample: a list of properly rescaled QTS stored as an object of class qts_sample;
* mean: a list of numeric vectors storing the corresponding quaternion Fréchet means;

* sd: a numeric vector storing the corresponding quaternion Fréchet standard deviations.

Examples

x <- scale(vespa64$igp)
x[[1]1]

smooth QTS Smoothing via SLERP Interpolation

Description

This function performs a smoothing of a QTS by SLERP interpolation.

Usage

smooth(x, ...)

Default S3 method:
smooth(
X,
kind = c("3RS3R", "3RSS", "3RSR", "3R", "3", "S"),
twiceit = FALSE,
endrule = c("Tukey", "copy"),
do.ends = FALSE,

)

S3 method for class 'qts'
smooth(x, alpha = 0.5, ...)

S3 method for class 'qts_sample'

smooth(x, alpha = 0.5, ...)
Arguments
X An object of class qts or qts_sample.

Extra arguments passed on to next methods.
kind a character string indicating the kind of smoother required; defaults to "3RS3R".

twiceit logical, indicating if the result should be ‘twiced’. Twicing a smoother S(y)
means S(y) + S(y — S(y)), i.e., adding smoothed residuals to the smoothed
values. This decreases bias (increasing variance).

endrule a character string indicating the rule for smoothing at the boundary. Either
"Tukey" (default) or "copy”.

26 straighten

do.ends logical, indicating if the 3-splitting of ties should also happen at the boundaries
(ends). This is only used for kind = "S".

alpha A numeric value in [0, 1] specifying the amount of smoothing. The closer to
one, the smoother the resulting QTS. Defaults to @. 5.
Value

An object of the same class as the input argument x which is a smooth version of the input QTS.

Examples

smooth(vespa64$igpl[11])
smooth(vespa64$igp)

straighten QTS Straightening

Description

This function straightens QTS so that the last point equals the first point.

Usage

straighten(x)

S3 method for class 'qts'
straighten(x)

S3 method for class 'qts_sample'
straighten(x)
Arguments

X An object of class qts or qts_sample.

Value

An object of the same class as the input argument x storing the straightened QTS.

Examples

straighten(vespa64$igp[[1]1]1)
straighten(vespa64$igp)

vespa 27

vespa The VESPA dataset

Description

A set of QTS representing individual gait patterns (IGPs) of individuals collected under a number
of varying factors.

Usage

vespa

Format

A tibble with 320 rows and 7 columns:

V: a categorical variable with two levels specifying the ID of the Volunteer;

E: a categorical variable with two levels specifying the ID of the Experimenter;

S: a categorical variable with four levels specifying the type of Sensor;

* P: acategorical variable with four levels specifying the Position of the sensor;

A: a categorical variable with two levels specifying the ID of the Acquisition pathway;
R: a categorical variable with 5 levels specifying the ID of the Repetition;

e igp: A 101x5 tibble storing a QTS which represents the IGP of the individual under a
specific set of VESPA conditions.

Details

The IGP measures the hip rotation during a typical gait cycle. Each rotation is expressed with
respect to the mean position of the sensor during the gait cycle. Each IGP is then straightened so
that it is periodic with a last point matching the first one.

vespab4 The VESPA64 dataset

Description
A set of QTS representing individual gait patterns (IGPs) of individuals collected under a number
of varying factors.

Usage

vespab4

28 vespa64

Format
A tibble with 320 rows and 7 columns:

* V: a categorical variable with two levels specifying the ID of the Volunteer;

* E: acategorical variable with two levels specifying the ID of the Experimenter;

* S: acategorical variable with four levels specifying the type of Sensor;

* P: acategorical variable with four levels specifying the Position of the sensor;

* A: acategorical variable with two levels specifying the ID of the Acquisition pathway;

e igp: A 101x5 tibble storing a QTS which represents the IGP of the individual under a
specific set of VESPA conditions.

Details

The IGP measures the hip rotation during a typical gait cycle. Each rotation is expressed with
respect to the mean position of the sensor during the gait cycle. Each IGP is then straightened so
that it is periodic with a last point matching the first one.

It is essentially a reduced version of the VESPA data set where IGPs have been averaged over the
repetition for each set of conditions.

Index

+ datasets
vespa, 27
vespab4, 27
[.qts_sample (qts_sample), 20

append, 2

as_gts (qts), 17

as_qts(), 17

as_gts_sample (qts_sample), 20

as_qts_sample(), 20

autoplot.kma_qgts (plot.kma_gts), 13

autoplot.kma_qts(), 13

autoplot.prcomp_qts (plot.prcomp_qts),
13

autoplot.prcomp_qts(), 14

autoplot.qts (plot.qts), 14

autoplot.qts(), 15

autoplot.qts_sample (plot.qts_sample),
15

autoplot.qts_sample(), 16

centring, 3

differentiate, 4
distDTW, 4

DTW, 5

dtw: :dtw, 6

dtw: :stepPattern, 5, 6
dtw: :symmetric2, 5, 6

exp, 6
exp_cov_function, 23

fdacluster: :kma, 9
format.qts (qts), 17

ggplot2::ggplot, 13-16
hemispherize, 7

is_qgts (qts), 17

29

is_qts(), 17
is_qts_sample (qts_sample), 20
is_qts_sample(), 20

kmeans, 8
kmeans(), 13

log, 9

mean.qts_sample, 10
median.qts_sample, 11
MFPCA: :MFPCA(), 16
moving_average, 11

normalize, 12

plot.kma_gts, 13
plot.kma_qgts(), 13
plot.prcomp_qts, 13
plot.prcomp_qts(), 14
plot.qts, 14
plot.qts(), I5
plot.gts_sample, 15
plot.qgts_sample(), 16
prcomp.qts_sample, 16
prcomp.qts_sample(), 14

qts, 3, 4,6, 7,9-12,15-17, 17, 18-20, 22, 23,
25, 26

gts2ats, 18

gts2avts, 18

gts2dts, 19

qgts2nts, 20

qts_sample, 3-12, 15, 16, 20, 21, 22, 24-26

reorient, 21
resample, 22
rnorm_gts, 23

scale, 24

30 INDEX

screeplot.prcomp_qgts (plot.prcomp_gts),
13

smooth, 25

stats::dist, 5

stats: :kmeans, 9

straighten, 26

tibble, 27, 28
tibble::tibble, /17-21

vespa, 27
vespab4, 27

	append
	centring
	differentiate
	distDTW
	DTW
	exp
	hemispherize
	kmeans
	log
	mean.qts_sample
	median.qts_sample
	moving_average
	normalize
	plot.kma_qts
	plot.prcomp_qts
	plot.qts
	plot.qts_sample
	prcomp.qts_sample
	qts
	qts2ats
	qts2avts
	qts2dts
	qts2nts
	qts_sample
	reorient
	resample
	rnorm_qts
	scale
	smooth
	straighten
	vespa
	vespa64
	Index

