vector_cross_product()
in the stokes
package
vector_cross_product
## function (M)
## {
## n <- nrow(M)
## stopifnot(n == ncol(M) + 1)
## (-1)^n * sapply(seq_len(n), function(i) {
## (-1)^i * det(M[-i, ])
## })
## }
## <bytecode: 0x559b68fc79d8>
## <environment: namespace:stokes>
Spivak (p83) considers the standard vector cross product \(\mathbf{u}\times\mathbf{v}=\mathrm{det} \begin{pmatrix} i & j & k \\ u_1&u_2&u_3\\ v_1&v_2&v_3 \end{pmatrix}\) and places it in a more general and rigorous context. In a memorable passage, he states:
If \(v_1,\ldots,v_{n-1}\in\mathbb{R}^n\) and \(\phi\) is defined by
\[ \phi(w)=\det\left(\begin{array}{c}v_1\\ \vdots\\ v_{n-1}\\w\end{array}\right) \]
then \(\phi\in\Lambda^1\left(\mathbb{R}^n\right)\); therefore there is a unique \(z\in\mathbb{R}^n\) such that
\[ \left\langle w,z\right\rangle=\phi(w)= \det\left(\begin{array}{c}v_1\\ \vdots\\ v_{n-1}\\w\end{array}\right). \]
This \(z\) is denoted \(v_1\times\ldots\times v_{n-1}\) and is called the cross product of \(v_1,\ldots,v_{n-1}\).
- Michael Spivak, 1969 (Calculus on Manifolds, Perseus books). Pages 83-84
The reason that \(\mathbf{w}\) is at the bottom rather than the top is that it ensures that the the \(n\)-tuple \((\mathbf{v}_1,\ldots,\mathbf{v}_{n-1},\mathbf{w})\) has positive orientation with respect to the standard basis vectors of \(\mathbb{R}^n\). In \(\mathbb{R}^3\) we get the standard elementary mnemonic for \(\mathbf{u}=(u_1,u_2,u_3)\), \(\mathbf{v}=(v_1,v_2,v_3)\):
\[ \mathbf{u}\times\mathbf{v}= \mathrm{det} \begin{pmatrix} i&j&k\\ u_1&u_2&u_3\\ v_1&v_2&v_3 \end{pmatrix} \]
The R function takes a matrix with \(n\) rows and \(n-1\) columns: the transpose of the work above. This is because stokes
(and R
) convention is to interpret columns of a matrix as vectors. If we wanted to take the cross product of \(\mathbf{u}=(5,-2,1)\) with \(\mathbf{v}=(1,2,0)\):
cbind(c(5,-2,1),c(1,2,0))) (M <-
## [,1] [,2]
## [1,] 5 1
## [2,] -2 2
## [3,] 1 0
vector_cross_product(M)
## [1] -2 1 12
But of course we can work with higher dimensional spaces:
vector_cross_product(matrix(rnorm(30),6,5))
## [1] -7.892174 0.927769 1.070595 -5.334296 1.771056 -4.517277
We can demonstrate that the function has the correct orientation. We need to ensure that the vectors \(\mathbf{v}_1,\mathbf{v}_n,\mathbf{v}_1\times\cdots\times\mathbf{v}_n\) constitute a right-handed basis:
det(cbind(M,vector_cross_product(M)))>0
## [1] TRUE
So it is right-handed in this case. Here is a more severe test:
function(n){
f <- matrix(rnorm(n^2+n),n+1,n)
M <-det(cbind(M,vector_cross_product(M)))>0
}
all(sapply(sample(3:10,100,replace=TRUE),f))
## [1] TRUE
The cross product has a coordinate-free definition as the Hodge conjugate of the wedge product of its arguments. This is not used in function vector_cross_product()
because it is computationally inefficient and (I think) prone to numerical roundoff errors. We may verify that the definitions agree:
cbind(c(0,5,-2,1),c(0,1,1,0),c(2,2,2,3))
M <-vector_cross_product(M)
## [1] -21 -2 2 14
hodge(as.1form(M[,1]) ^ as.1form(M[,2])^ as.1form(M[,3]))
## An alternating linear map from V^1 to R with V=R^4:
## val
## 2 = -2
## 1 = -21
## 4 = 14
## 3 = 2
set.seed(2)
matrix(rnorm(30),6,5)
M <-vector_cross_product(M)
## [1] 4.431826 -1.966102 -3.344998 -6.853352 -11.879641 7.170485
hodge(as.1form(M[,1]) ^ as.1form(M[,2]) ^ as.1form(M[,3]) ^ as.1form(M[,4]) ^ as.1form(M[,5]))
H <-- as.1form(vector_cross_product(M)) # zero to numerical precision. H
## An alternating linear map from V^1 to R with V=R^5:
## val
## 4 = 0
## 2 = 0
## 1 = 0
## 5 = 0
Above, note that the output of vector_cross_product()
is a 1-form (rather than an R vector), so has to be coerced to a 1-form.