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as_bootstrap_design Convert a survey design object to a bootstrap replicate design

Description

Converts a survey design object to a replicate design object with replicate weights formed using
a bootstrap method. Supports stratified, cluster samples with one or more stages of sampling. At
each stage of sampling, either simple random sampling (with or without replacement) or unequal
probability sampling (with or without replacement) may be used.

Usage

as_bootstrap_design(
design,
type = "Rao-Wu-Yue-Beaumont",
replicates = 500,
compress = TRUE,
mse = getOption("survey.replicates.mse"),
samp_method_by_stage = NULL

)
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Arguments

design A survey design object created using the ’survey’ (or ’srvyr’) package, with class
'survey.design' or 'svyimputationList'.

type The type of bootstrap to use, which should be chosen based on its applicability
to the sampling method used for the survey. The available types are the follow-
ing:

• "Rao-Wu-Yue-Beaumont" (the default):
The bootstrap method of Beaumont and Émond (2022), which is a gener-
alization of the Rao-Wu-Yue bootstrap, and is applicable to a wide variety
of designs, including single-stage and multistage stratified designs. The de-
sign may have different sampling methods used at different stages. Each
stage of sampling may potentially be PPS (i.e., use unequal probabilities),
with or without replacement, and may potentially use Poisson sampling.

For a stratum with a fixed sample size of n sampling units, resampling
in each replicate resamples (n− 1) sampling units with replacement.

• "Rao-Wu":
The basic Rao-Wu (n − 1) bootstrap method, which is only applicable to
single-stage designs or multistage designs where the first-stage sampling
fractions are small (and can thus be ignored). Accommodates stratified
designs. All sampling within a stratum must be simple random sampling
with or without replacement, although the first-stage sampling is effectively
treated as sampling without replacement.

• "Preston":
Preston’s multistage rescaled bootstrap, which is applicable to single-stage
designs or multistage designs with arbitrary sampling fractions. Accom-
modates stratified designs. All sampling within a stratum must be simple
random sampling with or without replacement.

• "Canty-Davison":
The Canty-Davison bootstrap, which is only applicable to single-stage de-
signs, with arbitrary sampling fractions. Accommodates stratified designs.
All sampling with a stratum must be simple random sampling with or with-
out replacement.

replicates Number of bootstrap replicates (should be as large as possible, given computer
memory/storage limitations). A commonly-recommended default is 500.

compress Use a compressed representation of the replicate weights matrix. This reduces
the computer memory required to represent the replicate weights and has no
impact on estimates.

mse If TRUE, compute variances from sums of squares around the point estimate
from the full-sample weights, If FALSE, compute variances from sums of squares
around the mean estimate from the replicate weights.

samp_method_by_stage

(Optional). By default, this function will automatically determine the sampling
method used at each stage. However, this argument can be used to ensure the
correct sampling method is identified for each stage.



4 as_bootstrap_design

Accepts a vector with length equal to the number of stages of sampling. Each
element should be one of the following:

• "SRSWOR" - Simple random sampling, without replacement
• "SRSWR" - Simple random sampling, with replacement
• "PPSWOR" - Unequal probabilities of selection, without replacement
• "PPSWR" - Unequal probabilities of selection, with replacement
• "Poisson" - Poisson sampling: each sampling unit is selected into the sam-

ple at most once, with potentially different probabilities of inclusion for
each sampling unit.

Value

A replicate design object, with class svyrep.design, which can be used with the usual functions,
such as svymean() or svyglm().

Use weights(..., type = 'analysis') to extract the matrix of replicate weights.
Use as_data_frame_with_weights() to convert the design object to a data frame with columns
for the full-sample and replicate weights.

See Also

Use estimate_boot_reps_for_target_cv to help choose the number of bootstrap replicates.

For some complex designs, one can use make_rwyb_bootstrap_weights to create Rao-Wu-Yue-
Beaumont bootstrap weights or adjustment factors given information for each stage of sampling
(the type of sampling, strata IDs, cluster IDs, selection probabilities, etc.).

For systematic samples, one-PSU-per-stratum designs, or other especially complex sample designs,
one can use the generalized survey bootstrap method. See as_gen_boot_design or make_gen_boot_factors.

Examples

library(survey)
# Example 1: A multistage sample with two stages of SRSWOR

## Load an example dataset from a multistage sample, with two stages of SRSWOR
data("mu284", package = 'survey')
multistage_srswor_design <- svydesign(data = mu284,

ids = ~ id1 + id2,
fpc = ~ n1 + n2)

## Convert the survey design object to a bootstrap design
set.seed(2022)
bootstrap_rep_design <- as_bootstrap_design(multistage_srswor_design,

replicates = 500)

## Compare std. error estimates from bootstrap versus linearization
data.frame(

'Statistic' = c('total', 'mean', 'median'),
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'SE (bootstrap)' = c(SE(svytotal(x = ~ y1, design = bootstrap_rep_design)),
SE(svymean(x = ~ y1, design = bootstrap_rep_design)),
SE(svyquantile(x = ~ y1, quantile = 0.5,

design = bootstrap_rep_design))),
'SE (linearization)' = c(SE(svytotal(x = ~ y1, design = multistage_srswor_design)),

SE(svymean(x = ~ y1, design = multistage_srswor_design)),
SE(svyquantile(x = ~ y1, quantile = 0.5,

design = multistage_srswor_design))),
check.names = FALSE

)

# Example 2: A multistage-sample,
# first stage selected with unequal probabilities without replacement
# second stage selected with simple random sampling without replacement

data("library_multistage_sample", package = "svrep")

multistage_pps <- svydesign(data = library_multistage_sample,
ids = ~ PSU_ID + SSU_ID,
fpc = ~ PSU_SAMPLING_PROB + SSU_SAMPLING_PROB,
pps = "brewer")

bootstrap_rep_design <- as_bootstrap_design(
multistage_pps, replicates = 500,
samp_method_by_stage = c("PPSWOR", "SRSWOR")

)

## Compare std. error estimates from bootstrap versus linearization
data.frame(

'Statistic' = c('total', 'mean'),
'SE (bootstrap)' = c(

SE(svytotal(x = ~ TOTCIR, na.rm = TRUE,
design = bootstrap_rep_design)),

SE(svymean(x = ~ TOTCIR, na.rm = TRUE,
design = bootstrap_rep_design))),

'SE (linearization)' = c(
SE(svytotal(x = ~ TOTCIR, na.rm = TRUE,

design = multistage_pps)),
SE(svymean(x = ~ TOTCIR, na.rm = TRUE,

design = multistage_pps))),
check.names = FALSE

)

as_data_frame_with_weights

Convert a survey design object to a data frame with weights stored as
columns

Description

Convert a survey design object to a data frame with weights stored as columns
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Usage

as_data_frame_with_weights(
design,
full_wgt_name = "FULL_SAMPLE_WGT",
rep_wgt_prefix = "REP_WGT_"

)

Arguments

design A survey design object, created with either the survey or srvyr packages.

full_wgt_name The column name to use for the full-sample weights

rep_wgt_prefix For replicate design objects, a prefix to use for the column names of the replicate
weights. The column names will be created by appending the replicate number
after the prefix.

Value

A data frame, with new columns containing the weights from the survey design object

Examples

data("lou_vax_survey", package = 'svrep')

library(survey)
# Create a survey design object
survey_design <- svydesign(data = lou_vax_survey,

weights = ~ SAMPLING_WEIGHT,
ids = ~ 1)

rep_survey_design <- as.svrepdesign(survey_design,
type = "boot",
replicates = 10)

# Adjust the weights for nonresponse
nr_adjusted_design <- redistribute_weights(

design = rep_survey_design,
reduce_if = RESPONSE_STATUS == "Nonrespondent",
increase_if = RESPONSE_STATUS == "Respondent",
by = c("RACE_ETHNICITY", "EDUC_ATTAINMENT")

)

# Save the survey design object as a data frame
nr_adjusted_data <- as_data_frame_with_weights(

nr_adjusted_design,
full_wgt_name = "NR_ADJUSTED_WGT",
rep_wgt_prefix = "NR_ADJUSTED_REP_WGT_"

)
head(nr_adjusted_data)
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# Check the column names of the result
colnames(nr_adjusted_data)

as_gen_boot_design Convert a survey design object to a generalized boostrap replicate de-
sign

Description

Converts a survey design object to a replicate design object with replicate weights formed using the
generalized bootstrap method. The generalized survey bootstrap is a method for forming bootstrap
replicate weights from a textbook variance estimator, provided that the variance estimator can be
represented as a quadratic form whose matrix is positive semi-definite (this covers a large class of
variance estimators).

Usage

as_gen_boot_design(
design,
variance_estimator = NULL,
replicates = 500,
tau = "auto",
mse = getOption("survey.replicates.mse"),
compress = TRUE

)

Arguments

design A survey design object created using the ’survey’ (or ’srvyr’) package, with class
'survey.design' or 'svyimputationList'.

variance_estimator

The name of the variance estimator whose quadratic form matrix should be cre-
ated. See the section "Variance Estimators" below. Options include:

• "Yates-Grundy": The Yates-Grundy variance estimator based on first-
order and second-order inclusion probabilities.

• "Horvitz-Thompson": The Horvitz-Thompson variance estimator based
on first-order and second-order inclusion probabilities.

• "Stratified Multistage SRS": The usual stratified multistage variance es-
timator based on estimating the variance of cluster totals within strata at
each stage.

• "Ultimate Cluster": The usual variance estimator based on estimating the
variance of first-stage cluster totals within first-stage strata.

• "SD1": The non-circular successive-differences variance estimator described
by Ash (2014), sometimes used for variance estimation for systematic sam-
pling.
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• "SD2": The circular successive-differences variance estimator described
by Ash (2014). This estimator is the basis of the "successive-differences
replication" estimator commonly used for variance estimation for system-
atic sampling.

replicates Number of bootstrap replicates (should be as large as possible, given computer
memory/storage limitations). A commonly-recommended default is 500.

tau Either "auto", or a single number. This is the rescaling constant used to avoid
negative weights through the transformation w+τ−1

τ , where w is the original
weight and τ is the rescaling constant tau.
If tau="auto", the rescaling factor is determined automatically as follows: if all
of the adjustment factors are nonnegative, then tau is set equal to 1; otherwise,
tau is set to the smallest value needed to rescale the adjustment factors such that
they are all at least 0.01.

mse If TRUE, compute variances from sums of squares around the point estimate
from the full-sample weights, If FALSE, compute variances from sums of squares
around the mean estimate from the replicate weights.

compress This reduces the computer memory required to represent the replicate weights
and has no impact on estimates.

Value

A replicate design object, with class svyrep.design, which can be used with the usual functions,
such as svymean() or svyglm().

Use weights(..., type = 'analysis') to extract the matrix of replicate weights.
Use as_data_frame_with_weights() to convert the design object to a data frame with columns
for the full-sample and replicate weights.

Statistical Details

Let v(T̂y) be the textbook variance estimator for an estimated population total T̂y of some variable
y. The base weight for case i in our sample is wi, and we let y̆i denote the weighted value wiyi.
Suppose we can represent our textbook variance estimator as a quadratic form: v(T̂y) = y̆Σy̆T , for
some n × n matrix Σ. The only constraint on Σ is that, for our sample, it must be symmetric and
positive semi-definite.

The bootstrapping process createsB sets of replicate weights, where the b-th set of replicate weights
is a vector of length n denoted a(b), whose k-th value is denoted a(b)k . This yields B replicate
estimates of the population total, T̂ ∗(b)y =

∑
k∈s a

(b)
k y̆k, for b = 1, . . . B, which can be used to

estimate sampling variance.

vB

(
T̂y

)
=

∑B
b=1

(
T̂
∗(b)
y − T̂y

)2
B

This bootstrap variance estimator can be written as a quadratic form:

vB

(
T̂y

)
= y̆′ΣBy̆
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where

ΣB =

∑B
b=1

(
a(b) − 1n

) (
a(b) − 1n

)′
B

Note that if the vector of adjustment factors a(b) has expectation 1n and variance-covariance ma-
trix Σ, then we have the bootstrap expectation E∗ (ΣB) = Σ. Since the bootstrap process takes
the sample values y̆ as fixed, the bootstrap expectation of the variance estimator is E∗ (y̆′ΣBy̆) =
y̆′Σy̆. Thus, we can produce a bootstrap variance estimator with the same expectation as the text-
book variance estimator simply by randomly generating a(b) from a distribution with the following
two conditions:
Condition 1: E∗(a) = 1n
Condition 2: E∗ (a− 1n) (a− 1n)

′
= Σ

While there are multiple ways to generate adjustment factors satisfying these conditions, the sim-
plest general method is to simulate from a multivariate normal distribution: a ∼ MVN(1n,Σ).
This is the method used by this function.

Details on Rescaling to Avoid Negative Adjustment Factors

Let A =
[
a(1) · · ·a(b) · · ·a(B)

]
denote the (n×B) matrix of bootstrap adjustment factors. To elim-

inate negative adjustment factors, Beaumont and Patak (2012) propose forming a rescaled matrix
of nonnegative replicate factors AS by rescaling each adjustment factor a(b)k as follows:

a
S,(b)
k =

a
(b)
k + τ − 1

τ

where τ ≥ 1− a(b)k ≥ 1 for all k in {1, . . . , n} and all b in {1, . . . , B}.
The value of τ can be set based on the realized adjustment factor matrix A or by choosing τ prior to
generating the adjustment factor matrix A so that τ is likely to be large enough to prevent negative
bootstrap weights.

If the adjustment factors are rescaled in this manner, it is important to adjust the scale factor used
in estimating the variance with the bootstrap replicates, which becomes τ2

B instead of 1
B .

Prior to rescaling: vB
(
T̂y

)
=

1

B

B∑
b=1

(
T̂ ∗(b)y − T̂y

)2

After rescaling: vB
(
T̂y

)
=
τ2

B

B∑
b=1

(
T̂S∗(b)y − T̂y

)2
When sharing a dataset that uses rescaled weights from a generalized survey bootstrap, the docu-
mentation for the dataset should instruct the user to use replication scale factor τ2

B rather than 1
B

when estimating sampling variances.

Variance Estimators

The Horvitz-Thompson variance estimator:

v(Ŷ ) =
∑
i∈s

∑
j∈s

(1− πiπj
πij

)
yi
πi

yj
πj
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The Yates-Grundy variance estimator:

v(Ŷ ) = −1

2

∑
i∈s

∑
j∈s

(1− πiπj
πij

)(
yi
πi
− yj
πj

)2

The Stratified Multistage SRS variance estimator is the recursive variance estimator proposed by
Bellhouse (1985) and used in the ’survey’ package’s function svyrecvar. The estimator can be used
for any number of sampling stages. For illustration, we describe its use for two sampling stages.

v(Ŷ ) = V̂1 + V̂2

where

V̂1 =

H∑
h=1

(1− nh
Nh

)
nh

nh − 1

nh∑
i=1

(yhi. − ȳhi.)2

and

V̂2 =

H∑
h=1

nh
Nh

nh∑
i=1

vhi(yhi.)

where nh is the number of sampled clusters in stratum h, Nh is the number of population clusters
in stratum h, yhi. is the weighted cluster total in cluster i of stratum h, ȳhi. is the mean weighted
cluster total of stratum h, (ȳhi. = 1

nh

∑nh

i=1 yhi.), and vhi(yhi.) is the estimated sampling variance
of yhi..

The Ultimate Cluster variance estimator is simply the stratified multistage SRS variance estimator,
but ignoring variances from later stages of sampling.

v(Ŷ ) = V̂1

This is the variance estimator used in the ’survey’ package when the user specifies option(survey.ultimate.cluster
= TRUE) or uses svyrecvar(..., one.stage = TRUE). When the first-stage sampling fractions are
small, analysts often omit the finite population corrections (1− nh

Nh
) when using the ultimate cluster

estimator.

The SD1 and SD2 variance estimators are "successive difference" estimators sometimes used for
systematic sampling designs. Ash (2014) describes each estimator as follows:

v̂SD1(Ŷ ) =
(

1− n

N

) n

2(n− 1)

n∑
k=2

(y̆k − y̆k−1)
2

v̂SD2(Ŷ ) =
(

1− n

N

) 1

2

[
n∑
k=2

(y̆k − y̆k−1)
2

+ (y̆n − y̆1)
2

]
where y̆k = yk/πk is the weighted value of unit k with selection probability πk. The SD1 estima-
tor is recommended by Wolter (1984). The SD2 estimator is the basis of the successive difference
replication estimator commonly used for systematic sampling designs. See Ash (2014) for details.

For multistage samples, SD1 and SD2 are applied to the clusters at each stage, separately by stra-
tum. For later stages of sampling, the variance estimate from a stratum is multiplied by the product
of sampling fractions from earlier stages of sampling. For example, at a third stage of sampling,
the variance estimate from a third-stage stratum is multiplied by n1

N1

n2

N2
, which is the product of

sampling fractions from the first-stage stratum and second-stage stratum.
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See Also

Use estimate_boot_reps_for_target_cv to help choose the number of bootstrap replicates.
For greater customization of the method, make_quad_form_matrix can be used to represent several
common variance estimators as a quadratic form’s matrix, which can then be used as an input to
make_gen_boot_factors.

Examples

## Not run:
library(survey)

# Example 1: Bootstrap based on the Yates-Grundy estimator ----
set.seed(2014)

data('election', package = 'survey')

## Create survey design object
pps_design_yg <- svydesign(

data = election_pps,
id = ~1, fpc = ~p,
pps = ppsmat(election_jointprob),
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variance = "YG"
)

## Convert to generalized bootstrap replicate design
gen_boot_design_yg <- pps_design_yg |>

as_gen_boot_design(variance_estimator = "Yates-Grundy",
replicates = 1000, tau = "auto")

svytotal(x = ~ Bush + Kerry, design = pps_design_yg)
svytotal(x = ~ Bush + Kerry, design = gen_boot_design_yg)

# Example 2: Bootstrap based on the successive-difference estimator ----

data('library_stsys_sample', package = 'svrep')

## First, ensure data are sorted in same order as was used in sampling
library_stsys_sample <- library_stsys_sample[

order(library_stsys_sample$SAMPLING_SORT_ORDER),
]

## Create a survey design object
design_obj <- svydesign(

data = library_stsys_sample,
strata = ~ SAMPLING_STRATUM,
ids = ~ 1,
fpc = ~ STRATUM_POP_SIZE

)

## Convert to generalized bootstrap replicate design
gen_boot_design_sd2 <- as_gen_boot_design(

design = design_obj,
variance_estimator = "SD2",
replicates = 2000

)

## Estimate sampling variances
svytotal(x = ~ TOTSTAFF, na.rm = TRUE, design = gen_boot_design_sd2)
svytotal(x = ~ TOTSTAFF, na.rm = TRUE, design = design_obj)

## End(Not run)

calibrate_to_estimate Calibrate weights from a primary survey to estimated totals from
a control survey, with replicate-weight adjustments that account for
variance of the control totals

Description

Calibrate the weights of a primary survey to match estimated totals from a control survey, using
adjustments to the replicate weights to account for the variance of the estimated control totals.
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The adjustments to replicate weights are conducted using the method proposed by Fuller (1998).
This method can be used to implement general calibration as well as post-stratification or raking
specifically (see the details for the calfun parameter).

Usage

calibrate_to_estimate(
rep_design,
estimate,
vcov_estimate,
cal_formula,
calfun = survey::cal.linear,
bounds = list(lower = -Inf, upper = Inf),
verbose = FALSE,
maxit = 50,
epsilon = 1e-07,
variance = NULL,
col_selection = NULL

)

Arguments

rep_design A replicate design object for the primary survey, created with either the survey
or srvyr packages.

estimate A vector of estimated control totals. The names of entries must match the names
from calling svytotal(x = cal_formula, design = rep_design).

vcov_estimate A variance-covariance matrix for the estimated control totals. The column names
and row names must match the names of estimate.

cal_formula A formula listing the variables to use for calibration. All of these variables must
be included in rep_design.

calfun A calibration function from the survey package, such as cal.linear, cal.raking,
or cal.logit. Use cal.linear for ordinary post-stratification, and cal.raking
for raking. See calibrate for additional details.

bounds Parameter passed to grake for calibration. See calibrate for details.

verbose Parameter passed to grake for calibration. See calibrate for details.

maxit Parameter passed to grake for calibration. See calibrate for details.

epsilon Parameter passed to grake for calibration.
After calibration, the absolute difference between each calibration target and the
calibrated estimate will be no larger than epsilon times (1 plus the absolute
value of the target). See calibrate for details.

variance Parameter passed to grake for calibration. See calibrate for details.

col_selection Optional parameter to determine which replicate columns will have their control
totals perturbed. If supplied, col_selection must be an integer vector with
length equal to the length of estimate.
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Details

With the Fuller method, each of k randomly-selected replicate columns from the primary survey
are calibrated to control totals formed by perturbing the k-dimensional vector of estimated control
totals using a spectral decomposition of the variance-covariance matrix of the estimated control to-
tals. Other replicate columns are simply calibrated to the unperturbed control totals.

Because the set of replicate columns whose control totals are perturbed should be random, there
are multiple ways to ensure that this matching is reproducible. The user can either call set.seed
before using the function, or supply a vector of randomly-selected column indices to the argument
col_selection.

Value

A replicate design object, with full-sample weights calibrated to totals from estimate, and repli-
cate weights adjusted to account for variance of the control totals. The element col_selection
indicates, for each replicate column of the calibrated primary survey, which column of replicate
weights it was matched to from the control survey.

References

Fuller, W.A. (1998). "Replication variance estimation for two-phase samples." Statistica Sinica, 8:
1153-1164.

Opsomer, J.D. and A. Erciulescu (2021). "Replication variance estimation after sample-based cali-
bration." Survey Methodology, 47: 265-277.

Examples

## Not run:

# Load example data for primary survey ----

suppressPackageStartupMessages(library(survey))
data(api)

primary_survey <- svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc) |>
as.svrepdesign(type = "JK1")

# Load example data for control survey ----

control_survey <- svydesign(id = ~ 1, fpc = ~fpc, data = apisrs) |>
as.svrepdesign(type = "JK1")

# Estimate control totals ----

estimated_controls <- svytotal(x = ~ stype + enroll,
design = control_survey)

control_point_estimates <- coef(estimated_controls)
control_vcov_estimate <- vcov(estimated_controls)

# Calibrate totals for one categorical variable and one numeric ----
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calibrated_rep_design <- calibrate_to_estimate(
rep_design = primary_survey,
estimate = control_point_estimates,
vcov_estimate = control_vcov_estimate,
cal_formula = ~ stype + enroll

)

# Inspect estimates before and after calibration ----

##_ For the calibration variables, estimates and standard errors
##_ from calibrated design will match those of the control survey

svytotal(x = ~ stype + enroll, design = primary_survey)
svytotal(x = ~ stype + enroll, design = control_survey)
svytotal(x = ~ stype + enroll, design = calibrated_rep_design)

##_ Estimates from other variables will be changed as well

svymean(x = ~ api00 + api99, design = primary_survey)
svymean(x = ~ api00 + api99, design = control_survey)
svymean(x = ~ api00 + api99, design = calibrated_rep_design)

# Inspect weights before and after calibration ----

summarize_rep_weights(primary_survey, type = 'overall')
summarize_rep_weights(calibrated_rep_design, type = 'overall')

# For reproducibility, specify which columns are randomly selected for Fuller method ----

column_selection <- calibrated_rep_design$col_selection
print(column_selection)

calibrated_rep_design <- calibrate_to_estimate(
rep_design = primary_survey,
estimate = control_point_estimates,
vcov_estimate = control_vcov_estimate,
cal_formula = ~ stype + enroll,
col_selection = column_selection

)

## End(Not run)

calibrate_to_sample Calibrate weights from a primary survey to estimated totals from
a control survey, with replicate-weight adjustments that account for
variance of the control totals
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Description

Calibrate the weights of a primary survey to match estimated totals from a control survey, using
adjustments to the replicate weights to account for the variance of the estimated control totals.
The adjustments to replicate weights are conducted using the method proposed by Opsomer and
Erciulescu (2021). This method can be used to implement general calibration as well as post-
stratification or raking specifically (see the details for the calfun parameter).

Usage

calibrate_to_sample(
primary_rep_design,
control_rep_design,
cal_formula,
calfun = survey::cal.linear,
bounds = list(lower = -Inf, upper = Inf),
verbose = FALSE,
maxit = 50,
epsilon = 1e-07,
variance = NULL,
control_col_matches = NULL

)

Arguments

primary_rep_design

A replicate design object for the primary survey, created with either the survey
or srvyr packages.

control_rep_design

A replicate design object for the control survey.
cal_formula A formula listing the variables to use for calibration. All of these variables must

be included in both primary_rep_design and control_rep_design.
calfun A calibration function from the survey package, such as cal.linear, cal.raking,

or cal.logit. Use cal.linear for ordinary post-stratification, and cal.raking
for raking. See calibrate for additional details.

bounds Parameter passed to grake for calibration. See calibrate for details.
verbose Parameter passed to grake for calibration. See calibrate for details.
maxit Parameter passed to grake for calibration. See calibrate for details.
epsilon Parameter passed to grake for calibration.

After calibration, the absolute difference between each calibration target and the
calibrated estimate will be no larger than epsilon times (1 plus the absolute
value of the target). See calibrate for details.

variance Parameter passed to grake for calibration. See calibrate for details.
control_col_matches

Optional parameter to control which control survey replicate is matched to each
primary survey replicate. Entries of NA denote a primary survey replicate not
matched to any control survey replicate. If this parameter is not used, matching
is done at random.
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Details

With the Opsomer-Erciulescu method, each column of replicate weights from the control survey is
randomly matched to a column of replicate weights from the primary survey, and then the column
from the primary survey is calibrated to control totals estimated by perturbing the control sample’s
full-sample estimates using the estimates from the matched column of replicate weights from the
control survey.

If there are fewer columns of replicate weights in the control survey than in the primary survey,
then not all primary replicate columns will be matched to a replicate column from the control sur-
vey.

If there are more columns of replicate weights in the control survey than in the primary survey,
then the columns of replicate weights in the primary survey will be duplicated k times, where k is
the smallest positive integer such that the resulting number of columns of replicate weights for the
primary survey is greater than or equal to the number of columns of replicate weights in the control
survey.

Because replicate columns of the control survey are matched at random to primary survey replicate
columns, there are multiple ways to ensure that this matching is reproducible. The user can either
call set.seed before using the function, or supply a mapping to the argument control_col_matches.

Value

A replicate design object, with full-sample weights calibrated to totals from control_rep_design,
and replicate weights adjusted to account for variance of the control totals. If primary_rep_design
had fewer columns of replicate weights than control_rep_design, then the number of replicate
columns and the length of rscales will be increased by a multiple k, and the scale will be updated
by dividing by k.

The element control_column_matches indicates, for each replicate column of the calibrated pri-
mary survey, which column of replicate weights it was matched to from the control survey. Columns
which were not matched to control survey replicate column are indicated by NA.

The element degf will be set to match that of the primary survey to ensure that the degrees of
freedom are not erroneously inflated by potential increases in the number of columns of replicate
weights.

References

Opsomer, J.D. and A. Erciulescu (2021). "Replication variance estimation after sample-based cali-
bration." Survey Methodology, 47: 265-277.

Examples

## Not run:

# Load example data for primary survey ----
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suppressPackageStartupMessages(library(survey))
data(api)

primary_survey <- svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc) |>
as.svrepdesign(type = "JK1")

# Load example data for control survey ----

control_survey <- svydesign(id = ~ 1, fpc = ~fpc, data = apisrs) |>
as.svrepdesign(type = "JK1")

# Calibrate totals for one categorical variable and one numeric ----

calibrated_rep_design <- calibrate_to_sample(
primary_rep_design = primary_survey,
control_rep_design = control_survey,
cal_formula = ~ stype + enroll,

)

# Inspect estimates before and after calibration ----

##_ For the calibration variables, estimates and standard errors
##_ from calibrated design will match those of the control survey

svytotal(x = ~ stype + enroll, design = primary_survey)
svytotal(x = ~ stype + enroll, design = control_survey)
svytotal(x = ~ stype + enroll, design = calibrated_rep_design)

##_ Estimates from other variables will be changed as well

svymean(x = ~ api00 + api99, design = primary_survey)
svymean(x = ~ api00 + api99, design = control_survey)
svymean(x = ~ api00 + api99, design = calibrated_rep_design)

# Inspect weights before and after calibration ----

summarize_rep_weights(primary_survey, type = 'overall')
summarize_rep_weights(calibrated_rep_design, type = 'overall')

# For reproducibility, specify how to match replicates between surveys ----

column_matching <- calibrated_rep_design$control_col_matches
print(column_matching)

calibrated_rep_design <- calibrate_to_sample(
primary_rep_design = primary_survey,
control_rep_design = control_survey,
cal_formula = ~ stype + enroll,
control_col_matches = column_matching

)

## End(Not run)
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estimate_boot_reps_for_target_cv

Estimate the number of bootstrap replicates needed to reduce the boot-
strap simulation error to a target level

Description

This function estimates the number of bootstrap replicates needed to reduce the simulation error of
a bootstrap variance estimator to a target level, where "simulation error" is defined as error caused
by using only a finite number of bootstrap replicates and this simulation error is measured as a
simulation coefficient of variation ("simulation CV").

Usage

estimate_boot_reps_for_target_cv(svrepstat, target_cv = 0.05)

Arguments

svrepstat An estimate obtained from a bootstrap replicate survey design object, with a
function such as svymean(..., return.replicates = TRUE) or withReplicates(...,
return.replicates = TRUE).

target_cv A numeric value (or vector of numeric values) between 0 and 1. This is the
target simulation CV for the bootstrap variance estimator.

Value

A data frame with one row for each value of target_cv. The column TARGET_CV gives the target
coefficient of variation. The column MAX_REPS gives the maximum number of replicates needed for
all of the statistics included in svrepstat. The remaining columns give the number of replicates
needed for each statistic.

Suggested Usage

- Step 1: Determine the largest acceptable level of simulation error for key survey estimates, where
the level of simulation error is measured in terms of the simulation CV. We refer to this as the "target
CV." A conventional value for the target CV is 5%.

- Step 2: Estimate key statistics of interest using a large number of bootstrap replicates (such
as 5,000) and save the estimates from each bootstrap replicate. This can be conveniently done
using a function from the survey package such as svymean(..., return.replicates = TRUE) or
withReplicates(..., return.replicates = TRUE).

- Step 3: Use the function estimate_boot_reps_for_target_cv() to estimate the minimum
number of bootstrap replicates needed to attain the target CV.



20 estimate_boot_reps_for_target_cv

Statistical Details

Unlike other replication methods such as the jackknife or balanced repeated replication, the boot-
strap variance estimator’s precision can always be improved by using a larger number of replicates,
as the use of only a finite number of bootstrap replicates introduces simulation error to the variance
estimation process. Simulation error can be measured as a "simulation coefficient of variation"
(CV), which is the ratio of the standard error of a bootstrap estimator to the expectation of that
bootstrap estimator, where the expectation and standard error are evaluated with respect to the boot-
strapping process given the selected sample.

For a statistic θ̂, the simulation CV of the bootstrap variance estimator vB(θ̂) based on B replicate
estimates θ̂?1 , . . . , θ̂

?
B is defined as follows:

CV?(vB(θ̂)) =

√
var?(vB(θ̂))

E?(vB(θ̂))
=
CV?(E2)√

B

where
E2 = (θ̂? − θ̂)2

CV?(E2) =

√
var?(E2)

E?(E2)

and var? and E? are evaluated with respect to the bootstrapping process, given the selected sample.

The simulation CV, denoted CV?(vB(θ̂)), is estimated for a given number of replicates B by es-
timating CV?(E2) using observed values and dividing this by

√
B. If the bootstrap errors are

assumed to be normally distributed, then CV?(E2) =
√

2 and so CV?(vB(θ̂)) would not need to be
estimated. Using observed replicate estimates to estimate the simulation CV instead of assuming
normality allows simulation CV to be used for a a wide array of bootstrap methods.

References

See Section 3.3 and Section 8 of Beaumont and Patak (2012) for details and an example where the
simulation CV is used to determine the number of bootstrap replicates needed for various alternative
bootstrap methods in an empirical illustration.

Beaumont, J.-F. and Z. Patak. (2012), "On the Generalized Bootstrap for Sample Surveys with Spe-
cial Attention to Poisson Sampling." International Statistical Review, 80: 127-148. doi:10.1111/
j.17515823.2011.00166.x.

See Also

Use estimate_boot_sim_cv to estimate the simulation CV for the number of bootstrap replicates
actually used.

Examples

## Not run:
set.seed(2022)

# Create an example bootstrap survey design object ----
library(survey)

https://doi.org/10.1111/j.1751-5823.2011.00166.x
https://doi.org/10.1111/j.1751-5823.2011.00166.x
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data('api', package = 'survey')

boot_design <- svydesign(id=~1,strata=~stype, weights=~pw,
data=apistrat, fpc=~fpc) |>

svrep::as_bootstrap_design(replicates = 5000)

# Calculate estimates of interest and retain estimates from each replicate ----

estimated_means_and_proportions <- svymean(x = ~ api00 + api99 + stype, design = boot_design,
return.replicates = TRUE)

custom_statistic <- withReplicates(design = boot_design,
return.replicates = TRUE,
theta = function(wts, data) {

numerator <- sum(data$api00 * wts)
denominator <- sum(data$api99 * wts)
statistic <- numerator/denominator
return(statistic)

})
# Determine minimum number of bootstrap replicates needed to obtain given simulation CVs ----

estimate_boot_reps_for_target_cv(
svrepstat = estimated_means_and_proportions,
target_cv = c(0.01, 0.05, 0.10)

)

estimate_boot_reps_for_target_cv(
svrepstat = custom_statistic,
target_cv = c(0.01, 0.05, 0.10)

)

## End(Not run)

estimate_boot_sim_cv Estimate the bootstrap simulation error

Description

Estimates the bootstrap simulation error, expressed as a "simulation coefficient of variation" (CV).

Usage

estimate_boot_sim_cv(svrepstat)

Arguments

svrepstat An estimate obtained from a bootstrap replicate survey design object, with a
function such as svymean(..., return.replicates = TRUE) or withReplicates(...,
return.replicates = TRUE).
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Value

A data frame with one row for each statistic. The column STATISTIC gives the name of the statis-
tic. The column SIMULATION_CV gives the estimated simulation CV of the statistic. The column
N_REPLICATES gives the number of bootstrap replicates.

Statistical Details

Unlike other replication methods such as the jackknife or balanced repeated replication, the boot-
strap variance estimator’s precision can always be improved by using a larger number of replicates,
as the use of only a finite number of bootstrap replicates introduces simulation error to the variance
estimation process. Simulation error can be measured as a "simulation coefficient of variation"
(CV), which is the ratio of the standard error of a bootstrap estimator to the expectation of that
bootstrap estimator, where the expectation and standard error are evaluated with respect to the boot-
strapping process given the selected sample.

For a statistic θ̂, the simulation CV of the bootstrap variance estimator vB(θ̂) based on B replicate
estimates θ̂?1 , . . . , θ̂

?
B is defined as follows:

CV?(vB(θ̂)) =

√
var?(vB(θ̂))

E?(vB(θ̂))
=
CV?(E2)√

B

where
E2 = (θ̂? − θ̂)2

CV?(E2) =

√
var?(E2)

E?(E2)

and var? and E? are evaluated with respect to the bootstrapping process, given the selected sample.

The simulation CV, denoted CV?(vB(θ̂)), is estimated for a given number of replicates B by es-
timating CV?(E2) using observed values and dividing this by

√
B. If the bootstrap errors are

assumed to be normally distributed, then CV?(E2) =
√

2 and so CV?(vB(θ̂)) would not need to be
estimated. Using observed replicate estimates to estimate the simulation CV instead of assuming
normality allows simulation CV to be used for a a wide array of bootstrap methods.

References

See Section 3.3 and Section 8 of Beaumont and Patak (2012) for details and an example where the
simulation CV is used to determine the number of bootstrap replicates needed for various alternative
bootstrap methods in an empirical illustration.

Beaumont, J.-F. and Z. Patak. (2012), "On the Generalized Bootstrap for Sample Surveys with Spe-
cial Attention to Poisson Sampling." International Statistical Review, 80: 127-148. doi:10.1111/
j.17515823.2011.00166.x.

See Also

Use estimate_boot_reps_for_target_cv to help choose the number of bootstrap replicates.

https://doi.org/10.1111/j.1751-5823.2011.00166.x
https://doi.org/10.1111/j.1751-5823.2011.00166.x
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Examples

## Not run:
set.seed(2022)

# Create an example bootstrap survey design object ----
library(survey)
data('api', package = 'survey')

boot_design <- svydesign(id=~1,strata=~stype, weights=~pw,
data=apistrat, fpc=~fpc) |>

svrep::as_bootstrap_design(replicates = 5000)

# Calculate estimates of interest and retain estimates from each replicate ----

estimated_means_and_proportions <- svymean(x = ~ api00 + api99 + stype, design = boot_design,
return.replicates = TRUE)

custom_statistic <- withReplicates(design = boot_design,
return.replicates = TRUE,
theta = function(wts, data) {

numerator <- sum(data$api00 * wts)
denominator <- sum(data$api99 * wts)
statistic <- numerator/denominator
return(statistic)

})
# Estimate simulation CV of bootstrap estimates ----

estimate_boot_sim_cv(
svrepstat = estimated_means_and_proportions

)

estimate_boot_sim_cv(
svrepstat = custom_statistic

)

## End(Not run)

libraries Public Libraries Survey (PLS): A Census of U.S. Public Libraries in
FY2020

Description

Data taken from a complete census of public libraries in the United States in FY2020 (April 2020 to
March 2021). The Public Libraries Survey (PLS) is an annual census of public libraries in the U.S.,
including all public libraries identified by state library administrative agencies in the 50 states, the
District of Columbia, and the outlying territories of American Samoa, Guam, the Northern Mariana
Islands, and the U.S. Virgin Islands (Puerto Rico did not participate in FY2020).

The primary dataset, library_census, represents the full microdata from the census. The datasets
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library_multistage_sample and library_stsys_sample are samples drawn from library_census
using different sampling methods.

Usage

data(library_census)

data(library_multistage_sample)

data(library_stsys_sample)

Format

Library Census (library_census):

The dataset includes 9,245 records (one per library) and 23 variables. Each column has a vari-
able label, accessible using the function var_label() from the ’labelled’ package or simply by
calling attr(x, 'label') to a given column. These data include a subset of the variables included
in the public-use data published by PLS, specifically from the Public Library System Data File.
Particularly relevant variables include:

Identifier variables and survey response status:

• FSCSKEY: A unique identifier for libraries.

• LIBNAME: The name of the library

• RESPONSE_STATUS: Response status for the Public Library Survey: indicates whether the
library was a respondent, nonrespondent, or was closed.

Numeric summaries:

• TOTCIR: Total circulation

• VISITS: Total visitors

• REGBOR: Total number of registered users

• TOTSTAFF: Total staff (measured in full-time equivalent staff)

• LIBRARIA: Total librarians (measured in full-time equivalent staff)

• TOTOPEXP: Total operating expenses

• TOTINCM: Total income

• BRANLIB: Number of library branches

• CENTLIB: Number of central library locations

Location:

• LONGITUD: Geocoded longitude (in WGS84 CRS)

• LATITUD: Geocoded latitude (in WGS84 CRS)

• STABR: Two-letter state abbreviation

• CBSA: Five-digit identifer for a core-based statistical area (CBSA)
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• MICROF: Flag for a metropolitan or micropolitan statistical area

Library Multistage Sample (library_multistage_sample):

These data represent a two-stage sample (PSUs and SSUs), where the first stage sample is selected
using unequal probability sampling without replacement (PPSWOR) and the second stage sample
is selected using simple random sampling without replacement (SRSWOR).

Includes the same variables as library_census, but with additional design variables.

• PSU_ID: A unique identifier for primary sampling units

• SSU_ID: A unique identifer for secondary sampling units

• SAMPLING_PROB: Overall inclusion probability

• PSU_SAMPLING_PROB: Inclusion probability for the PSU

• SSU_SAMPLING_PROB: Inclusion probability for the SSU

• PSU_POP_SIZE: The number of PSUs in the population

• SSU_POP_SIZE: The number of population SSUs within the PSU

Library Stratified Systematic Sample (library_stsys_sample):

These data represent a stratified systematic sample.

Includes the same variables as library_census, but with additional design variables.

• SAMPLING_STRATUM: Unique identifier for sampling strata

• STRATUM_POP_SIZE: The population size in the stratum

• SAMPLING_SORT_ORDER: The sort order used before selecting a random systematic sam-
ple

• SAMPLING_PROB: Overall inclusion probability

References

Pelczar, M., Soffronoff, J., Nielsen, E., Li, J., & Mabile, S. (2022). Data File Documentation:
Public Libraries in the United States Fiscal Year 2020. Institute of Museum and Library Services:
Washington, D.C.

lou_pums_microdata ACS PUMS Data for Louisville

Description

Person-level microdata from the American Community Survey (ACS) 2015-2019 public-use micro-
data sample (PUMS) data for Louisville, KY. This microdata sample represents all adults (persons
aged 18 or over) in Louisville, KY.

These data include replicate weights to use for variance estimation.
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Usage

data(lou_pums_microdata)

Format

A data frame with 80 rows and 85 variables

• UNIQUE_ID: Unique identifier for records

• AGE: Age in years (copied from the AGEP variable in the ACS microdata)

• RACE_ETHNICITY: Race and Hispanic/Latino ethnicity derived from RAC1P and HISP
variables of ACS microdata and collapsed to a smaller number of categories.

• SEX: Male or Female

• EDUC_ATTAINMENT: Highest level of education attained (’Less than high school’ or ’High
school or beyond’) derived from SCHL variable in ACS microdata and collapsed to a smaller
number of categories.

• PWGTP: Weights for the full-sample

• PWGTP1-PWGTP80: 80 columns of replicate weights created using the Successive Differ-
ences Replication (SDR) method.

Examples

## Not run:
data(lou_pums_microdata)

# Prepare the data for analysis with the survey package
library(survey)

lou_pums_rep_design <- survey::svrepdesign(
data = lou_pums_microdata,
variables = ~ UNIQUE_ID + AGE + SEX + RACE_ETHNICITY + EDUC_ATTAINMENT,
weights = ~ PWGTP, repweights = "PWGTP\\d{1,2}",
type = "successive-difference",
mse = TRUE

)

# Estimate population proportions
svymean(~ SEX, design = lou_pums_rep_design)

## End(Not run)

lou_vax_survey Louisville Vaccination Survey
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Description

A survey measuring Covid-19 vaccination status and a handful of demographic variables, based on
a simple random sample of 1,000 residents of Louisville, Kentucky with an approximately 50%
response rate.

These data were created using simulation.

Usage

data(lou_vax_survey)

Format

A data frame with 1,000 rows and 6 variables

RESPONSE_STATUS Response status to the survey (’Respondent’ or ’Nonrespondent’)

RACE_ETHNICITY Race and Hispanic/Latino ethnicity derived from RAC1P and HISP vari-
ables of ACS microdata and collapsed to a smaller number of categories.

SEX Male or Female

EDUC_ATTAINMENT Highest level of education attained (’Less than high school’ or ’High
school or beyond’) derived from SCHL variable in ACS microdata and collapsed to a smaller
number of categories.

VAX_STATUS Covid-19 vaccination status (’Vaccinated’ or ’Unvaccinated’)

SAMPLING_WEIGHT Sampling weight: equal for all cases since data come from a simple ran-
dom sample

lou_vax_survey_control_totals

Control totals for the Louisville Vaccination Survey

Description

Control totals to use for raking or post-stratification for the Louisville Vaccination Survey data.
Control totals are population size estimates from the ACS 2015-2019 5-year Public Use Microdata
Sample (PUMS) for specific demographic categories among adults in Jefferson County, KY.

These data were created using simulation.

Usage

data(lou_vax_survey_control_totals)
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Format

A nested list object with two lists, poststratification and raking, each of which contains two
elements: estimates and variance-covariance.

poststratification Control totals for the combination of RACE_ETHNICITY, SEX, and EDUC_ATTAINMENT.

• estimates: A numeric vector of estimated population totals.
• variance-covariance: A variance-covariance matrix for the estimated population totals.

raking Separate control totals for each of RACE_ETHNICITY, SEX, and EDUC_ATTAINMENT.

• estimates: A numeric vector of estimated population totals.
• variance-covariance: A variance-covariance matrix for the estimated population totals.

make_gen_boot_factors Creates replicate factors for the generalized survey bootstrap

Description

Creates replicate factors for the generalized survey bootstrap method. The generalized survey boot-
strap is a method for forming bootstrap replicate weights from a textbook variance estimator, pro-
vided that the variance estimator can be represented as a quadratic form whose matrix is positive
semi-definite (this covers a large class of variance estimators).

Usage

make_gen_boot_factors(Sigma, num_replicates, tau = "auto")

Arguments

Sigma The matrix of the quadratic form used to represent the variance estimator. Must
be positive semi-definite.

num_replicates The number of bootstrap replicates to create.

tau Either "auto", or a single number. This is the rescaling constant used to avoid
negative weights through the transformation w+τ−1

τ , where w is the original
weight and τ is the rescaling constant tau.
If tau="auto", the rescaling factor is determined automatically as follows: if all
of the adjustment factors are nonnegative, then tau is set equal to 1; otherwise,
tau is set to the smallest value needed to rescale the adjustment factors such that
they are all at least 0.01.

Value

A matrix with the same number of rows as Sigma, and the number of columns equal to num_replicates.
The object has an attribute named tau which can be retrieved by calling attr(which = 'tau') on
the object. The value tau is a rescaling factor which was used to avoid negative weights.

In addition, the object has attributes named scale and rscales which can be passed directly to
svrepdesign. Note that the value of scale is τ2/B, while the value of rscales is vector of length
B, with every entry equal to 1.
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Statistical Details

Let v(T̂y) be the textbook variance estimator for an estimated population total T̂y of some variable
y. The base weight for case i in our sample is wi, and we let y̆i denote the weighted value wiyi.
Suppose we can represent our textbook variance estimator as a quadratic form: v(T̂y) = y̆Σy̆T , for
some n × n matrix Σ. The only constraint on Σ is that, for our sample, it must be symmetric and
positive semi-definite.

The bootstrapping process createsB sets of replicate weights, where the b-th set of replicate weights
is a vector of length n denoted a(b), whose k-th value is denoted a(b)k . This yields B replicate
estimates of the population total, T̂ ∗(b)y =

∑
k∈s a

(b)
k y̆k, for b = 1, . . . B, which can be used to

estimate sampling variance.

vB

(
T̂y

)
=

∑B
b=1

(
T̂
∗(b)
y − T̂y

)2
B

This bootstrap variance estimator can be written as a quadratic form:

vB

(
T̂y

)
= y̆′ΣBy̆

where

ΣB =

∑B
b=1

(
a(b) − 1n

) (
a(b) − 1n

)′
B

Note that if the vector of adjustment factors a(b) has expectation 1n and variance-covariance ma-
trix Σ, then we have the bootstrap expectation E∗ (ΣB) = Σ. Since the bootstrap process takes
the sample values y̆ as fixed, the bootstrap expectation of the variance estimator is E∗ (y̆′ΣBy̆) =
y̆′Σy̆. Thus, we can produce a bootstrap variance estimator with the same expectation as the text-
book variance estimator simply by randomly generating a(b) from a distribution with the following
two conditions:

Condition 1: E∗(a) = 1n
Condition 2: E∗ (a− 1n) (a− 1n)

′
= Σ

While there are multiple ways to generate adjustment factors satisfying these conditions, the sim-
plest general method is to simulate from a multivariate normal distribution: a ∼ MVN(1n,Σ).
This is the method used by this function.

Details on Rescaling to Avoid Negative Adjustment Factors

Let A =
[
a(1) · · ·a(b) · · ·a(B)

]
denote the (n×B) matrix of bootstrap adjustment factors. To elim-

inate negative adjustment factors, Beaumont and Patak (2012) propose forming a rescaled matrix
of nonnegative replicate factors AS by rescaling each adjustment factor a(b)k as follows:

a
S,(b)
k =

a
(b)
k + τ − 1

τ

where τ ≥ 1− a(b)k ≥ 1 for all k in {1, . . . , n} and all b in {1, . . . , B}.
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The value of τ can be set based on the realized adjustment factor matrix A or by choosing τ prior to
generating the adjustment factor matrix A so that τ is likely to be large enough to prevent negative
bootstrap weights.

If the adjustment factors are rescaled in this manner, it is important to adjust the scale factor used
in estimating the variance with the bootstrap replicates, which becomes τ2

B instead of 1
B .

Prior to rescaling: vB
(
T̂y

)
=

1

B

B∑
b=1

(
T̂ ∗(b)y − T̂y

)2

After rescaling: vB
(
T̂y

)
=
τ2

B

B∑
b=1

(
T̂S∗(b)y − T̂y

)2
When sharing a dataset that uses rescaled weights from a generalized survey bootstrap, the docu-
mentation for the dataset should instruct the user to use replication scale factor τ2

B rather than 1
B

when estimating sampling variances.

References

The generalized survey bootstrap was first proposed by Bertail and Combris (1997). See Beaumont
and Patak (2012) for a clear overview of the generalized survey bootstrap. The generalized survey
bootstrap represents one strategy for forming replication variance estimators in the general frame-
work proposed by Fay (1984) and Dippo, Fay, and Morganstein (1984).

- Beaumont, Jean-François, and Zdenek Patak. 2012. “On the Generalized Bootstrap for Sample
Surveys with Special Attention to Poisson Sampling: Generalized Bootstrap for Sample Surveys.”
International Statistical Review 80 (1): 127–48. https://doi.org/10.1111/j.1751-5823.2011.00166.x.

- Bertail, and Combris. 1997. “Bootstrap Généralisé d’un Sondage.” Annales d’Économie Et de
Statistique, no. 46: 49. https://doi.org/10.2307/20076068.

- Dippo, Cathryn, Robert Fay, and David Morganstein. 1984. “Computing Variances from Complex
Samples with Replicate Weights.” In, 489–94. Alexandria, VA: American Statistical Association.
http://www.asasrms.org/Proceedings/papers/1984_094.pdf.

- Fay, Robert. 1984. “Some Properties of Estimates of Variance Based on Replication Methods.” In,
495–500. Alexandria, VA: American Statistical Association. http://www.asasrms.org/Proceedings/papers/1984_095.pdf.

See Also

The function make_quad_form_matrix can be used to represent several common variance estima-
tors as a quadratic form’s matrix, which can then be used as an input to make_gen_boot_factors().

Examples

## Not run:
library(survey)

# Load an example dataset that uses unequal probability sampling ----
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data('election', package = 'survey')

# Create matrix to represent the Horvitz-Thompson estimator as a quadratic form ----
n <- nrow(election_pps)
pi <- election_jointprob
horvitz_thompson_matrix <- matrix(nrow = n, ncol = n)
for (i in seq_len(n)) {
for (j in seq_len(n)) {

horvitz_thompson_matrix[i,j] <- 1 - (pi[i,i] * pi[j,j])/pi[i,j]
}

}

## Equivalently:

horvitz_thompson_matrix <- make_quad_form_matrix(
variance_estimator = "Horvitz-Thompson",
joint_probs = election_jointprob

)

# Make generalized bootstrap adjustment factors ----

bootstrap_adjustment_factors <- make_gen_boot_factors(
Sigma = horvitz_thompson_matrix,
num_replicates = 80,
tau = 'auto'

)

# Determine replication scale factor for variance estimation ----
tau <- attr(bootstrap_adjustment_factors, 'tau')
B <- ncol(bootstrap_adjustment_factors)
replication_scaling_constant <- tau^2 / B

# Create a replicate design object ----
election_pps_bootstrap_design <- svrepdesign(

data = election_pps,
weights = 1 / diag(election_jointprob),
repweights = bootstrap_adjustment_factors,
combined.weights = FALSE,
type = "other",
scale = attr(bootstrap_adjustment_factors, 'scale'),
rscales = attr(bootstrap_adjustment_factors, 'rscales')

)

# Compare estimates to Horvitz-Thompson estimator ----

election_pps_ht_design <- svydesign(
id = ~1,
fpc = ~p,
data = election_pps,
pps = ppsmat(election_jointprob),
variance = "HT"

)
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svytotal(x = ~ Bush + Kerry,
design = election_pps_bootstrap_design)

svytotal(x = ~ Bush + Kerry,
design = election_pps_ht_design)

## End(Not run)

make_quad_form_matrix Represent a variance estimator as a quadratic form

Description

Common variance estimators for estimated population totals can be represented as a quadratic form.
Given a choice of variance estimator and information about the sample design, this function con-
structs the matrix of the quadratic form.

In notation, let v(Ŷ ) = y̆′Σy̆, where y̆ is the vector of weighted values, yi/πi, i = 1, . . . , n.
This function constructs the n× n matrix of the quadratic form, Σ.

Usage

make_quad_form_matrix(
variance_estimator = "Yates-Grundy",
joint_probs = NULL,
cluster_ids = NULL,
strata_ids = NULL,
strata_pop_sizes = NULL,
sort_order = NULL

)

Arguments

variance_estimator

The name of the variance estimator whose quadratic form matrix should be cre-
ated. See the section "Variance Estimators" below. Options include:

• "Yates-Grundy": The Yates-Grundy variance estimator based on first-
order and second-order inclusion probabilities. If this is used, the argument
joint_probs must also be used.

• "Horvitz-Thompson": The Horvitz-Thompson variance estimator based
on first-order and second-order inclusion probabilities. If this is used, the
argument joint_probs must also be used.

• "Stratified Multistage SRS": The usual stratified multistage variance esti-
mator based on estimating the variance of cluster totals within strata at each
stage. If this option is used, then it is necessary to also use the arguments
strata_ids, cluster_ids, strata_samp_sizes, and strata_pop_sizes.
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• "Ultimate Cluster": The usual variance estimator based on estimating the
variance of first-stage cluster totals within first-stage strata. If this op-
tion is used, then it is necessary to also use the arguments strata_ids,
cluster_ids, strata_samp_sizes. Optionally, to use finite population
correction factors, one can also use the argument strata_pop_sizes.

• "SD1": The non-circular successive-differences variance estimator described
by Ash (2014), sometimes used for variance estimation for systematic sam-
pling.

• "SD2": The circular successive-differences variance estimator described
by Ash (2014). This estimator is the basis of the "successive-differences
replication" estimator commonly used for variance estimation for system-
atic sampling.

joint_probs Only used if variance_estimator = "Horvitz-Thompson" or variance_estimator
= "Yates-Grundy". This should be a matrix of joint inclusion probabilities. El-
ement [i,i] of the matrix is the first-order inclusion probability of unit i, while
element [i,j] is the joint inclusion probability of units i and j.

cluster_ids Required unless variance_estimator equals "Horvitz-Thompson" or "Yates-Grundy".
This should be a matrix or data frame of cluster IDs. If there are multiple stages
of sampling, then cluster_ids can have multiple columns, with one column
for each level of sampling to be accounted for by the variance estimator.

strata_ids Required if variance_estimator equals "Stratified Multistage SRS" or
"Ultimate Cluster". This should be a matrix or data frame of strata IDs.
If there are multiple stages of sampling, then strata_ids can have multiple
columns, with one column for each level of sampling to be accounted for by the
variance estimator.

strata_pop_sizes

Required if variance_estimator equals "Stratified Multistage SRS", but
can optionally be used if variance_estimator equals "Ultimate Cluster",
"SD1", or "SD2". If there are multiple stages of sampling, then strata_pop_sizes
can have multiple columns, with one column for each level of sampling to be
accounted for by the variance estimator.

sort_order Required if variance_estimator equals "SD1" or "SD2". This should be a
vector that orders the rows of data into the order used for sampling.

Value

The matrix of the quadratic form representing the variance estimator.

Arguments required for each variance estimator

Below are the arguments that are required or optional for each variance estimator.

variance_estimator joint_probs cluster_ids strata_ids strata_pop_sizes sort_order
Yates-Grundy Required
Horvitz-Thompson Required
Stratified Multistage SRS Required Required Required
Ultimate Cluster Required Required Optional
SD1 Required Optional Optional Required
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SD2 Required Optional Optional Required

Variance Estimators

The Horvitz-Thompson variance estimator:

v(Ŷ ) =
∑
i∈s

∑
j∈s

(1− πiπj
πij

)
yi
πi

yj
πj

The Yates-Grundy variance estimator:

v(Ŷ ) = −1

2

∑
i∈s

∑
j∈s

(1− πiπj
πij

)(
yi
πi
− yj
πj

)2

The Stratified Multistage SRS variance estimator is the recursive variance estimator proposed by
Bellhouse (1985) and used in the ’survey’ package’s function svyrecvar. The estimator can be used
for any number of sampling stages. For illustration, we describe its use for two sampling stages.

v(Ŷ ) = V̂1 + V̂2

where

V̂1 =

H∑
h=1

(1− nh
Nh

)
nh

nh − 1

nh∑
i=1

(yhi. − ȳhi.)2

and

V̂2 =

H∑
h=1

nh
Nh

nh∑
i=1

vhi(yhi.)

where nh is the number of sampled clusters in stratum h, Nh is the number of population clusters
in stratum h, yhi. is the weighted cluster total in cluster i of stratum h, ȳhi. is the mean weighted
cluster total of stratum h, (ȳhi. = 1

nh

∑nh

i=1 yhi.), and vhi(yhi.) is the estimated sampling variance
of yhi..

The Ultimate Cluster variance estimator is simply the stratified multistage SRS variance estimator,
but ignoring variances from later stages of sampling.

v(Ŷ ) = V̂1

This is the variance estimator used in the ’survey’ package when the user specifies option(survey.ultimate.cluster
= TRUE) or uses svyrecvar(..., one.stage = TRUE). When the first-stage sampling fractions are
small, analysts often omit the finite population corrections (1− nh

Nh
) when using the ultimate cluster

estimator.

The SD1 and SD2 variance estimators are "successive difference" estimators sometimes used for
systematic sampling designs. Ash (2014) describes each estimator as follows:

v̂SD1(Ŷ ) =
(

1− n

N

) n

2(n− 1)

n∑
k=2

(y̆k − y̆k−1)
2



make_quad_form_matrix 35

v̂SD2(Ŷ ) =
(

1− n

N

) 1

2

[
n∑
k=2

(y̆k − y̆k−1)
2

+ (y̆n − y̆1)
2

]
where y̆k = yk/πk is the weighted value of unit k with selection probability πk. The SD1 estima-
tor is recommended by Wolter (1984). The SD2 estimator is the basis of the successive difference
replication estimator commonly used for systematic sampling designs. See Ash (2014) for details.

For multistage samples, SD1 and SD2 are applied to the clusters at each stage, separately by stra-
tum. For later stages of sampling, the variance estimate from a stratum is multiplied by the product
of sampling fractions from earlier stages of sampling. For example, at a third stage of sampling,
the variance estimate from a third-stage stratum is multiplied by n1

N1

n2

N2
, which is the product of

sampling fractions from the first-stage stratum and second-stage stratum.

References

Ash, S. (2014). "Using successive difference replication for estimating variances." Survey Method-
ology, Statistics Canada, 40(1), 47–59.

Bellhouse, D.R. (1985). "Computing Methods for Variance Estimation in Complex Surveys." Jour-
nal of Official Statistics, Vol.1, No.3.

Examples

## Not run:
# Example 1: The Horvitz-Thompson Estimator

library(survey)
data("election", package = "survey")

ht_quad_form_matrix <- make_quad_form_matrix(variance_estimator = "Horvitz-Thompson",
joint_probs = election_jointprob)

##_ Produce variance estimate
wtd_y <- as.matrix(election_pps$wt * election_pps$Bush)
t(wtd_y) %*% ht_quad_form_matrix %*% wtd_y

##_ Compare against result from 'survey' package
svytotal(x = ~ Bush,

design = svydesign(data=election_pps,
variance = "HT",
pps = ppsmat(election_jointprob),
ids = ~ 1, fpc = ~ p)) |> vcov()

# Example 2: Stratified multistage Sample ----

data("mu284", package = 'survey')
multistage_srswor_design <- svydesign(data = mu284,

ids = ~ id1 + id2,
fpc = ~ n1 + n2)

multistage_srs_quad_form <- make_quad_form_matrix(
variance_estimator = "Stratified Multistage SRS",
cluster_ids = mu284[,c('id1', 'id2')],
strata_ids = matrix(1, nrow = nrow(mu284), ncol = 2),
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strata_pop_sizes = mu284[,c('n1', 'n2')]
)

wtd_y <- as.matrix(weights(multistage_srswor_design) * mu284$y1)
t(wtd_y) %*% multistage_srs_quad_form %*% wtd_y

svytotal(x = ~ y1, design = multistage_srswor_design) |> vcov()

# Example 3: Successive-differences estimator ----

data('library_stsys_sample', package = 'svrep')

sd1_quad_form <- make_quad_form_matrix(
variance_estimator = 'SD1',
cluster_ids = library_stsys_sample[,'FSCSKEY',drop=FALSE],
strata_ids = library_stsys_sample[,'SAMPLING_STRATUM',drop=FALSE],
strata_pop_sizes = library_stsys_sample[,'STRATUM_POP_SIZE',drop=FALSE],
sort_order = library_stsys_sample[['SAMPLING_SORT_ORDER']]

)

wtd_y <- as.matrix(library_stsys_sample[['TOTCIR']] /
library_stsys_sample$SAMPLING_PROB)

wtd_y[is.na(wtd_y)] <- 0

t(wtd_y) %*% sd1_quad_form %*% wtd_y

## End(Not run)

make_rwyb_bootstrap_weights

Create bootstrap replicate weights for a general survey design, using
the Rao-Wu-Yue-Beaumont bootstrap method

Description

Creates bootstrap replicate weights for a multistage stratified sample design using the method of
Beaumont and Émond (2022), which is a generalization of the Rao-Wu-Yue bootstrap.

The design may have different sampling methods used at different stages. Each stage of sampling
may potentially use unequal probabilities (with or without replacement) and may potentially use
Poisson sampling.

Usage

make_rwyb_bootstrap_weights(
num_replicates = 100,
samp_unit_ids,
strata_ids,
samp_unit_sel_probs,
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samp_method_by_stage = rep("PPSWOR", times = ncol(samp_unit_ids)),
allow_final_stage_singletons = TRUE,
output = "weights"

)

Arguments

num_replicates Positive integer giving the number of bootstrap replicates to create
samp_unit_ids Matrix or data frame of sampling unit IDs for each stage of sampling
strata_ids Matrix or data frame of strata IDs for each sampling unit at each stage of sam-

pling
samp_unit_sel_probs

Matrix or data frame of selection probabilities for each sampling unit at each
stage of sampling.

samp_method_by_stage

A vector with length equal to the number of stages of sampling, correspond-
ing to the number of columns in samp_unit_ids. This describes the method of
sampling used at each stage. Each element should be one of the following:

• "SRSWOR" - Simple random sampling, without replacement
• "SRSWR" - Simple random sampling, with replacement
• "PPSWOR" - Unequal probabilities of selection, without replacement
• "PPSWR" - Unequal probabilities of selection, with replacement
• "Poisson" - Poisson sampling: each sampling unit is selected into the sam-

ple at most once, with potentially different probabilities of inclusion for
each sampling unit.

allow_final_stage_singletons

Logical value indicating whether to allow non-certainty singleton strata at the
final sampling stage (rather than throw an error message).
If TRUE, the sampling unit in a non-certainty singleton stratum will have its final-
stage adjustment factor calculated as if it was selected with certainty at the final
stage (i.e., its adjustment factor will be 1), and then its final bootstrap weight will
be calculated by combining this adjustment factor with its final-stage selection
probability.

output Either "weights" (the default) or "factors". Specifying output = "factors"
returns a matrix of replicate adjustment factors which can later be multiplied
by the full-sample weights to produce a matrix of replicate weights. Speci-
fying output = "weights" returns the matrix of replicate weights, where the
full-sample weights are inferred using samp_unit_sel_probs.

Details

Beaumont and Émond (2022) describe a general algorithm for forming bootstrap replicate weights
for multistage stratified samples, based on the method of Rao-Wu-Yue, with extensions to sampling
without replacement and use of unequal probabilities of selection (i.e., sampling with probability
proportional to size) as well as Poisson sampling. These methods are guaranteed to produce non-
negative replicate weights and provide design-unbiased and design-consistent variance estimates
for totals, for designs where sampling uses one or more of the following methods:
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• "SRSWOR" - Simple random sampling, without replacement

• "SRSWR" - Simple random sampling, with replacement

• "PPSWR" - Unequal probabilities of selection, with replacement

• "Poisson" - Poisson sampling: each sampling unit is selected into the sample at most once,
with potentially different probabilities of inclusion for each sampling unit.

For designs where at least one stage’s strata have sampling without replacement with unequal prob-
abilities of selection ("PPSWOR"), the bootstrap method of Beaumont and Émond (2022) is guar-
anteed to produce nonnegative weights, but is not design-unbiased, since the method only approxi-
mates the joint selection probabilities which would be needed for unbiased estimation.

Unless any stages use simple random sampling without replacement, the resulting bootstrap repli-
cate weights are guaranteed to all be strictly positive, which may be useful for calibration or analyses
of domains with small sample sizes. If any stages use simple random sampling without replacement,
it is possible for some replicate weights to be zero.

If there is survey nonresponse, it may be useful to represent the response/nonresponse as an ad-
ditional stage of sampling, where sampling is conducted with Poisson sampling where each unit’s
"selection probability" at that stage is its response propensity (which typically has to be estimated).

Value

A matrix of with the same number of rows as samp_unit_ids and the number of columns equal to
the value of the argument num_replicates. Specifying output = "factors" returns a matrix of
replicate adjustment factors which can later be multiplied by the full-sample weights to produce a
matrix of replicate weights. Specifying output = "weights" returns the matrix of replicate weights,
where the full-sample weights are inferred using samp_unit_sel_probs.

References

Beaumont, J.-F.; Émond, N. (2022). "A Bootstrap Variance Estimation Method for Multistage
Sampling and Two-Phase Sampling When Poisson Sampling Is Used at the Second Phase." Stats,
5: 339–357. https://doi.org/10.3390/stats5020019

Rao, J.N.K.; Wu, C.F.J.; Yue, K. (1992). "Some recent work on resampling methods for complex
surveys." Surv. Methodol., 18: 209–217.

See Also

If the survey design can be accurately represented using svydesign, then it is easier to simply use
as_bootstrap_design with argument type = "Rao-Wu-Yue-Beaumont".

Use estimate_boot_reps_for_target_cv to help choose the number of bootstrap replicates.

Examples

## Not run:
library(survey)

# Example 1: A multistage sample with two stages of SRSWOR
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## Load an example dataset from a multistage sample, with two stages of SRSWOR
data("mu284", package = 'survey')
multistage_srswor_design <- svydesign(data = mu284,

ids = ~ id1 + id2,
fpc = ~ n1 + n2)

## Create bootstrap replicate weights
set.seed(2022)
bootstrap_replicate_weights <- make_rwyb_bootstrap_weights(

num_replicates = 5000,
samp_unit_ids = multistage_srswor_design$cluster,
strata_ids = multistage_srswor_design$strata,
samp_unit_sel_probs = multistage_srswor_design$fpc$sampsize /

multistage_srswor_design$fpc$popsize,
samp_method_by_stage = c("SRSWOR", "SRSWOR")

)

## Create a replicate design object with the survey package
bootstrap_rep_design <- svrepdesign(

data = multistage_srswor_design$variables,
repweights = bootstrap_replicate_weights,
weights = weights(multistage_srswor_design, type = "sampling"),
type = "bootstrap"

)

## Compare std. error estimates from bootstrap versus linearization
data.frame(

'Statistic' = c('total', 'mean', 'median'),
'SE (bootstrap)' = c(SE(svytotal(x = ~ y1, design = bootstrap_rep_design)),

SE(svymean(x = ~ y1, design = bootstrap_rep_design)),
SE(svyquantile(x = ~ y1, quantile = 0.5,

design = bootstrap_rep_design))),
'SE (linearization)' = c(SE(svytotal(x = ~ y1, design = multistage_srswor_design)),

SE(svymean(x = ~ y1, design = multistage_srswor_design)),
SE(svyquantile(x = ~ y1, quantile = 0.5,

design = multistage_srswor_design))),
check.names = FALSE

)

# Example 2: A single-stage sample selected with unequal probabilities, without replacement

## Load an example dataset of U.S. counties states with 2004 Presidential vote counts
data("election", package = 'survey')
pps_wor_design <- svydesign(data = election_pps,

pps = "overton",
fpc = ~ p, # Inclusion probabilities
ids = ~ 1)

## Create bootstrap replicate weights
set.seed(2022)
bootstrap_replicate_weights <- make_rwyb_bootstrap_weights(

num_replicates = 5000,
samp_unit_ids = pps_wor_design$cluster,
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strata_ids = pps_wor_design$strata,
samp_unit_sel_probs = pps_wor_design$prob,
samp_method_by_stage = c("PPSWOR")

)

## Create a replicate design object with the survey package
bootstrap_rep_design <- svrepdesign(

data = pps_wor_design$variables,
repweights = bootstrap_replicate_weights,
weights = weights(pps_wor_design, type = "sampling"),
type = "bootstrap"

)

## Compare std. error estimates from bootstrap versus linearization
data.frame(

'Statistic' = c('total', 'mean'),
'SE (bootstrap)' = c(SE(svytotal(x = ~ Bush, design = bootstrap_rep_design)),

SE(svymean(x = ~ I(Bush/votes),
design = bootstrap_rep_design))),

'SE (Overton\'s PPS approximation)' = c(SE(svytotal(x = ~ Bush,
design = pps_wor_design)),

SE(svymean(x = ~ I(Bush/votes),
design = pps_wor_design))),

check.names = FALSE
)

## End(Not run)

redistribute_weights Redistribute weight from one group to another

Description

Redistributes weight from one group to another: for example, from non-respondents to respondents.
Redistribution is conducted for the full-sample weights as well as each set of replicate weights.
This can be done separately for each combination of a set of grouping variables, for example to
implement a nonresponse weighting class adjustment.

Usage

redistribute_weights(design, reduce_if, increase_if, by)

Arguments

design A survey design object, created with either the survey or srvyr packages.

reduce_if An expression indicating which cases should have their weights set to zero.
Must evaluate to a logical vector with only values of TRUE or FALSE.

increase_if An expression indicating which cases should have their weights increased. Must
evaluate to a logical vector with only values of TRUE or FALSE.
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by (Optional) A character vector with the names of variables used to group the
redistribution of weights. For example, if the data include variables named
"stratum" and "wt_class", one could specify by = c("stratum", "wt_class").

Value

The survey design object, but with updated full-sample weights and updated replicate weights. The
resulting survey design object always has its value of combined.weights set to TRUE.

References

See Chapter 2 of Heeringa, West, and Berglund (2017) or Chapter 13 of Valliant, Dever, and Kreuter
(2018) for an overview of nonresponse adjustment methods based on redistributing weights.

- Heeringa, S., West, B., Berglund, P. (2017). Applied Survey Data Analysis, 2nd edition. Boca
Raton, FL: CRC Press. "Applied Survey Data Analysis, 2nd edition." Boca Raton, FL: CRC Press.

- Valliant, R., Dever, J., Kreuter, F. (2018). "Practical Tools for Designing and Weighting Survey
Samples, 2nd edition." New York: Springer.

Examples

# Load example data
suppressPackageStartupMessages(library(survey))
data(api)

dclus1 <- svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
dclus1$variables$response_status <- sample(x = c("Respondent", "Nonrespondent",

"Ineligible", "Unknown eligibility"),
size = nrow(dclus1),
replace = TRUE)

rep_design <- as.svrepdesign(dclus1)

# Adjust weights for cases with unknown eligibility
ue_adjusted_design <- redistribute_weights(

design = rep_design,
reduce_if = response_status %in% c("Unknown eligibility"),
increase_if = !response_status %in% c("Unknown eligibility"),
by = c("stype")

)

# Adjust weights for nonresponse
nr_adjusted_design <- redistribute_weights(

design = ue_adjusted_design,
reduce_if = response_status %in% c("Nonrespondent"),
increase_if = response_status == "Respondent",
by = c("stype")

)
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stack_replicate_designs

Stack replicate designs, combining data and weights into a single ob-
ject

Description

Stack replicate designs: combine rows of data, rows of replicate weights, and the respective full-
sample weights. This can be useful when comparing estimates before and after a set of adjustments
made to the weights. Another more delicate application is when combining sets of replicate weights
from multiple years of data for a survey, although this must be done carefully based on guidance
from a data provider.

Usage

stack_replicate_designs(..., .id = "Design_Name")

Arguments

... Replicate-weights survey design objects to combine. These can be supplied in
one of two ways.

• Option 1 - A series of design objects, for example 'adjusted' = adjusted_design,
'orig' = orig_design.

• Option 2 - A list object containing design objects, for example list('nr'
= nr_adjusted_design, 'ue' = ue_adjusted_design).

All objects must have the same specifications for type, rho, mse, scales, and
rscales.

.id A single character value, which becomes the name of a new column of identifiers
created in the output data to link each row to the design from which it was taken.
The labels used for the identifiers are taken from named arguments.

Value

A replicate-weights survey design object, with class svyrep.design and svyrep.stacked. The
resulting survey design object always has its value of combined.weights set to TRUE.

Examples

# Load example data, creating a replicate design object
suppressPackageStartupMessages(library(survey))
data(api)

dclus1 <- svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
dclus1$variables$response_status <- sample(x = c("Respondent", "Nonrespondent",

"Ineligible", "Unknown eligibility"),
size = nrow(dclus1),
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replace = TRUE)
orig_rep_design <- as.svrepdesign(dclus1)

# Adjust weights for cases with unknown eligibility
ue_adjusted_design <- redistribute_weights(

design = orig_rep_design,
reduce_if = response_status %in% c("Unknown eligibility"),
increase_if = !response_status %in% c("Unknown eligibility"),
by = c("stype")

)

# Adjust weights for nonresponse
nr_adjusted_design <- redistribute_weights(

design = ue_adjusted_design,
reduce_if = response_status %in% c("Nonrespondent"),
increase_if = response_status == "Respondent",
by = c("stype")

)

# Stack the three designs, using any of the following syntax options
stacked_design <- stack_replicate_designs(orig_rep_design, ue_adjusted_design, nr_adjusted_design,

.id = "which_design")
stacked_design <- stack_replicate_designs('original' = orig_rep_design,

'unknown eligibility adjusted' = ue_adjusted_design,
'nonresponse adjusted' = nr_adjusted_design,
.id = "which_design")

list_of_designs <- list('original' = orig_rep_design,
'unknown eligibility adjusted' = ue_adjusted_design,
'nonresponse adjusted' = nr_adjusted_design)

stacked_design <- stack_replicate_designs(list_of_designs, .id = "which_design")

summarize_rep_weights Summarize the replicate weights

Description

Summarize the replicate weights of a design

Usage

summarize_rep_weights(rep_design, type = "both", by)

Arguments

rep_design A replicate design object, created with either the survey or srvyr packages.

type Default is "both". Use type = "overall", for an overall summary of the repli-
cate weights. Use type = "specific" for a summary of each column of repli-
cate weights, with each column of replicate weights summarized in a given row
of the summary.



44 summarize_rep_weights

Use type = "both" for a list containing both summaries, with the list containing
the names "overall" and "both".

by (Optional) A character vector with the names of variables used to group the
summaries.

Value

If type = "both" (the default), the result is a list of data frames with names "overall" and "specific".
If type = "overall", the result is a data frame providing an overall summary of the replicate
weights.

The contents of the "overall" summary are the following:

• "nrows": Number of rows for the weights

• "ncols": Number of columns of replicate weights

• "degf_svy_pkg": The degrees of freedom according to the survey package in R

• "rank": The matrix rank as determined by a QR decomposition

• "avg_wgt_sum": The average column sum

• "sd_wgt_sums": The standard deviation of the column sums

• "min_rep_wgt": The minimum value of any replicate weight

• "max_rep_wgt": The maximum value of any replicate weight

If type = "specific", the result is a data frame providing a summary of each column of replicate
weights, with each column of replicate weights described in a given row of the data frame. The
contents of the "specific" summary are the following:

• "Rep_Column": The name of a given column of replicate weights. If columns are unnamed,
the column number is used instead

• "N": The number of entries

• "N_NONZERO": The number of nonzero entries

• "SUM": The sum of the weights

• "MEAN": The average of the weights

• "CV": The coefficient of variation of the weights (standard deviation divided by mean)

• "MIN": The minimum weight

• "MAX": The maximum weight

Examples

# Load example data
suppressPackageStartupMessages(library(survey))
data(api)

dclus1 <- svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
dclus1$variables$response_status <- sample(x = c("Respondent", "Nonrespondent",
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"Ineligible", "Unknown eligibility"),
size = nrow(dclus1),
replace = TRUE)

rep_design <- as.svrepdesign(dclus1)

# Adjust weights for cases with unknown eligibility
ue_adjusted_design <- redistribute_weights(

design = rep_design,
reduce_if = response_status %in% c("Unknown eligibility"),
increase_if = !response_status %in% c("Unknown eligibility"),
by = c("stype")

)

# Summarize replicate weights

summarize_rep_weights(rep_design, type = "both")

# Summarize replicate weights by grouping variables

summarize_rep_weights(ue_adjusted_design, type = 'overall',
by = c("response_status"))

summarize_rep_weights(ue_adjusted_design, type = 'overall',
by = c("stype", "response_status"))

# Compare replicate weights

rep_wt_summaries <- lapply(list('original' = rep_design,
'adjusted' = ue_adjusted_design),

summarize_rep_weights,
type = "overall")

print(rep_wt_summaries)

svyby_repwts Compare survey statistics calculated separately from different sets of
replicate weights

Description

A modified version of the svyby() function from the survey package. Whereas svyby() calcu-
lates statistics separately for each subset formed by a specified grouping variable, svyby_repwts()
calculates statistics separately for each replicate design, in addition to any additional user-specified
grouping variables.

Usage

svyby_repwts(
rep_designs,
formula,
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by,
FUN,
...,
deff = FALSE,
keep.var = TRUE,
keep.names = TRUE,
verbose = FALSE,
vartype = c("se", "ci", "ci", "cv", "cvpct", "var"),
drop.empty.groups = TRUE,
return.replicates = FALSE,
na.rm.by = FALSE,
na.rm.all = FALSE,
multicore = getOption("survey.multicore")

)

Arguments

rep_designs The replicate-weights survey designs to be compared. Supplied either as:
• A named list of replicate-weights survey design objects, for example list('nr'
= nr_adjusted_design, 'ue' = ue_adjusted_design).

• A ’stacked’ replicate-weights survey design object created by stack_replicate_designs().
The designs must all have the same number of columns of replicate weights, of
the same type (bootstrap, JKn, etc.)

formula A formula specifying the variables to pass to FUN

by A formula specifying factors that define subsets
FUN A function taking a formula and survey design object as its first two arguments.

Usually a function from the survey package, such as svytotal or svymean.
... Other arguments to FUN

deff A value of TRUE or FALSE, indicating whether design effects should be estimated
if possible.

keep.var A value of TRUE or FALSE. If FUN returns a svystat object, indicates whether to
extract standard errors from it.

keep.names Define row names based on the subsets
verbose If TRUE, print a label for each subset as it is processed.
vartype Report variability as one or more of standard error, confidence interval, coeffi-

cient of variation, percent coefficient of variation, or variance
drop.empty.groups

If FALSE, report NA for empty groups, if TRUE drop them from the output
return.replicates

If TRUE, return all the replicates as the "replicates" attribute of the result. This
can be useful if you want to produce custom summaries of the estimates from
each replicate.

na.rm.by If true, omit groups defined by NA values of the by variables
na.rm.all If true, check for groups with no non-missing observations for variables defined

by formula and treat these groups as empty
multicore Use multicore package to distribute subsets over multiple processors?
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Value

An object of class "svyby": a data frame showing the grouping factors and results of FUN for each
combination of the grouping factors. The first grouping factor always consists of indicators for
which replicate design was used for an estimate.

Examples

## Not run:
suppressPackageStartupMessages(library(survey))
data(api)

dclus1 <- svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
dclus1$variables$response_status <- sample(x = c("Respondent", "Nonrespondent",

"Ineligible", "Unknown eligibility"),
size = nrow(dclus1),
replace = TRUE)

orig_rep_design <- as.svrepdesign(dclus1)

# Adjust weights for cases with unknown eligibility
ue_adjusted_design <- redistribute_weights(

design = orig_rep_design,
reduce_if = response_status %in% c("Unknown eligibility"),
increase_if = !response_status %in% c("Unknown eligibility"),
by = c("stype")

)

# Adjust weights for nonresponse
nr_adjusted_design <- redistribute_weights(

design = ue_adjusted_design,
reduce_if = response_status %in% c("Nonrespondent"),
increase_if = response_status == "Respondent",
by = c("stype")

)

# Compare estimates from the three sets of replicate weights

list_of_designs <- list('original' = orig_rep_design,
'unknown eligibility adjusted' = ue_adjusted_design,
'nonresponse adjusted' = nr_adjusted_design)

##_ First compare overall means for two variables
means_by_design <- svyby_repwts(formula = ~ api00 + api99,

FUN = svymean,
rep_design = list_of_designs)

print(means_by_design)

##_ Next compare domain means for two variables
domain_means_by_design <- svyby_repwts(formula = ~ api00 + api99,

by = ~ stype,
FUN = svymean,
rep_design = list_of_designs)
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print(domain_means_by_design)

# Calculate confidence interval for difference between estimates

ests_by_design <- svyby_repwts(rep_designs = list('NR-adjusted' = nr_adjusted_design,
'Original' = orig_rep_design),

FUN = svymean, formula = ~ api00 + api99)

differences_in_estimates <- svycontrast(stat = ests_by_design, contrasts = list(
'Mean of api00: NR-adjusted vs. Original' = c(1,-1,0,0),
'Mean of api99: NR-adjusted vs. Original' = c(0,0,1,-1)

))

print(differences_in_estimates)

confint(differences_in_estimates, level = 0.95)

## End(Not run)
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