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tablesgg-package Presentation-Quality Tables, Displayed Using ggplot2

Description

Presentation-quality tables are displayed as plots on an R graphics device. Although there are other
packages that format tables for display, this package is unique in combining two features: (a) It
is aware of the logical structure of the table being presented, and makes use of that for automatic
layout and styling of the table. This avoids the need for most manual adjustments to achieve an
attractive result. (b) It displays tables using ggplot2 graphics. Therefore a table can be presented
anywhere a graph could be, with no more effort. External software such as LaTeX or HTML or
their viewers is not required.

Methods are included to display matrices; data frames; tables created by R’s ftable, table, and
xtabs functions; and tables created by the tables and xtable packages. Methods can be added to
display other table-like objects.

Other package features:

• A full set of tools is provided to control the appearance of tables, including titles, footnotes
and reference marks, horizontal and vertical rules, and spacing of rows and columns. Many
properties can be set automatically by specifying styles. Default styles are included, and the
user can define custom styles.

• There are tools for low-level manipulation of the appearance of individual table elements if
desired.

• All sizes and dimensions in displayed tables are specified in physical units (points for font size,
millimeters for everything else). Therefore a plotted table has a well-defined physical size,
independent of the size of the graphics device on which it is displayed. The user can easily
increase or decrease the displayed size by a scale factor, maintaining the relative proportions
of table elements.

• Since the plotted tables are ordinary ggplot objects, the facilities of ggplot2 and its various
extension packages are available to modify or manipulate the table. For example, the table can
be inserted as an image within another plot.

A vignette is included that illustrates usage and options available in the package.

acol Column Numbers Within the Augmented Row-Column Grid for a Table

Description

Return the column numbers associated with a specified table part or element, or with a set of column
header values, within the augmented row-column grid of a table.

Usage

acol(x, id=NULL, hpath=NULL)



4 acol

Arguments

x A textTable or a plotted table (pltdTable) object.

id Character scalar containing the ID of a single table part, block, entry, or hvrule.
(If x is a textTable, only the ID of a table part is allowed.)

hpath Character vector with length between 0 and the number of layers in the column
header. The i-th element should be one of the values in the i-th header row, or
NA. See DETAILS. Only one of id and hpath should be specified.

Details

See the documentation for adim for more information about the augmented row-column grid of a
table.

Only one of arguments id and hpath should be specified. id is searched for first among table parts
(the only thing available for a textTable), then blocks, entries, and hvrules, in that order. The
search stops at the first match. It is an error if id is not found in any of these.

hpath is short for "header path". It is used to obtain column numbers associated with specified
combinations of values of the column header variables. Suppose there are L layers of column
headers. If the length of hpath is less than L, NA values are added at the end to reach that length.
The function returns the intersection of the column numbers for which the i-th outermost of the
header layers equals the i-th element of hpath. An NA in hpath is taken to match all values in the
correponding layer of column headers. Thus, if L == 4 and hpath=c("a", NA, "c"), the function
will return the column numbers for which the outermost column header has a value of "a" _and_ the
third outermost has a value of "c". If no column has the combination of values specified by hpath
then the returned vector will have length 0.

Since hpath refers to values of column header variables, it cannot be used to get column numbers
associated with table annotation, or with the row header. (Use id instead.)

Value

A numeric vector containing column numbers within the table’s augmented row-column grid. The
column numbers are those partially or completely occupied by the cells associated with id or hpath.
They will be increasing but not necessarily consecutive.

The returned vector may have length 0 if id refers to a table part or block that spans no columns, or
if hpath matches no set of column header values.

Note that for a vertical hvrule (vrule), the "column number" is actually a half-integer, bracketed by
the table column numbers between which the vrule runs. For example, if the vrule runs between
table columns 3 and 4, the returned value will be c(3.5).

See Also

adim to get the dimensions of the augmented row-column grid; arow for the corresponding opera-
tion on rows; ids

Examples

ttbl <- textTable(iris2_tab, title=c("Title 1", "2nd title"), foot="Foot")
plt <- plot(ttbl)
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acol(plt, id="title") # block "title" spans all columns
acol(plt, id="body,4,2") # single entry
# Remove the columns for "Petal" measurements (a value in column
# header layer 2):
plot(ttbl[, -acol(ttbl, hpath=c(NA, "Petal"))])
# Remove the "Length" measurements (a value in column header layer 3):
plot(ttbl[, -acol(ttbl, hpath=c(NA, NA, "Length"))])
# Remove the "Length" measurements just for "Petal":
plot(ttbl[, -acol(ttbl, hpath=c(NA, "Petal", "Length"))])

addBlock Define a New Block of Cells in a Table

Description

Define a new block (rectangular set of cells) in a table. The location and graphical properties of the
block are specified explicitly, rather than being generated automatically from the logical structure
of the table and a style.

Usage

addBlock(x, arows, acols, id, props=NULL, enabled=FALSE)

Arguments

x A plotted table (pltdTable) object.

arows, acols Numeric vectors specifying the cells contained in the block, with respect to the
augmented row-column grid of the table. The block includes the cells in row
numbers from min(arows) to max(arows), and column numbers from min(acols)
to max(acols).

id Optional character string giving the ID to be assigned to the new block. It is an
error if there is already a block with this ID in x. The default is to generate an
ID of the form block*, where * is an integer.

props Optional element_block object with graphical properties to assign to the new
block. Any graphical properties not specified in props will be taken from
blockStyle_pkg_base in styles_pkg.

enabled Logical scalar, whether the new block is to be enabled for display. The default
is FALSE.

Details

Normally blocks are defined automatically, based on the logical structure of the table and the style
selected by the user. This function allows additional blocks to be defined "manually", explicitly
specifying their position and span in terms of row and column numbers.
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There are two typical situations in which one would want to define a new block. The first is to
highlight a specific set of cells in the table visually, by shading or a border. For that purpose one
should specify enabled=TRUE (so the block will be displayed) and perhaps props (for non-default
graphical properties).

The second reason to define a new block is to use its ID as a quick way to refer to the entries within
it, for example to set their graphical properties using props<-. In that case enabled for the block
should be FALSE, since the block itself is not to be displayed.

Row and column numbers are with respect to the augmented row-column grid of the table. See
?adim for more more information about this grid. The helper functions arow and acol can be used
to specify arguments arows and acols in terms of table parts or previously defined blocks.

Graphical properties for blocks defined by this function will not be changed if a new block style is
applied to the plotted table. Use one of the props<- functions instead.

There is no way to remove or undefine a block, other than recreating the plotted table object from
scratch. However they can be disabled using a props<- function, and then will not be displayed.

Value

A plotted table object like x, with the new block defined.

See Also

arow, acol, adim, element_block

Examples

plt <- plot(iris2_tab, title="The iris data",
subtitle="Summary statistics by species")

plt <- addBlock(plt, arows=c(8, 9), acols=c(3, 4), id="new_block",
props=element_block(border_color="red", border_size=1.0),
enabled=TRUE)

plt
# Can refer to the new block by its ID:
props(plt, id="new_block") <- element_entry(fontface=3) # italics
plt

addHvrule Add a Horizontal or Vertical Rule (Hvrule) to a Table

Description

Add a horizontal or vertical rule (hvrule) to a table. The location, span, and graphical properties
of the hvrule are specified explicitly, rather than being generated automatically from the logical
structure of the table and a style.

Usage

addHvrule(x, direction, arows, acols, id, props=NULL, enabled=TRUE)
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Arguments

x A plotted table (pltdTable) object.

direction Character string specifying whether the rule is to be horizontal (hrule) or verti-
cal (vrule).

arows, acols Numeric vectors specifying the location and span of the hvrule, with respect to
the augmented row-column grid of the table. For an hrule, arows should be a
single value: the half-integer bracketed by the table rows between which the
rule runs. For example, an hrule running between rows 3 and 4 should have
arows equal to 3.5. acols should be a vector of integers whose range specifies
the column numbers spanned by the rule. For a vrule the roles of arows and
acols are reversed: arows is a vector of integers whose range specifies the row
numbers spanned by the rule, and acols is the half-integer bracketed by the
table columns between which it runs.

id Character string giving the ID to be assigned to the new hvrule. It is an error if
there is already an hvrule with this ID in x. The default is to generate an ID of
the form hvrule*, where * is an integer.

props Optional element_hvrule object with graphical properties to assign to the new
hvrule. Any graphical properties not specified in props will be taken from
hvruleStyle_pkg_base in styles_pkg.

enabled Logical scalar, whether the new hvrule is to be enabled for display. The default
is TRUE.

Details

Normally hvrules are generated automatically, based on the logical structure of the table and the
style selected by the user. This function allows additional hvrules to be added "manually", explicitly
specifying their position and span in terms of row and column numbers.

Row and column numbers are with respect to the augmented row-column grid of the table. See
?adim for more more information about this grid. The helper functions arow and acol can be used
to specify arguments arows and acols in terms of table parts or previously defined blocks.

For an hrule, the default for acols is to span all table columns. For a vrule, the default for arows
is to span the rows containing the body and column headers, but not the annotation.

Graphical properties for hvrules defined by this function will not be changed if a new hvrule style
is applied to the plotted table. Use one of the props<- functions instead.

There is no way to remove an hvrule, other than recreating the plotted table object from scratch.
However they can be disabled using a props<- function, and then will not be displayed or take up
any space.

Value

A plotted table object like x, with the new hvrule added.

See Also

arow, acol, adim, element_hvrule
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Examples

plt <- plot(iris2_tab, title="The iris data")
plt <- addHvrule(plt, direction="vrule", acols=4.5, arows=arow(plt, "body"),

id="new_vrule",
props=element_hvrule(linetype=2, color="red"), enabled=TRUE)

plt
# Can refer to the new hvrule by its ID:
props(plt, id="new_vrule") <- element_hvrule(enabled=FALSE) # don't display it
plt

addRefmark Add a Reference Mark to Entries in a Table

Description

Add a reference mark (a symbol placed before or after entry text to indicate cross-references; e.g.
for footnotes) to entries in a table.

Usage

addRefmark(x, mark, before=character(0), after=character(0),
parts=NULL, raise, ...)

Arguments

x A textTable or pltdTable object.

mark Character string containing the reference mark.

before, after Character strings containing regular expressions (see ?regex) that will be matched
against the _text_ of table entries (using grepl). One or both of before and
after may be specified.

parts Optional character vector listing table parts. If specified, only entries in those
parts will be matched against before and after. The default is to use all table
parts.

raise Logical scalar. If TRUE, the reference mark will be displayed as a superscript,
using plotmath. The default is TRUE except for asterisk marks, since that
character is already raised relative to other characters.

... Additional arguments passed to grepl when matching before and after to
entry text.

Details

Reference marks are placed at the beginning or end of an entry’s text. If raise is TRUE they will be
displayed as superscripts. This is implemented by converting the text to make use of R’s plotmath
facility to create the superscript. A limitation of plotmath is that it ignores newline characters
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within text. Therefore raised reference marks will not work with multi-line entries, and a warning
will be issued.

In addition to using numbers, letters, or asterisk as reference marks, traditional symbols can be
specified by their unicode values: dagger ("\u2020"), double dagger ("\u2021"), paragraph symbol
("\u00B6"), section symbol ("\u00A7"), and double vertical bars ("\u2016"). However, unicode
symbols may not be available for all OS’s or graphics devices.

With this function the user identifies the entries to be marked by searching the entry text itself, via
regular expressions before and/or after. For plotted tables (pltdTable objects), an alternative
way to add reference marks is to use one of the props<- functions to assign an element_refmark
to it. They allow selection of entries using other descriptors.

Value

An object like x. The text of table cells/entries selected by before and after will be modified to
include the reference mark, and if raise is TRUE, those cells/entries will be flagged to indicate that
they should be treated as plotmath expressions.

See Also

element_refmark, props<-

Examples

# Add reference marks to a 'textTable':
ttbl <- textTable(iris2_tab, foot="sd = standard deviation")
ttbl <- addRefmark(ttbl, mark="a", before="sd =", after="sd$")
plot(ttbl)

# Add reference marks to a 'pltdTable':
plt <- plot(textTable(iris2_tab, foot="sd = standard deviation"))
plt <- addRefmark(plt, mark="*", before="sd =", after="sd$")
plt

# To add a reference mark to just the *first* appearance of "sd", use
# 'propsa<-' instead:
plt <- plot(textTable(iris2_tab, foot="sd = standard deviation"))
plt <- addRefmark(plt, mark="a", before="sd =")
propsa(plt, arows=arow(plt, hpath=c("setosa", "sd")),

acols=acol(plt, "rowhead")[2]) <- element_refmark("a", side="after")
plt

adim Dimensions of the Augmented Row-Column Grid for a Table

Description

Return the dimensions of the augmented row-column grid for a table. Along with rows and columns
associated with the body of the table, the augmented grid includes rows for each title, subtitle, and
foot line, and rows and columns associated with the column and row headers.
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Usage

adim(x)

Arguments

x A table, in any of the forms used within the tablesgg package. This includes
textTable and pltdTable objects.

Details

It is common to think of the number of rows and columns in a table as referring to the _body_ of
the table. However in this package the grid of rows and columns in the body of a table is expanded
into an _augmented row-column grid_, by adding a row for each title, subtitle, and foot line; a row
for each layer of column headers; a row for each _interior_ row header entry; and a column for
each (non-interior) layer of row headers. The augmented grid is numbered from the upper left, so
column numbers increase from left to right, and row numbers from top to bottom. Title, subtitle,
and foot lines, and interior row header entries span all the columns of the grid.

This function returns the dimensions of the augmented grid.

Disabled entries are included in counting rows and columns.

The function summary gives the dimensions of individual parts within a table.

Value

A two-element numeric vector containing (number of rows, number of columns).

See Also

summary.textTable, summary.pltdTable

Examples

ttbl <- textTable(iris2_tab, title="Summary statistics for the iris data")
adim(ttbl)
plt <- plot(ttbl)
adim(plt)

arow Row Numbers Within the Augmented Row-Column Grid for a Table

Description

Return the row numbers associated with a specified table part or element, or with a set of row header
values, within the augmented row-column grid of a table.

Usage

arow(x, id=NULL, hpath=NULL)
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Arguments

x A textTable or a plotted table (pltdTable) object.

id Character scalar containing the ID of a single table part, block, entry, or hvrule.
(If x is a textTable, only the ID of a table part is allowed.)

hpath Character vector with length between 0 and the number of layers in the row
header. The i-th element should be one of the values in the i-th row header
column, or NA. See DETAILS. Only one of id and hpath should be specified.

Details

See the documentation for adim for more information about the augmented row-column grid of a
table.

Only one of arguments id and hpath should be specified. id is searched for first among table parts
(the only thing available for a textTable), then blocks, entries, and hvrules, in that order. The
search stops at the first match. It is an error if id is not found in any of these.

hpath is short for "header path". It is used to obtain row numbers associated with specified com-
binations of values of the row header variables. Suppose there are L layers of row headers. If the
length of hpath is less than L, NA values are added at the end to reach that length. The function
returns the intersection of the row numbers for which the i-th outermost of the header layers equals
the i-th element of hpath. An NA in hpath is taken to match all values in the correponding layer of
row headers. Thus, if L == 4 and hpath=c("a", NA, "c"), the function will return the row numbers
for which the outermost row header has a value of "a" _and_ the third outermost has a value of "c".
If no row has the combination of values specified by hpath then the returned vector will have length
0.

Since hpath refers to values of row header variables, it cannot be used to get row numbers associated
with table annotation, or with the column header. (Use id instead.)

Value

A numeric vector containing row numbers within the table’s augmented row-column grid. The row
numbers are those partially or completely occupied by the cells associated with id or hpath. They
will be increasing but not necessarily consecutive.

The returned vector may have length 0 if id refers to a table part or block that spans no rows, or if
hpath matches no set of row header values.

Note that for a horizontal hvrule (hrule), the "row number" is actually a half-integer, bracketed by
the table row numbers between which the hrule runs. For example, if the hrule runs between table
rows 3 and 4, the returned value will be c(3.5).

See Also

adim to get the dimensions of the augmented row-column grid; acol for the corresponding opera-
tion on columns; ids

Examples

ttbl <- textTable(iris2_tab, title=c("Title 1", "2nd title"), foot="Foot")
plt <- plot(ttbl)
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arow(plt, id="title") # block "title" spans first two rows
arow(plt, id="body,4,2") # single entry
# Remove the first line of the column header:
plot(ttbl[-arow(ttbl, id="colhead")[1], ])
# Remove the "versicolor" species (a value in row header layer 1):
plot(ttbl[-arow(ttbl, hpath=c("versicolor")), ])
# Remove the means for all species (a value in row header layer 2):
plot(ttbl[-arow(ttbl, hpath=c(NA, "mean")), ])
# Remove the mean just for the versicolor species:
plot(ttbl[-arow(ttbl, hpath=c("versicolor", "mean")), ])

elements Extract Table Elements from a Plotted Table

Description

Extract table elements (entries, blocks, or hvrules) from a plotted table, as a simple data frame with
one row per element.

Usage

elements(x, type=c("entry", "block", "hvrule"), enabledOnly=TRUE)

Arguments

x A pltdTable object, containing a plotted table.
type Character scalar indicating the type of elements to extract: one of "entry", "block",

or "hvrule".
enabledOnly Logical scalar. If TRUE, only elements that are currently enabled in x are re-

turned.

Details

A plotted table (pltdTable object) has three types of elements: entries, blocks, and hvrules. Entries
are the text strings (and associated properties) displayed in table cells. Blocks are rectangular sets
of contiguous table cells. And hvrules are spacers, with or without a visible line (or "rule"), used to
separate or group table rows and columns. See the package vignette for more information.

This function allows one to inspect these elements. The purpose is primarily informational: an easy
way to view all the elements of a table, their descriptors (e.g., as used by styles and the propsd<-
function), and the graphical properties they have been assigned. It is not intended as a way to
edit or modify elements. For that, see update methods for textTable and pltdTable objects, the
props<- set of functions, and section 4 of the package vignette.

The remainder of this section describes the columns in the returned data frame, for each element
type.

Columns in elements(x, type="entry")

Entry descriptors:
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id Character string that uniquely identifies the entry. The format is <part>,<partrow>,<partcol>
for table parts that are matrices (rowhead, rowheadLabels, colhead, and body), and <part>,<partrow>
for table parts that are vectors (annotation parts title, subtitle, and foot).

part Character string identifying the part of the table to which the entry belongs: one of "body",
"rowhead", "colhead", "rowheadLabels", "title", "subtitle", or "foot".

subpart Character string with further information about the nature of of the entry within its part of
the table. May be NA.

partrow, partcol Row number, column number of the entry within its table part. For parts that
are vectors rather than matrices, partrow will be the element number within the vector,
and partcol will be NA. If an entry spans more than one row or column, the minimum
row/column number of the spanned cells is used.

headlayer How far (in number of rows or columns) from the body of the table the entry is. By
definition this is 0 for entries in the body of the table. It is 1 for row/column headers imme-
diately adjacent to the body, 2 for headers one row/column further out, and so on. The layer
numbers for row header labels match those for the corresponding columns of row headers.
The layers for titles, subtitles, and foot lines are the number of _rows_ from the body of the
table. When a table is created with rowheadInside set to TRUE, the headlayer value for
the outermost layer of row headers (and for its label, if any) is changed to 0, since the headers
become interleaved with the table body.

level_in_layer Numbering of entries within a given part and headlayer. For row and column head-
ers this is based their hierarchical structure (see the descriptors for blocks, below). For other
table parts it is just an integer from 1 to the number of entries in that layer of that part.

multirow, multicolumn Logicals indicating whether the entry spans multiple rows or columns of
the table.

text Character string containing the formatted content of the entry, for display. It may use plotmath
notation for mathematical notation, or markdown/HTML tags; see textspec below.

type Character string identifying the type of value the entry represents (e.g., "numeric"). May
be NA. The default for table annotation (title, subtitle, foot) and rowheadLabels is
"character".

textspec Character string indicating any special features of the text in text. Currently supported
values are "plain", "plotmath", and "markdown". "plotmath" indicates that the entry text con-
tains mathematical notation as described in ?plotmath. "markdown" means the text may
contain markdown or HTML tags to control its appearance; this requires the ggtext package.

enabled Logical indicating whether the entry is to be displayed when the table is plotted. If FALSE
the entry is ignored when laying out the table or determining its size.

arow1, arow2, acol1, acol2 Range of row and column numbers occupied by an entry, with respect
to the augmented row-column grid for the table. arow1 < arow2 and/or acol1 < acol2 means
the entry spans multiple rows and/or columns.

Graphical properties for entries. Values for these are assigned by a style, either a default style (see
?tablesggOpt) or user-specified.

hjust Numeric horizontal justification for entry text (0=left, 0.5=center, 1=right).

vjust Numeric vertical justification for entry text (0=top, 0.5=center, 1=bottom).

color Character string; color for entry text.
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alpha Numeric value in [0, 1] specifying transparency of entry text (0=transparent, 1=opaque).

size Font size for entry text, in points (72.27 points = 1 inch, 2.845 points = 1 mm).

family Character string, the font to use for entry text. "serif", "sans", and "mono" will work for all
graphics devices. Other fonts may or may not be available on a particular device.

fontface Numeric indicating 1=plain, 2=bold, 3=italic, 4=bold and italic.

lineheight Numeric multiplier that adjusts interline spacing for multi-line entry text. 1.0 gives the
default spacing.

angle Rotation angle for entry text, in degrees counter-clockwise from horizontal.

hpad, vpad Padding added around the sides of entry text to keep it from touching cell borders, in
millimeters. hpad is added on both the left and right sides of the text, and vpad is added on
both the top and bottom.

fill Character string; background color for the cell(s) containing the entry. NA means no back-
ground color.

fill_alpha Numeric value in [0, 1] specifying transparency of the cell background color (0=trans-
parent, 1=opaque).

border_size Thickness of the border to draw around the cell(s) containing the entry text, in mil-
limeters.

border_color Character string; color for the border around entry text. NA means no border.

minwidth, maxwidth Minimum and maximum width for the cell(s) spanned by the entry. (Here
width is with respect to the text itself; i.e., the direction of reading for English text, and there-
fore measured vertically if the text is rotated by 90 or 270 degrees.) They may be expressed
in two forms. Positive values are interpreted as absolute widths in millimeters, and should
include the amount of padding specified by hpad (when angle is 0 or 180 degrees) or vpad
(when angle is 90 or 270 degrees). Negative values are interpreted as multiples of the natural
width of the text itself, without including padding. Thus setting minwidth for an entry to -1
will guarantee that the width of the spanned cell(s) will be at least enough to contain the text
without wrapping.

• An NA value for minwidth means there is no constraint on minimum width, and is equiv-
alent to 0. An Inf value for maxwidth means there is no constraint on maximum width.
(However in the absence of constraints, the internal algorithm favors widths as close as
possible to the natural width of the entry text, without wrapping.)

• An NA value for maxwidth means the maximum width will be determined passively from
the maxwidth values of other entries in the same table column(s) (if angle is 0 or 180) or
row(s) (if angle is 90 or 270). (It will never be less than minwidth.) This may be useful
for table titles and footnotes, where long text should be wrapped to fit widths implied by
the other table entries.

• Setting maxwidth to NA or to a finite value > -1 and < Inf means the spanned cell(s) may
not be wide enough to hold the text without wrapping it into multiple lines. Therefore
option tablesggOpt("allowWrap") must be TRUE, and a warning will be raised and
maxwidth will be ignored if not.

• The general effect of setting minwidth to a non-zero value is to reduce or prevent text
wrapping, while the general effect of setting maxwidth to NA or a finite value is to en-
courage wrapping. Settings for one entry may affect the width and wrapping of other
entries, because column widths and row heights for the table as a whole must satisfy the
constraints for all their entries.
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• Text representing plotmath expressions cannot be wrapped, so maxwidth should be Inf
or <= -1 for such entries.

Columns in elements(x, type="block")

Block descriptors:

id Character string that uniquely identifies the block. The format is just <type> for blocks types
that are unique. For blocks associated with row or column headers, or with row groups formed
by the plot option rowgroupSize, ID’s begin with <type>/<subtype>/<headlayer>/<level_in_layer>.
See Appendix B of the package vignette for details about the definitions and ID’s of these
blocks.

type Character string that specifies the nature or structural role of the block. One of

"table" The whole table (all cells).
"title", "subtitle", "colhead", "rowhead", "rowheadLabels", "body", "foot" The standard

table parts. (If there are interior row header entries, "rowhead" and "body" are omitted
because the interleaving of headers and body means neither are valid blocks.)

"titles" The union of the title and subtitle parts.
"stub" If we exclude the title/subtitle and foot annotations, a table has four quadrants: the

body at the lower right, the row headers at the lower left, the column headers at the
upper right, and a stub at the upper left. That is, the stub consists of the cells above the
row headers and to the left of the column headers. (If there are row header labels–block
"rowheadLabels"–they will be in the bottom row of the stub.)

"colhead_and_stub", "rowhead_and_stub" The unions of "stub" with "colhead" and "row-
head", respectively.

"colhead_and_body", "rowhead_and_body" The unions of "body" with "colhead" and "row-
head", respectively.

"rowblock", "colblock" Collections of blocks associated with row and column headers, re-
flecting their hierarchical structure. "rowblock" is also the type for blocks representing
row groups formed by plot option rowgroupSize. See Appendix B of the package vi-
gnette for details.

subtype Character string refining block type. For types "rowblock" and "colblock", subtypes are
"A", "B", "C", and (for "rowblock" only) "G". See Appendix B of the package vignette for
their meaning. For other block types the subtype is set to missing (NA).

headlayer For "rowblock" and "colblock" blocks, the header layer number with which the block
is associated. (Layer numbers increase from innermost to outermost layer.) For other block
types, headlayer is NA.

level_in_layer For "rowblock" and "colblock" blocks, the level number (within the header layer)
with which the block is associated. Levels are numbered from 1 to the maximum number of
levels in that layer. For other block types, level_in_layer is NA.

group_in_level For "rowblock" blocks of subtype "G" (representing sets of rows grouped accord-
ing to rowgroupSize), the group number within a header layer and level. NA for other block
types/subtypes.

had_enabled_entries Logical, set to TRUE if there were _enabled_ table entries in x that intersect
the block. This is set at the time the plotted table (pltdTable object) is created. It is not
updated if entries are later enabled/disabled using props<-, for example.
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nr, nc The number of rows and columns, respectively, that the block spans. May be 0 for empty
blocks.

arow1, arow2, acol1, acol2 First and last row and column numbers spanned by the block, with
respect to the augmented row-column grid for the table. Empty blocks, with no rows or no
columns (nr or nc equal to 0), will have the corresponding arow* or acol* set to NA.

enabled Logical indicating whether the block is to be displayed when the table is plotted. This
applies only to highlighting the rectangular region occupied by the block using a fill color or
border. It has no effect on display of entries or hvrules contained within the block.

Graphical properties for blocks. Values for these are assigned by a style, either a default style (see
?tablesggOpt) or user-specified.

fill Character string; color used to fill the rectangular region contained in the block. NA means the
region is not colored. (Blocks are drawn before table entries or hvrules, so the block fill color
will not hide those elements even if it is opaque.)

fill_alpha Numeric value in [0, 1] specifying transparency of the block fill color (0=transparent,
1=opaque).

border_size Thickness of the border to draw around the block, in millimeters.

border_color Character string; color for the border around the block. NA means no border.

Columns in elements(x, type="hvrules")

hvrule descriptors:

id Character string that uniquely identifies the hvrule. The format is <block>_<side>.

direction Character string, either "hrule" for a horizontal rule or "vrule" for a vertical rule.

block The ID of the block along the side of which the hvrule runs.

side Which side of the block the hvrule runs along, "top", "bottom", "left", or "right".

adjacent_blocks Character string containing the IDs of blocks that are adjacent to block on the
same side as the hvrule. (I.e., blocks that are separated from block by the hvrule.) Block IDs
within the string are separated by semicolons. If there are no adjacent blocks the string will
be empty ("").

arow1, arow2, acol1, acol2 Location of the hvrule with respect to the augmented row-column grid
of the table. An hrule is inserted between table rows, and therefore arow1 and arow2 are
the same and equal to a half-integer. For example, an hrule inserted between rows 3 and 4
has arow1 = arow2 = 3.5. acol1 and acol2 for the hrule are integers indicating the range
of columns that it spans. Analogously, a vrule is inserted between table columns, so acol1
and acol2 are identical and equal to a half-integer, while arow1 and arow2 are integers that
indicate the range of rows spanned by the vrule.

enabled Logical indicating whether the hvrule is to be displayed when the table is plotted. If
FALSE the hvrule is ignored when laying out the table or determining its size.

Graphical properties for hvrules. Values for these are assigned by a style, either a default style (see
?tablesggOpt) or user-specified.

linetype Integer indicating the type of line to display. 1 = solid line; 2 = dashed; 3 = dotted. (See
the documentation of lty in ?par for the full set of choices.) A line type of 0 means no line
will be drawn, so the hvrule just inserts empty space between table rows or columns.



element_block 17

size Thickness of the line, in millimeters.
color Character string; the color of the line.
alpha Numeric value in [0, 1] specifying transparency of the line color (0=transparent, 1=opaque).
space The width (for a vertical rule) or height (for a horizontal rule) of the rectangle inserted

between columns or rows by the hvrule. (A line, if any, is drawn within this rectangle.) This
is the amount of space the rule adds to the width or height of the table, in millimeters.

fill Character string; color used to fill the rectangle containing the hvrule. NA means the region is
not colored.

fill_alpha Numeric value in [0, 1] specifying transparency of the fill color (0=transparent, 1=opaque).

Value

A data frame with one row per element. Columns include element descriptors and graphical prop-
erties assigned to each element. The row names of the data frame will be the element ID’s.

See Also

tablesggOpt, styleObj, ids

Examples

plt <- plot(iris2_tab)
str(elements(plt, type="entry"))
str(elements(plt, type="block")) # 0 rows, none are enabled for display
str(elements(plt, type="block", enabledOnly=FALSE))
str(elements(plt, type="hvrule"))

element_block Specify Visual Properties for Table Blocks

Description

Specify a set of graphical properties that can be used to highlight a rectangular block of table cells.

Usage

element_block(fill=NULL, fill_alpha=NULL, border_size=NULL,
border_colour=NULL, border_color=NULL, enabled=NULL,
inherit.blank=FALSE)

Arguments

fill, fill_alpha, border_size, border_color

Scalar graphical properties for the table blocks. These will be passed to ggplot2::geom_rect
under the names fill, alpha, size, and colour, respectively.

border_colour Alias for border_color.
enabled Logical scalar, controlling whether the block is displayed (TRUE) or not (FALSE).
inherit.blank Ignored.
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Details

This function is modeled on the element_* functions used in ggplot2 to specify graphical prop-
erties in themes. It is primarily used to create the value on the right-hand side of an assignment
involving the props<- group of setter functions.

To display a table block means to highlight its rectangular region with shading (as specified by
fill, a color, and fill_alpha) and/or a border (with thickness specified by border_size, in mm,
and color border_color). Blocks are drawn before entries and hvrules, so the latter are drawn "on
top" of blocks and will not be hidden.

Quantitative property border_size may be specified using the ggplot2 function rel(). This
function indicates that the value is to be interpreted as a multiplier to be applied to whatever the
current value of the property is. For example border_size=rel(1.2) specifies that the thickness
of the border around a block is to be increased by 20% from its current value.

Value

An object of S3 classes element_block and element.

See Also

element_entry, element_hvrule; elements for more detail about the available graphical proper-
ties; props<-, propsa<-, propsd<-.

Examples

plt <- plot(iris2_tab, title="Summary statistics for the iris data")
props(plt, id="rowhead") <- element_block(fill="lightblue")
props(plt, id="colblock/C/2/1") <- element_block(border_color="red")

# (Default fill color for blocks is 'gray85')
plt

element_entry Specify Visual Properties for Table Entries and their Cells

Description

Specify a set of graphical properties that can be used to display table entries and the cells that
contain them.

Usage

element_entry(text=NULL, family=NULL, fontface=NULL, colour=NULL,
alpha=NULL, size=NULL, hjust=NULL, vjust=NULL, angle=NULL,
lineheight=NULL, color=NULL, hpad=NULL, vpad=NULL, fill=NULL,
fill_alpha=NULL, border_size=NULL, border_colour=NULL,
border_color=NULL, minwidth=NULL, maxwidth=NULL, enabled=NULL,
textspec=NULL, inherit.blank=FALSE)



element_entry 19

Arguments

text Scalar character string, the text to be displayed for the entries.
family, fontface, color, alpha, size, hjust, vjust, angle, lineheight

Scalar values for the graphical properties that are used to display the text of table
entries. Values will be passed to ggplot2::geom_text.

hpad, vpad Amount of blank space to add on the left and right (hpad) and top and bottom
(vpad) of the entry text, in millimeters. This is to keep entry text from being too
close to the cell borders.

fill, fill_alpha, border_size, border_color

Scalar graphical properties for the _cells_ that contain table entries. These will
be passed to ggplot2::geom_rect under the names fill, alpha, size, and
colour, respectively.

colour, border_colour

Aliases for color, border_color.
minwidth, maxwidth

Minimum, maximum width for cell(s) spanned by an entry. Positive values rep-
resent absolute sizes in millimeters, and should include any padding. Negative
values are interpreted as multiples of the natural width of the entry text, without
padding. Use values of -1 for minwidth and Inf for maxwidth to prevent text
wrapping. Values closer to 0 encourage wrapping. See ?elements for more
information and restrictions on these properties.

enabled Logical scalar, controlling whether the entry is displayed (TRUE) or not (FALSE).
This applies to both the entry text and the cells that contain it.

textspec Character string indicating any special features of the text in text. Currently
supported values are "plain", "plotmath", and "markdown". "plotmath" indicates
that the entry text contains mathematical notation as described in ?plotmath.
"markdown" means the text may contain markdown or HTML tags to control its
appearance; this requires the ggtext package.

inherit.blank Ignored.

Details

This function is modeled on the element_* functions used in ggplot2 to specify graphical prop-
erties in themes. It is primarily used to create the value on the right-hand side of an assignment
involving the props<- group of setter functions.

The text content of an entry is perhaps not strictly a graphical property, but it is convenient to have
an easy way to modify it. Note that like all other properties, the provided value must be a single
value (character string), not a longer vector of values.

Justification of text within a cell is specified by properties hjust and vjust. Their interpretation
is with respect to the boundaries of the cell: 0 means justification toward the left/top of the cell, 1
means toward the right/bottom, and 0.5 means centered. This is different from the interpretation in
?ggplot2::geom_text, where the justification is with respect to an (x, y) point. Note that padding
(hpad, vpad) is added _after_ justification, so for example hjust=0 will put the text at a distance
hpad from the left border of its cell.

Quantitative properties (size, lineheight, hpad, etc) may be specified using the ggplot2 function
rel(). This function indicates that the value is to be interpreted as a multiplier to be applied to



20 element_hvrule

whatever the current value of the property is. For example lineheight=rel(1.2) specifies that
the lineheight property of an entry is to be increased by 20% from its current value.

Value

An object of S3 classes element_entry and element.

See Also

element_hvrule, element_block, element_refmark; elements for more detail about the avail-
able graphical properties; props<-, propsa<-, propsd<-.

Examples

plt <- plot(iris2_tab, title="Summary statistics for the iris data",
subtitle="Shown with default graphical properties")

plt

props(plt, id="body") <- element_entry(fontface=3, fill="gray")
props(plt, id="subtitle,1") <-

element_entry(text="Entry properties changed by 'props<-'",
fill="gray", color="red")

plt

element_hvrule Specify Visual Properties for Table Rules

Description

Specify a set of graphical properties that can be used to display horizontal or vertical rules (hvrules)
in a table.

Usage

element_hvrule(colour=NULL, alpha=NULL, linetype=NULL, size=NULL,
fill=NULL, fill_alpha=NULL, space=NULL, color=NULL, enabled=NULL,
inherit.blank=FALSE)

Arguments

color, alpha, linetype, size

Scalar values for the graphical properties that are used to display the horizontal
or vertical line of an hvrule. Values will be passed to ggplot2::geom_segment.

fill, fill_alpha, space

Scalar values for the graphical properties of the (long, thin) rectangle that en-
closes an hvrule. space is the height (for a horizontal rule) or width (for a
vertical rule) of the rectangle, in millimeters. fill and fill_alpha are passed
to ggplot2::geom_rect as arguments fill and alpha respectively.
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colour Alias for color.

enabled Logical scalar, controlling whether the hvrule is displayed (TRUE) or not (FALSE).
This applies to both the actual rule (line) and the rectangle containing it.

inherit.blank Ignored.

Details

This function is modeled on the element_* functions used in ggplot2 to specify graphical prop-
erties in themes. It is primarily used to create the value on the right-hand side of an assignment
involving the props<- group of setter functions.

A horizontal or vertical rule (hvrule) is actually drawn as long, narrow rectangle, with a line centered
inside it. The narrowness of the rectangle, and thus how much space the hvrule adds to the table, is
controlled by space. The thickness of the line inside the rectangle is controlled by size. Setting
linetype to 0 means no line will be drawn, but the enclosing rectangle will be. In that way hvrules
can be used to insert extra blank space between rows or columns of a table.

Quantitative properties size and space may be specified using the ggplot2 function rel(). This
function indicates that the value is to be interpreted as a multiplier to be applied to whatever the
current value of the property is. For example space=rel(1.2) specifies that the space property of
an entry is to be increased by 20% from its current value.

Value

An object of S3 classes element_hvrule and element.

See Also

element_entry, element_block; elements for more detail about the available graphical proper-
ties; props<-, propsa<-, propsd<-.

Examples

plt <- plot(iris2_tab, title="Summary statistics for the iris data")
plt

# Enable the vertical rule between rowhead and body, and set its
# properties:
props(plt, id="rowhead_right") <- element_hvrule(enabled=TRUE, linetype=1,

color="black", space=10)
plt
# Change the properties of all enabled hvrules:
propsd(plt, subset=(enabled)) <- element_hvrule(color="red")
plt
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element_refmark Specify a Reference Mark that can be Added to Table Entries

Description

Specify a reference mark (a symbol placed before or after entry text to indicate cross-references;
e.g. for footnotes) that can be added to entries in a table.

Usage

element_refmark(mark=NULL, side=NULL, raise, ..., inherit.blank=FALSE)

Arguments

mark Character string containing the character(s) to be used as the reference mark.

side Character string indicating where the reference mark is to be placed: "before"
or "after" the entry text.

raise Logical scalar. If TRUE, the reference mark will be displayed as a superscript,
using plotmath. The default is TRUE except for asterisk marks, since that
character is already raised relative to other characters.

... Additional arguments passed to element_entry. These can be used to set other
graphical properties of table entries at the same time as setting the reference
mark. However it is an error to set text or textspec to anything other than
NULL, since they are used internally by this function.

inherit.blank Ignored.

Details

This function is modeled on the element_* functions used in ggplot2 to specify graphical prop-
erties in themes. It is primarily used to create the value on the right-hand side of an assignment
involving the props<- group of setter functions.

Value

An object of S3 classes element_refmark and element. If any arguments are specified in ...,
they are passed to element_entry and the resulting object is attached as attribute extra.

See Also

addRefmark for a different way to add reference marks, and for more information about reference
marks in general. element_entry, props<-, propsa<-, propsd<-.
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Examples

plt <- plot(iris2_tab, title="Summary statistics for the iris data",
foot="sd = standard deviation")

props(plt, id="foot") <- element_refmark(mark="*", side="before")
# Add a reference mark to just the first appearance of 'sd' in the row header:
propsa(plt, arows=arow(plt, hpath=c("setosa", "sd")), acols=2) <-

element_refmark(mark="*", side="after")
plt

ids Get the Identifier Strings for Parts or Elements of a Table

Description

Get the unique identifier strings for elements of a plotted table, or for parts of a textTable.

Usage

ids(x, type, enabledOnly=TRUE)

Arguments

x A textTable or a plotted table (pltdTable) object.

type Character scalar indicating the type of elements to get ID’s for. May be "entry",
"block", or "hvrule" for a plotted table, or "part" for a textTable. Optional for
a textTable.

enabledOnly Logical scalar. If TRUE, ID’s are returned only for elements that are currently
enabled in x. (Ignored for a textTable.)

Details

A plotted table (pltdTable object) has three types of elements: entries, blocks, and hvrules. Entries
are the text strings (and associated properties) displayed in table cells. Blocks are rectangular sets
of contiguous table cells. And hvrules are spacers, with or without a visible line (or "rule"), used to
separate or group table rows and columns.

Each element has an ID string, unique within an element type, and this function returns a vector of
those strings.

A textTable has parts ("title", "subtitle", "rowhead", etc.), and this function just returns the vector
of the part ID’s.

Value

A character vector of identifiers.
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See Also

elements, which returns a data frame with full information about each element of a plotted table.

Examples

ttbl <- textTable(iris2_tab)
# Just the names of the standard table parts:
ids(ttbl)

ptbl <- plot(ttbl)
# ID's of all the blocks defined for the table:
ids(ptbl, type="block", enabledOnly=FALSE)
# ID's of the blocks that are enabled for display (by default, none):
ids(ptbl, type="block", enabledOnly=TRUE)

iris2 A Reshaped Version of Anderson’s Iris Data

Description

This is the same as R’s built-in iris data set, but reshaped into “long” format. It contains four
measurements for 50 flowers from each of three species of iris.

Usage

iris2

Format

A data frame with 600 observations on the following 5 variables.

plant a numeric vector, numbering the flowers from 1 to 150
Species a factor with levels setosa versicolor virginica

flower_part a factor with levels Sepal Petal

direction a factor with levels Length Width

value a numeric vector, the measured value, in centimeters

Source

• Fisher, R. A. (1936) The use of multiple measurements in taxonomic problems. Annals of
Eugenics, 7, Part II, 179–188.

• The data were collected by Anderson, Edgar (1935). The irises of the Gaspe Peninsula, Bul-
letin of the American Iris Society, 59, 2–5.

Examples

data(iris2)
str(iris2)
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iris2_tab Table of Summary Statistics for Anderson’s Iris Data

Description

A table of means and standard deviations of the four measurements per iris plant, by species.

Usage

iris2_tab

Format

A tabular object as produced by version 0.9.6 of the tables package by Duncan Murdoch (https://CRAN.R-project.org/package=tables).
The table was produced with the following code, starting from the iris2 data frame:

iris2_tab <- tables::tabular(
Species*Heading()*value*Format(digits=2)*(mean + sd) ~
Heading("Flower part")*flower_part*Heading()*direction,
data=iris2)

Source

• Fisher, R. A. (1936) The use of multiple measurements in taxonomic problems. Annals of
Eugenics, 7, Part II, 179–188.

• The data were collected by Anderson, Edgar (1935). The irises of the Gaspe Peninsula, Bul-
letin of the American Iris Society, 59, 2–5.

See Also

iris2

Examples

if (requireNamespace("tables", quietly=TRUE)) {
print(iris2_tab) # uses print method for 'tabular' objects

}
plot(iris2_tab)
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mtcars_xtab Table of Data from Motor Trend Magazine

Description

This is a table of selected observations and variables from the data frame mtcars from package
datasets.

Usage

mtcars_xtab

Format

An xtableList object as produced by version 1.8-4 of the xtable package (https://CRAN.R-project.org/package=xtable).
The table was produced with the following code:

data("mtcars", package="datasets")
mtcars <- mtcars[, 1:6]
mtcarsList <- split(mtcars, f = mtcars$cyl)
### Reduce the size of the list elements
mtcarsList[[1]] <- mtcarsList[[1]][1,]
mtcarsList[[2]] <- mtcarsList[[2]][1:2,]
mtcarsList[[3]] <- mtcarsList[[3]][1:3,]
attr(mtcarsList, "subheadings") <- paste0("Number of cylinders = ",

names(mtcarsList))
attr(mtcarsList, "message") <- c("Line 1 of Message", "Line 2 of Message")
mtcars_xtab <- xtable::xtableList(mtcarsList, digits = c(0,2,0,0,0,1,2),

caption = "Caption to List")

Source

• Henderson and Velleman (1981), Building multiple regression models interactively. Biomet-
rics, 37, 391-411.

See Also

mtcars

Examples

ttbl <- textTable(mtcars_xtab)
plot(ttbl, rowheadInside=TRUE)
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plot.tabular A Plot Method for tabular Objects

Description

A plot method for tabular objects, which represent a 2D data summary table. The table is dis-
played using ggplot2 graphics.

Usage

## S3 method for class 'tabular'
plot(x, ...)

Arguments

x An object of class tabular, representing a 2D data summary table, as produced
by the tables package by Duncan Murdoch.

... Additional arguments passed to format.tabular or plot.textTable. See the
documentation for those functions.

Details

This function is a simple wrapper that first converts x to a textTable object, and then plots that
object.

Value

An object of S3 class pltdTable, inheriting from ggplot. See the documentation for plot.textTable
for more information.

See Also

plot.textTable, format.tabular, textTable.tabular

plot.textTable A Plot Method for texttable Objects

Description

A plot method for textTable objects, displaying tables using ggplot2 graphics.
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Usage

## S3 method for class 'textTable'
plot(x, title=NULL, subtitle=NULL, foot=NULL, rowheadLabels=NULL,

entryStyle=tablesggOpt("entryStyle"),
hvruleStyle=tablesggOpt("hvruleStyle"),
blockStyle=tablesggOpt("blockStyle"), scale=1.0, mergeRuns=c(TRUE,
TRUE), rowheadInside=FALSE, rowgroupSize=0,
plot.margin=tablesggOpt("plot.margin"), sizeAdjust=c(1.0, 1.0), ...)

Arguments

x A textTable object, containing a table.
title, subtitle, foot

Optional character vectors of annotation for the table. NULL means to leave the
current annotation unchanged (the default); character(0) means to omit/remove
it.

rowheadLabels Optional character vector or 1-row matrix specifying labels for the row header
columns of the table. NULL means to leave the current value unchanged (the
default); character(0) means to omit/remove it.

entryStyle, hvruleStyle, blockStyle

Optional styleObj objects. These describe the graphical properties (color, size,
font, line type, etc) to be used for displaying table entries, horizontal/vertical
rules, or blocks, respectively. See ?styleObj for details. If omitted, default
styles from tablesggOpt() will be used.

scale Numeric multiplier used to increase or decrease the displayed size of the table,
with all elements scaled proportionately. If it has length two, the first element
applies to table entries and blocks, and the second to hvrules.

mergeRuns Two-element logical vector, the first element applying to row headers, the sec-
ond to column headers. If TRUE (the default) then header cells that contain runs
of the same value will be merged into a single entry that spans multiple rows or
columns.

rowheadInside Logical scalar. If TRUE, the outermost layer of row headers is moved inside the
table by using its levels to divide the table into groups of rows, with each group
labeled by their level.

rowgroupSize Numeric scalar. If greater than 0, consecutive rows of the table body will be
grouped into sets of this size, and extra space may be inserted between groups
to improve readability. See DETAILS.

plot.margin Numeric vector of length 4, giving the amount of padding to be added outside
the top, right, bottom, and left sides of the table, in millimeters. The default is
taken from tablesggOpt().

sizeAdjust Two-element numeric vector containing multipliers to adjust the calculated ab-
solute size of table text. The first element is applied to the horizontal dimension
and the second to the vertical dimension. (It should not be necessary to change
this.)

... Other arguments, ignored with a warning. (Included for compatibility with the
plot generic.)
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Details

textTable objects are the fundamental structure for representing tables in the tablesgg package.
This function creates a publication-quality plot of such a table that can be displayed on any of R’s
graphics devices. Plotting is based on the ggplot2 graphics system, and the resulting plot object
can be saved or manipulated in the usual ggplot way.

A feature of the plotted table produced by this function is that it has a well-defined physical size,
in millimeters, given by the attribute size_mm. This natural size is determined by the graphical
properties specified with arguments entryStyle and hvruleStyle, and can be rescaled up or down
with the scale argument. There is a special print (display) method for pltdTable objects that
ensures that the table is displayed at the correct size, independent of the size of the graphics device
on which it is drawn.

The plotted table can be modified by using the props<- set of functions to update graphical prop-
erties of selected table entries, hvrules, or blocks. This includes disabling them (so that they are
excluded from the plot), or re-enabling disabled elements. For broader changes there is an update
method for pltdTable objects to change styles or plot scaling. See update.pltdTable for more
information.

Value

An object of S3 class pltdTable, inheriting from ggplot.

The object has attributes plot.margin and sizeAdjust (equal to the arguments), and size_mm
(the width and height of the plot, in millimeters). size_mm is calculated after applying scale and
sizeAdjust, and includes both the table and any margins specified by plot.margin.

The object also has attributes colBoundaries and rowBoundaries giving the coordinates of the
boundaries between columns and between rows, again in millimeters, and after applying scale and
sizeAdjust.

The object also has attribute prTable. This a "plot-ready" version of the table, after applying the
arguments provided to this function to x, but before processing by ggplot. It is included to allow
convenient updating of the display properties of the table via props<- functions.

See Also

textTable, styleObj, tablesggOpt, styles_pkg, print.pltdTable, props<-, update.pltdTable

Examples

# Start with a 'textTable':
ttbl <- textTable(iris2_tab)
# Default display:
plot(ttbl)
# Add annotation:
plot(ttbl, title="The iris data", subtitle="Summary statistics by species",

foot="sd = standard deviation")
# Smaller version:
plot(ttbl, title="The iris data", subtitle="Summary statistics by species",

foot="sd = standard deviation", scale=0.8)
# Use a more "spread out" style for table entries:
plot(ttbl, entryStyle=styles_pkg$entryStyle_pkg_2)
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# Internal row header labels:
plot(ttbl, rowheadInside=TRUE)
# Show effect of 'plot.margin' by putting a box around the table:
# -- default
plt <- plot(ttbl) +

ggplot2::theme(plot.background=ggplot2::element_rect(color="blue", size=1))
plt
# -- wider margin
plt <- plot(ttbl, plot.margin=c(15, 15, 15, 15)) +

ggplot2::theme(plot.background=ggplot2::element_rect(color="blue", size=1))
plt

# Data frame listing with rows in groups of 5:
plot(textTable(head(iris2, 15)), rowgroupSize=5)

pltdSize Width and Height of a pltdtable Object

Description

Width and height of a pltdTable object.

Usage

pltdSize(x, units=c("mm", "inches", "cm"))

Arguments

x An object of class pltdTable, the result of plotting a textTable object.

units String specifying the units in which size is to be returned. May be abbreviated.

Details

This function returns the size, after any scaling, of a plotted table, in physical units. The default
units are millimeters to be consistent with other dimensions used in plotting tables. Inches may be
useful because that is what R’s graphics device functions use.

The size of a plot can depend slightly on the graphics device used to create or render it. The device
name used internally to create the plot is included as an attribute of the returned value.

Value

Two-element numeric vector containing the (width, height) of the plot. It has attributes units and
device.

See Also

plot.textTable
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Examples

plt <- plot(iris2_tab, title="Summary statistics for the iris data")
pltdSize(plt) # width, height in millimeters

# Open a graphics device just the right size to hold the table:
sz <- pltdSize(plt, units="in")
dev.new(width=sz[1], height=sz[2], noRStudioGD=TRUE)
plt

print.pltdTable Print (Draw) a pltdtable Object

Description

Print method for pltdTable objects, to display the table on the currently active graphics device. It
draws the table at its natural size, as determined by the font size and dimensions specified by the
styles used to create the table, and after applying any scale factors.

Usage

## S3 method for class 'pltdTable'
print(x, scale=NULL, newpage=TRUE, position=c(0.5, 0.5),

vpx=grid::unit(0.5, "npc"), vpy=grid::unit(0.5, "npc"),
just="center", ...)

Arguments

x A pltdTable object, representing a table.

scale Optional numeric multiplier used to increase or decrease the displayed size of
the table, relative to the natural size implied by its styles. The default is to keep
the current scaling in x.

newpage Whether to draw the table on the current page of the graphics device, or on a
new blank page.

position Two-element numeric or character vector specifying the horizontal and vertical
position of the table on the page. A value of 0 means left/bottom justification, 1
means right/top justification, and intermediate values shift the table linearly be-
tween those limits. If a character vector, valid values are "left", "center", "right"
for horizontal position, and "bottom", "center", "top" for vertical position. The
default is to center the table on the page.

vpx, vpy, just Alternatives to position to specify the position of the table on the page. These
are passed to grid::viewport. (vpx is passed as argument x, and vpy as argu-
ment y.) Ignored with a warning if position is specified.

... Optional additional arguments passed to grid::viewport.
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Details

The purpose of a special print method for pltdTable objects is to set a particular viewport size, so
that the table is displayed at its natural size, adjusted for scale. Once the viewport is set, the table
is drawn using the usual ggplot print method.

Note that scaling of table size is not cumulative. If x has already been scaled (say, by a factor of
0.8), and argument scale is set to 0.9, then the table will be displayed at 0.9 times its natural size,
not 0.9*0.8 = 0.72.

The default is that the table is drawn centered in the current graphics viewport (usually the whole
graphics device surface). This can be changed using either the position or the just, vpx and vpy
arguments. grid::viewport uses the latter four numbers to specify position; see its documentation
for details. The position argument simplifies this to use just two numbers, each in [0, 1]. It as-
sumes one rarely wants to have parts of the table outside the boundary of the page, so 0 corresponds
to putting the table snug against the left or bottom edge, 1 corresponds to putting it against the right
or top edge, and intermediate values simply linearly interpolate between those limits.

Value

x, invisibly.

See Also

plot.textTable, grid::viewport, ggplot2::print.ggplot

Examples

# Start with different ways of arranging the Titanic data:
data(Titanic, package="datasets")
ftbl1 <- ftable(Titanic, row.vars=c("Class", "Sex"), col.vars="Survived")
ftbl2 <- ftable(Titanic, row.vars=c("Age", "Sex", "Survived"),

col.vars="Class")
ftbl3 <- ftable(Titanic, row.vars=c("Sex", "Class"),

col.vars=c("Age", "Survived"))
plt1 <- plot(textTable(ftbl1))
plt2 <- plot(textTable(ftbl2))
plt3 <- plot(textTable(ftbl3))
plt4 <- plot(textTable(ftbl3), rowheadInside=TRUE)

# Center plots in the four quadrants of the page:
print(plt1, vpx=0.25, vpy=0.75)
print(plt2, vpx=0.75, vpy=0.75, newpage=FALSE)
print(plt3, vpx=0.25, vpy=0.25, newpage=FALSE)
print(plt4, vpx=0.75, vpy=0.25, newpage=FALSE)

# Single plot at different sizes, pushed to corners of the page:
print(plt2, scale=0.8, position=c("left", "top"))
print(plt2, scale=1.2, position=c("right", "bottom"), newpage=FALSE)
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props<- Update Graphical Properties for Selected Table Elements

Description

Update the graphical properties for selected table entries, hvrules, or blocks in a plotted table.

Usage

props(x, id=NULL, regex=NULL, setEnabled=TRUE, mustMatch=TRUE,
...) <- value

Arguments

x A pltdTable object containing a plotted table.

id Optional character vector of the ID’s of the elements (or of table parts containing
the elements) to be modified.

regex Optional character string containing a regular expression. This will be used to
find table entries whose text matches the regular expression. (Only valid when
value is an element_entry or element_refmark object.)

setEnabled Logical scalar. If TRUE then any element whose properties are updated by this
function will have its enabled value set to TRUE (and thus will be displayed
in a plot). enabled will not be changed for elements that are not updated. If
setEnabled is FALSE, enabled is not changed for any elements.

mustMatch Logical scalar. If TRUE, any strings in argument id that do not match an element
or part ID in x will be treated as an error.

... Additional arguments passed to grepl when regex is used to select table entries.

value An element_entry, element_refmark, element_hvrule, or element_block
object that contains the new values for graphical properties. See DETAILS.

Details

There are three similar functions that can be used to modify the graphical properties of table ele-
ments: props<-, propsa<-, and propsd<-. They differ only in how one specifies which elements
are to be modified. props<- uses element or block ID’s, or searches the text content of entries.
propsa<- uses explicit row and column numbers within the augmented row-column grid. propsd<-
uses the values of element descriptors (as described in ?elements).

The type of elements that are updated is determined by value: if value is an element_entry or
element_refmark object then entries are updated; if it is an element_hvrule object then hvrules
are; if it is an element_block object then blocks are. See the documentation of those functions for
the available properties. As an example, element_entry(color="red", fontface=3, hpad=rel(0.8))
specifies that all the updated entries will be displayed in red italics, and padding on their left and
right will be reduced to 80% of the current amount. Any graphical properties not mentioned in the
call that creates the element_* object are left unchanged.
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There are two special properties: enabled and textspec (the latter only for entries). enabled is a
logical scalar. If enabled is set to FALSE the selected elements will not be displayed, and disabled
entries/hvrules will not be allocated any space in the plotted table. textspec is a character string,
one of "plain", "plotmath", or "markdown". If "plotmath", entry text will be treated as an expression
that allows display of mathematical symbols and notation, including subscripts and superscripts
(see ?plotmath). If "markdown", entry text may contain markdown or HTML tags that affect the
appearance of the displayed text. (This requires the ggtext package, and only a subset of HTML
tags is supported. See the ggtext package documentation for more information.)

element_refmark is used to add a reference mark to the selected entries. (A reference mark is a
symbol placed before or after entry text to indicate cross-references; e.g. for footnotes.) It may also
update any of the graphical properties accepted by element_entry, except textspec and text.

Arguments id and regex indicate which elements are to be updated. When value indicates that
table entries are to be modified, id may specify the ID’s of individual entries or the ID’s of table
parts or blocks. In the latter case, all entries completely or partially contained in the parts or blocks
are selected. Thus, for example, specifying id="table" will update every entry in the table, while
id="body" will update only entries in the table body. Argument regex is only valid for modifying
table entries; grepl is used to identify the entries whose text matches the regex pattern. If both id
and regex are specified, then only entries selected by both are modified.

When value indicates that hvrules are to be modified, id should contain the ID’s of individual
hvrules and/or table blocks. In the latter case, any hvrule associated with a listed block (that is, the
hvrule was defined as running along one of the sides of the block) will be updated.

When value indicates that blocks are to be modified, id should contain the ID’s of individual table
blocks.

See ?elements for the format of element ID strings.

This function overrides graphical properties in x that may have been set by a style. Therefore the
value of style_row is set to NA for any elements whose properties are updated by this function.

Value

An object like x, with updated graphical properties for the selected elements.

See Also

element_entry, element_refmark, element_hvrule, element_block, ids, propsa<-, propsd<-

Examples

ttbl <- textTable(iris2_tab, title="The iris data",
subtitle=c("Summary statistics by species",

"A second subtitle line"),
foot="sd = standard deviation")

plt <- plot(ttbl)
# Change properties of elements:
props(plt, id="body") <- element_entry(fontface=3, fill="gray85")
# This may include changing text:
props(plt, id="subtitle,2") <- element_entry(text="Properties changed by 'props<-'",

fill="gray85")
# Use property 'enabled' to control whether an element is displayed:
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props(plt, id="rowhead_and_body_bottom") <- element_hvrule(enabled=FALSE)
plt

# Add reference marks to entries with abbreviation "sd":
plt <- plot(ttbl)
props(plt, regex="^sd$") <- element_refmark(mark="*", side="after")
props(plt, regex="^sd =") <- element_refmark(mark="*", side="before")
plt
# If both 'id' and 'regex' are specified only the intersection is modified:
plt <- plot(ttbl)
props(plt, regex="^sd$", id="rowblock/B/2/1") <-

element_refmark(mark="*", side="after")
props(plt, regex="^sd =") <- element_refmark(mark="*", side="before")
plt

propsa<- Update Graphical Properties for Selected Table Elements

Description

Update the graphical properties of table elements in selected rows and columns of a plotted table.

Usage

propsa(x, arows=NULL, acols=NULL, setEnabled=TRUE) <- value

Arguments

x A pltdTable object containing a plotted table.

arows, acols Numeric vectors of row and column numbers in the table’s augmented row-
column grid. The default value of NULL means all rows or columns. Use half-
integer values to refer to the locations of horizontal or vertical rules running
between rows or columns.

setEnabled Logical scalar. If TRUE then any element whose properties are updated by this
function will have its enabled value set to TRUE (and thus will be displayed
in a plot). enabled will not be changed for elements that are not updated. If
setEnabled is FALSE, enabled is not changed for any elements.

value An element_entry, element_refmark, element_hvrule, or element_block
object that contains the new values for graphical properties.

Details

There are three similar functions that can be used to modify the graphical properties of table ele-
ments: props<-, propsa<-, and propsd<-. They differ only in how one specifies which elements
are to be modified. props<- uses element or block ID, or searches the text content of entries.
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propsa<- uses explicit row and column numbers within the augmented row-column grid. propsd<-
uses the values of element descriptors (as described in ?elements).

The type of elements that are updated is determined by value: if value is an element_entry or
element_refmark object then entries are updated; if it is an element_hvrule object then hvrules
are; if it is an element_block object then blocks are. See the documentation for props<- for
discussion of their use.

For this function the selected elements are those which are (a) completely contained within the
rows listed in arows and the columns listed in acols; and (b) of a type (entry, block, or hvrule)
corresponding to the class of value. For (a), arows and acols are treated as _sets_ of row/column
numbers, not _ranges_. For example, a horizontal rule running between rows 3 and 4 will not be
selected by arows=c(3, 4); the value 3.5 must be included in arows.

The helper functions arow and acol provide a partial bridge between this function and props<-.
They return row and column numbers associated with particular element IDs, or with specified
values of the row and column headers. For example, propsa(plt,
arows=arow(plt, id="body"), acols=acol(plt, id="body")) is equivalent to props(plt, id="body").
See the examples below for cases where the combination of propsa<- and arow/acol is more con-
venient than props<- alone.

This function overrides graphical properties in x that may have been set by a style. Therefore the
value of style_row is set to NA for any elements whose properties are updated by this function.

Value

An object like x, with updated graphical properties for the selected elements.

See Also

element_entry, element_refmark, element_hvrule, element_block, arow, acol, props<-,
propsd<-

Examples

plt <- plot(iris2_tab, title="Summary statistics for the iris data")

plt2 <- plt
# Change the title to italics:
propsa(plt2, arows=1) <- element_entry(fontface=3)
# Change the vertical rule between row header and body from empty to
# a solid line:
propsa(plt2, acols=2.5) <- element_hvrule(linetype=1, color="black",

size=0.5)
# Put all the mean values in bold face:
propsa(plt2, arows=arow(plt2, hpath=c(NA, "mean")),

acols=acol(plt2, id="body")) <- element_entry(fontface=2)

plt3 <- plt
# Use shading to highlight the rows for the 'versicolor' species:
propsa(plt3, arows=arow(plt3, hpath=c("versicolor"))) <-

element_block(fill="gray85")
# Compare tables before and after modification:
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print(plt, vpx=0.25, vpy=0.75)
print(plt2, vpx=0.75, vpy=0.75, newpage=FALSE)
print(plt3, vpx=0.5, vpy=0.25, newpage=FALSE)

# Striping every other row in a data frame listing (must include row names):
data(mtcars, package="datasets")
plt <- plot(textTable(head(mtcars, 10),

title="Partial listing of the 'mtcars' data frame"))
ar <- arow(plt, id="body")
propsa(plt, arows=ar[ar %% 2 == 0]) <- element_block(fill="gray85")
plt

propsd<- Update Graphical Properties for Selected Table Elements

Description

Update the graphical properties for table elements selected based on the values of element descrip-
tors.

Usage

propsd(x, subset=NULL, setEnabled=TRUE) <- value

Arguments

x A pltdTable object containing a plotted table.

subset An expression that when evaluated gives a logical vector indicating which ele-
ments should be updated; missing values are taken as FALSE. See DETAILS.

setEnabled Logical scalar. If TRUE then any element whose properties are updated by this
function will have its enabled value set to TRUE (and thus will be displayed
in a plot). enabled will not be changed for elements that are not updated. If
setEnabled is FALSE, enabled is not changed for any elements.

value An element_entry, element_refmark, element_hvrule, or element_block
object that contains the new values for graphical properties.

Details

There are three similar functions that can be used to modify the graphical properties of table ele-
ments: props<-, propsa<-, and propsd<-. They differ only in how one specifies which elements
are to be modified. props<- uses element or block ID’s, or searches the text content of entries.
propsa<- uses explicit row and column numbers within the augmented row-column grid. propsd<-
uses the values of element descriptors (as described in ?elements).

The type of elements that are updated is determined by value: if value is an element_entry or
element_refmark object then entries are updated; if it is an element_hvrule object then hvrules
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are; if it is an element_block object then blocks are. See the documentation for props<- for
discussion of their use.

Internally entries, hvrules, and blocks are represented as data frames, with one row per element, and
columns describing their content, position, and structural role in the table. (See ?elements for a list
of the descriptor columns for each type of element.) Argument subset is an expression involving
those columns that evaluates to a logical vector; the elements for which this vector is TRUE will
be selected. (NA in the logical vector is treated as FALSE.) Thus the subset argument works
in the same way as R’s built-in subset function to select rows from a data frame. For example
subset=(part=="body" &
type=="numeric") will update graphical properties for all entries in the table body that have been
tagged as representing numbers. And subset=(direction=="hrule") will update graphical prop-
erties for horizontal rules but not vertical rules.

To update every element (of the type implied by value) in the table, set subset=TRUE. To update
just the currently enabled elements, set subset=enabled.

Note: Standard processing generates hvrules for all four sides of every block in the table. Since
generally one doesn’t want to display the blocks themselves nor most of those hvrules, they are
all disabled by default. Therefore if using subset=TRUE when updating hvrules or blocks, also set
setEnabled to FALSE to avoid enabling and displaying them all.

This function overrides graphical properties in x that may have been set by a style. Therefore the
value of style_row is set to NA for any elements whose graphical properties are updated by this
function.

Value

An object like x, with updated graphical properties for the selected elements.

See Also

element_entry, element_refmark, element_hvrule, element_block, elements, props<-, propsa<-

Examples

ttbl <- textTable(iris2_tab, title="The iris data",
subtitle=c("Summary statistics by species"),
foot="sd = standard deviation")

plt <- plot(ttbl)
propsd(plt, subset=(enabled)) <- element_hvrule(color="red")
propsd(plt, subset=(part == "colhead" & headlayer == 1)) <-

element_entry(angle=90, hjust=0.5, vjust=0.5)
plt
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styleObj Create a Style Object

Description

Create a style object that can be used to assign graphical properties to table elements (entries,
hvrules, or blocks). The properties are used when displaying the elements. Styles allow assignment
of graphical properties to be based on element descriptors.

Usage

styleObj(x, type, match_columns=character(0))

Arguments

x Data frame with (a) column(s) that specify patterns to be used to identify and
select a subset of table elements; and (b) columns specifying the graphical prop-
erties to be used for elements in the selected subset. See DETAILS. May also be
a string with the path to a .csv file that will be read to create such a data frame.

type Character string, one of "entry", "hvrule", or "block". This specifies the type of
element to which the style will apply.

match_columns Optional character vector (possibly empty) with the names of element descrip-
tors that are required in order to evaluate the subset selector expressions in x.
See DETAILS.

Details

A style specifies graphical properties to be used in displaying one of the element types in a table
(i.e., entries, hvrules, or blocks). A style is similar to a theme in ggplot2 in that it can be applied
to any table, not just a particular table.

A styleObj object is a data frame. Each row can be thought of as a pattern plus a set of graphical
properties. Table elements that are to be styled are compared to the patterns. If the pattern in a style
row matches a table element, the graphical properties in that row are assigned to the element. If
more than one style row matches an element, the properties from the last matching row override the
earlier ones.

The graphical property columns that must be present in a styleObj data frame are described in
?elements.

Specification of style patterns and how they are matched to elements is similar for table entries
and blocks, and is described first. The process for hvrules is more complicated and is described
second. It will be easier to follow the descriptions if one also looks at an example, such as
View(styles_pkg$entryStyle_pkg_1) and View(styles_pkg$hvruleStyle_pkg_1).

Style specification and matching: Entry and block styles

First note that table entries and blocks internally are stored in objects that are themselves data
frames, with one row per element. (These data frames can be accessed using the elements func-
tion.) Columns include element descriptors such as the table part associated with the element, its
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position in the table, whether the element spans multiple rows or columns, and other information.
See ?elements for lists of the standard descriptors.

In styles for table entries and blocks, the pattern part of the styleObj object consists of a single col-
umn named condition. condition should contain character strings that can be interpreted as ex-
pressions involving the element descriptors mentioned in the previous paragraph. Each condition
expression, when evaluated within an entries or blocks data frame, should produce a logical vec-
tor with one value per element. (Vectors of length 1 are recycled to the necessary length.) Examples
of such strings are part ==
"rowhead" & multirow for entries and type == "colblock" & subtype
== "A" & headlayer > 1 for blocks.

Elements for which the condition expression in a style row evaluates to TRUE are considered to
match that row of the style, and are assigned the graphical properties in that row.

An NA value (or equivalently an empty string) as a style row’s condition is treated specially:
it matches _any_ element. The row’s graphical properties will be applied to all elements, unless
overridden by a later style row.

Style specification and matching: hvrule styles

The creation and styling of hvrules is closely tied to table blocks: by default, four hvrules are created
for each block, one running along each side. (They are initially disabled.) Style specification for
hvrules is more complicated than for table blocks because hvrules effectively *separate* blocks.
Therefore one may want their appearance to depend on characteristics of the blocks on *both* sides
of the hvrule.

Similar to entries and blocks, hvrules are represented internally as a data frame with one row per
hvrule. Columns include: block, the ID of the block that generated the hvrule; side, the side of
block along which the hvrule runs ("top", "bottom", "left", or "right"); and adjacent_blocks, a
string listing the ID’s of all the blocks adjacent to block on the same side as the hvrule. That is, the
hvrule separates block and the blocks in adjacent_blocks. Note that adjacent_blocks may be
empty.

In styles for hvrules, the pattern part of the styleObj object consists of three columns: block_condition,
side, and adjacent_condition. side is one of "top", "bottom", "left" or "right". block_condition
and adjacent_condition are like the condition column for block styles: they should contain
character strings that can be interpreted as expressions involving block descriptors. Each expres-
sion will be evaluated within the data frame of blocks that generated the hvrules. (Not the data
frame containing the hvrules themselves.) It should produce a logical vector with one element per
block; if the value is TRUE for a block, the block satisfies that expression.

An hvrule matches a given style row if (a) its generating block satisfies the style row’s block_condition;
(b) they have the same value of side; and (c) one or more of the hvrule’s adjacent_blocks satisfies
the style row’s adjacent_condition.

Any of block_condition, side, and adjacent_condition in a style row may also be set to NA (or
equivalently, to an empty string). In that case the corresponding criterion (a), (b), or (c) is considered
to be satisfied for all hvrules, and so does not limit matches. Note that setting adjacent_condition
to NA is the only way to satisfy criterion (c) if an hvrule’s adjacent_blocks is empty. In all other
cases, an empty adjacent_blocks will never satisfy criterion (c).
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Value

An object of S3 classes styleObj and data.frame. It will have the same number of rows and all
the columns in x.

The object will have attributes element_type and match_columns, equal to the corresponding
arguments.

See Also

styles_pkg contains predefined styles provided by the package. They can be examined as illustra-
tions of how styles are specified, or edited to create new styles. elements lists the descriptors and
graphical properties available for each element type.

Examples

# Built-in default styles:
if (interactive()) {

View(styles_pkg$entryStyle_pkg_1)
View(styles_pkg$blockStyle_pkg_1)
View(styles_pkg$hvruleStyle_pkg_1)

}

styles_pkg Built-In Styles for Table Elements

Description

A list that contains pre-defined styles for table entries, blocks, and hvrules. Styles are used to assign
graphical properties to elements, and thus control the appearance of a table when it is displayed.
In addition to the package-provided styles in this list, users can modify or create new styles to
customize their tables.

Usage

styles_pkg

Format

The list has the following components, each a styleObj object:

entryStyle_pkg_base, blockStyle_pkg_base, hvruleStyle_pkg_base Minimal styles that as-
sign the same graphical properties to all elements.

entryStyle_pkg_1, blockStyle_pkg_1, hvruleStyle_pkg_1 The default styles used by the pack-
age.

entryStyle_pkg_2 Similar to entryStyle_pkg_1, but with hpad and vpad about 50 percent
larger, to give a more spacious layout of table entries.
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entryStyle_pkg_null, blockStyle_pkg_null, hvruleStyle_pkg_null "Null" styles designed
to not match any element, and thus not assign graphical properties to any element. Using
the null style for hvrules is a way to disable all hvrules when the plot is created (rather than
afterwards using a props<- function).

See Also

styleObj, tablesggOpt

Examples

names(styles_pkg) # built-in styles
str(styles_pkg$entryStyle_pkg_1)

summary.pltdTable Summarize the Dimensions and Options of a Plotted Table

Description

Summarize the dimensions and display options of a plotted table.

Usage

## S3 method for class 'pltdTable'
summary(object, ...)

Arguments

object A pltdTable object, a plotted 2D data summary table.

... Additional arguments, ignored with a warning. (Included for compatibility with
the generic.)

Details

There is a print method for objects of the returned class.

Value

An object of S3 class summary.pltdTable. It is a list with components

adim Dimensions of the augmented row-column grid for the table. See ?adim for
details about this grid.

parts Data frame with one row for each table part, giving the dimensions of the part,
in columns nr, nc.

mergeRuns, rowheadInside, rowgroupSize, scale, plot.margin, sizeAdjust

Display options used by the table. See plot.textTable for their meaning.



summary.textTable 43

See Also

adim, plot.textTable

Examples

ttbl <- textTable(iris2_tab, title="Summary statistics for the iris data")
plt <- plot(ttbl, rowheadInside=TRUE)
summary(plt)

summary.textTable Summarize the Dimensions of a Table and Its Parts

Description

Summarize the dimensions of a table and its parts.

Usage

## S3 method for class 'textTable'
summary(object, ...)

Arguments

object A textTable object, representing a 2D data summary table.
... Additional arguments, ignored with a warning. (Included for compatibility with

the generic.)

Details

There is a print method for objects of the returned class.

Value

An object of S3 class summary.textTable. It is a list with components

adim Dimensions of the augmented row-column grid for the table. See ?adim for
details about this grid.

parts Data frame with one row for each table part, giving the dimensions of the part,
in columns nr, nc.

See Also

adim, textTable

Examples

ttbl <- textTable(iris2_tab, title="Summary statistics for the iris data")
summary(ttbl)
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tablesggOpt Get or Reset Package Options

Description

Get the values of package options, or reset all options to their "factory-fresh" defaults.

Usage

tablesggOpt(x=NULL, reset=FALSE)

Arguments

x Character string with the name of a single package option, or NULL.

reset Logical scalar. If TRUE, all options will be reset to their initial, "factory-fresh"
values.

Details

The user can change option values using the tablesggSetOpt function. The new values will stay
in effect for the rest of the R session or until they are changed again by the user.

Value

If x is the name of a single package option, the value of that option. Otherwise, a named list with
the current values of all package options. In both cases the result is after resetting if reset is TRUE.

The result is invisible if reset is TRUE.

The available options are documented in ?tablesggSetOpt.

See Also

tablesggSetOpt, styles_pkg

Examples

# See names of available options:
names(tablesggOpt())
# The current value of option 'plot.margin':
tablesggOpt("plot.margin")
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tablesggSetOpt Set the Values of Package Options

Description

Set the values of package options.

Usage

tablesggSetOpt(...)

Arguments

... Arguments in tag = value form, or a list of tagged values. The tags must come
from the names of package options described in DETAILS below. The named
options will be set to the values provided.

Details

The new option values persist until the end of the R session or until they are changed by another
call to this function or to tablesggOpt(reset=TRUE).

The options that may be set are:

entryStyle A styleObj object, with element type entry. This is the default style for table entries.

blockStyle A styleObj object, with element type block. This is the default style for blocks.

hvruleStyle A styleObj object, with element type hvrule. This is the default style for hvrules.

plot.margin A numeric vector of length 4, containing the amount of empty space to add around
the four sides of a plotted table, in millimeters. The order of sides is top, right, bottom, left.

allowMarkdown Logical scalar. If TRUE then text for table entries is allowed to contain mark-
down and HTML tags to control its appearance. TRUE is valid only if package ggtext is
available.

allowWrap Logical scalar. If TRUE then automatic wrapping of text for table entries is allowed.
TRUE is valid only if packages ggtext and quadprog are available.

Facilities to handle markdown and automatic wrapping of entry text are provided by Claus Wilke’s
ggtext package (https://CRAN.R-project.org/package=ggtext). Therefore allowMarkdown and allowWrap
can be set to TRUE only when that package has been installed. Note that only a subset of HTML
tags are available.

Value

A list with the old values of the named options, invisibly.

See Also

tablesggOpt to get current values of options, or to reset options to their "factory-fresh" setting.
styles_pkg for the set of package-provided table styles.
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Examples

oldopt <- tablesggOpt()
tablesggOpt(reset=TRUE)
plt1 <- plot(iris2_tab, title="Factory-fresh default styles")
# Set new default style for table entries:
tablesggSetOpt(entryStyle=styles_pkg$entryStyle_pkg_2)
plt2 <- plot(iris2_tab, title="Changed default entry style")
# Compare:
print(plt1, vpy=0.75)
print(plt2, vpy=0.25, newpage=FALSE)

# Change the values of multiple options:
tablesggSetOpt(list(hvruleStyle=styles_pkg$hvruleStyle_pkg_base,

plot.margin=c(5, 5, 5, 5)))
# ... plot some tables using the new defaults ...
# Restore the old options:
tablesggSetOpt(oldopt)
identical(tablesggOpt(), oldopt)

textTable Create a Structure Representing a 2D Table

Description

Create a structure representing the content and organization of a 2D table: table body, row and
column headers, and annotation. All table cells are formatted as character strings. This is an S3
generic.

Usage

textTable(x, ...)

Arguments

x Object to be formatted as a 2D table.

... Additional arguments passed to specific methods.

Details

textTable objects are the fundamental structure used to represent table _content_ and _organiza-
tion_ in the tablesgg package.

Components body, rowhead, rowheadLabels, colhead, title, subtitle, and foot correspond
to the table _parts_ with those names. Empty parts should be of type character: either a 0-length
vector or a matrix with one or both dimensions equal to 0, depending on the component.

Character strings representing table content may be prefixed with either "MATH_" or "MKDN_".
The former indicates the string is to be interpreted as a plotmath expression, the latter that the
string contains markdown or HTML tags.
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Components partdim, rowhier, and colhier are automatically derived from the other components
whenever a textTable is created or updated.

See Appendix A of the package vignette for more information about writing textTable methods.

Value

An object with S3 class textTable. This is a list with components:

body Character matrix containing the body of the table.
rowhead Character matrix with the same number of rows as the table body, containing

row headers for the table. Row headers are displayed as a set of columns to the
left of the table body. May be empty (0 columns).

rowheadLabels Character matrix with as many columns as rowhead and at most one row, spec-
ifying labels for the rowhead columns. May be empty (0 rows).

colhead Character matrix with the same number of columns as the table body, containing
column headers for the table. Column headers are displayed as a set of rows
above the table body. If rowheadLabels are present, colhead must have at
least one row, but otherwise it may be empty (0 rows).

title, subtitle, foot

Character vectors providing annotation for the table. May be empty (length 0).
partdim Numeric matrix with one row per table part (i.e., the components listed above),

and columns:
nr, nc: Number of rows, columns in the part (nc equal to NA for annotation

parts).
arow1, arow2, acol1, acol2: First and last rows, first and last columns occu-

pied by the part within the table’s augmented row-column grid. arow*
should be NA if nr is 0, acol* should be NA if nc is 0.

rowhier, colhier

Lists describing the hierarchical structure of row and column headers, respec-
tively. Each list has one component per header layer (column of rowhead, row
of colhead), in order from outermost layer to innermost. In turn, each of these
components is a data frame with one row per node in the hierarchy at that layer.

Components body, rowhead, and colhead will each have an attribute type. For body this will
be a character matrix with the same dimensions, containing an arbitrary string describing the type
of value represented in each cell (e.g., "numeric"), or NA. For rowhead and colhead, it will be a
character vector with length equal to the number of layers of headers (i.e., number of columns in
rowhead, number of rows in colhead), again containing a string describing the type of values in
each layer, or NA.

Components body, rowhead, rowheadLabels, colhead, title, subtitle, and foot will each have
an attribute justification. It will be a character matrix or vector of the same size and shape as
the component. Values "l", "c", "r" specify left, centered, and right horizontal justification of text,
respectively, for the corresponding table entry. Value NA means that the type of justification is not
specified–it will be set by the entry style used when plotting the table.

See Also

Specific methods for creating textTable’s from other objects.
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textTable.data.frame Create a texttable as a Simple Listing of a Data Frame

Description

Create a textTable object representing a simple listing of a data frame.

Usage

## S3 method for class 'data.frame'
textTable(x, title=character(0), subtitle=character(0),

foot=character(0), row.names="", na="NA", ...)

Arguments

x A data frame.
title, subtitle, foot

Optional character vectors providing annotation for the table. May be empty
(i.e., character(0), the default).

row.names A logical scalar or a character string. If FALSE, the row names of x are not
included in the table. If TRUE, the row names are included as row headers, with
a row header label of "row.names". If a character string, row names are included
as row headers, and if the string is not empty, it is used as the row header label.

na Character string used to represent missing values (NAs) in the body of the table.

... Additional arguments passed to format.data.frame.

Details

This function processes a data frame into a table that is simply a listing of the data. There is one
row in the body of the table per observation in x, and one column per variable in x. There is at most
one layer of row headers (depending on argument row.names), and exactly one layer of column
headers (the variable names in x).

Value

An object with S3 class textTable. The body of the table will contain the values of the data frame
variables, after formatting x with format(x, ...). The variable names will be used as the column
header, and if row.names is not FALSE, the row names will form the row header.

Examples

data(iris, package="datasets")
ttbl <- textTable(head(iris, 10), row.names="Obs. #",

title=c("The iris data", "(First 10 observations)"))
summary(ttbl)
plot(ttbl)
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textTable.ftable Create a texttable from an ftable

Description

Create a textTable object representing a flattened multiway contingency table.

Usage

## S3 method for class 'ftable'
textTable(x, colheadLabels=c("layers", "none", "paste"), sep=": ",

title=character(0), subtitle=character(0), foot=character(0), ...)

Arguments

x An ftable object, as produced by R’s ftable function, representing a flattened
multiway contingency table.

colheadLabels Character scalar; how to display names of column header variables. "none"
means to not display them. "layers" (the default) means to display them as
additional column header layers (so each header variable occupies two rows
instead of one). "paste" means to paste the variable name in front of each of its
values, separated by sep.

sep Character scalar; string that separates a variable name from its values when
colheadLabels is "paste".

title, subtitle, foot

Optional character vectors providing annotation for the table. May be empty
(i.e., character(0), the default).

... Ignored, with a warning. (Included for compatibility with the generic.)

Value

An object with S3 class textTable. See the documentation for the generic for details about its
structure.

See Also

ftable, format.ftable

Examples

# From examples in '?ftable':
data(Titanic, package="datasets")
ft <- ftable(Titanic, row.vars = 1:2, col.vars = "Survived")
ttbl <- textTable(ft, title="Plotting an 'ftable'")
plot(ttbl)

data(mtcars, package="datasets")
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ft <- ftable(mtcars$cyl, mtcars$vs, mtcars$am, mtcars$gear, row.vars = c(2, 4),
dnn = c("Cylinders", "V/S", "Transmission", "Gears"))

ttbl <- textTable(ft, colheadLabels="none")
plt1 <- plot(ttbl, title="Plotting an 'ftable'",

subtitle="No colheadLabels")
ttbl <- textTable(ft, colheadLabels="layers")
plt2 <- plot(ttbl, title="Plotting an 'ftable'",

subtitle="colheadLabels = 'layers'")
ttbl <- textTable(ft, colheadLabels="paste")
plt3 <- plot(ttbl, title="Plotting an 'ftable'",

subtitle="colheadLabels = 'paste'")
print(plt1, position=c("left", "top"))
print(plt2, position=c("left", "center"), newpage=FALSE)
print(plt3, position=c("left", "bottom"), newpage=FALSE)

textTable.matrix Create a texttable from a Matrix

Description

Create a textTable object from a matrix.

Usage

## S3 method for class 'matrix'
textTable(x, rcnames=c(TRUE, TRUE), title=character(0),

subtitle=character(0), foot=character(0), na="NA", ...)

Arguments

x A matrix.

rcnames A logical or character vector of length 2. The first element applies to rows, the
second to columns. If FALSE, row/column names are not included. If TRUE
and x has row/column names, they are included as a row/column header. Further,
if the row/column dimension itself has a non-empty name, it is included as an
additional, outer row/column header layer. A character string is treated the same
as TRUE, except that the string is used as the dimension name (and thus an
empty string will not create an outer header layer).

title, subtitle, foot

Optional character vectors providing annotation for the table. May be empty
(i.e., character(0), the default).

na Character string used to represent missing values (NAs) in the body of the table.

... Additional arguments passed to format(x, ...).
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Value

An object with S3 class textTable. The body of the table will contain the matrix values, after
formatting x with format(x,...). Row and column names may be included as headers, depending
on argument rcnames.

Examples

data(iris, package="datasets")
mat <- data.matrix(subset(iris, Species == "setosa")[, 1:4])
ttbl <- textTable(cor(mat), digits=3, title="Correlations for setosa irises")
summary(ttbl)
plt <- plot(ttbl)
# Make hvrules invisible:
propsd(plt, subset=enabled) <- element_hvrule(color=NA)
print(plt)

textTable.table Create a texttable from a table or xtabs Object

Description

Create a textTable object representing a flattened multiway contingency table.

Usage

## S3 method for class 'table'
textTable(x, colheadLabels=c("layers", "none", "paste"), sep=": ",

title=character(0), subtitle=character(0), foot=character(0), ...)

Arguments

x A table object, as produced by R’s table or xtabs functions, representing a
multiway contingency table.

colheadLabels Character scalar; how to display names of column header variables. "none"
means to not display them. "layers" (the default) means to display them as
additional column header layers (so each header variable occupies two rows
instead of one). "paste" means to paste the variable name in front of each of its
values, separated by sep.

sep Character scalar; string that separates a variable name from its values when
colheadLabels is "paste".

title, subtitle, foot

Optional character vectors providing annotation for the table. May be empty
(i.e., character(0), the default).

... Additional arguments passed to ftable, to convert x to an ftable object.
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Details

This function simply converts x to an ftable (flattened multiway contingency table), then applies
the corresponding textTable method to that object.

It also works for xtabs objects since they inherit from table.

Value

An object with S3 class textTable. See the documentation for the generic for details about its
structure.

See Also

ftable, xtabs

Examples

# UCBAdmissions is a contingency table in array form ('table' object).
data(UCBAdmissions, package="datasets")
ttbl <- textTable(UCBAdmissions)
plot(ttbl, title=c("Plotting a 'table' object:", "UCB Admissions data"))

# Method also works for 'xtabs' since they inherit from 'table' (example
# from '?xtabs'):
data(warpbreaks, package="datasets")
warpbreaks$replicate <- rep_len(1:9, 54)
xt <- xtabs(breaks ~ wool + tension + replicate, data = warpbreaks)
ttbl <- textTable(xt, title="Plotting an 'xtabs' object (warpbreaks data)")
plot(ttbl)

textTable.tabular Create a texttable from a tabular Object

Description

Convert a tabular object, representing a 2D data summary table, into a textTable object, which
can be plotted.

Usage

## S3 method for class 'tabular'
textTable(x, title=character(0), subtitle=character(0),

foot=character(0), rowheadLabels=TRUE, ...)



textTable.tabular 53

Arguments

x An object of class tabular, representing a 2D data summary table, as produced
by the tables package.

title, subtitle, foot

Optional character vectors providing annotation for the table. May be empty
(i.e., character(0), the default).

rowheadLabels Character vector or logical scalar specifying labels for the row header columns
of the table. FALSE or character(0) means no labels, TRUE will attempt to
extract labels from x.

... Additional arguments passed to format.tabular.

Details

tabular objects are produced by the tabular function in package tables. This function converts
them to textTable objects to enable plotting. It can also add table annotation.

Row headers and column headers are derived from the rowLabels and colLabels attributes of x,
respectively. It appears that tabular objects always have "rowLabels", "colLabels" and a body with
non-zero dimensions (although this is not required for textTable objects in general). In addition,
runs of duplicated values in rowLabels and colLabels are replaced by NA; the NAs are changed
back to the original values by this function. The dropcells attribute is a character matrix matching
the table body. If not NA, the value in dropcells is used to replace the cell content after formatting.

In the returned object, components body, rowhead, and colhead will each have an attribute type.
For body the attribute is a character matrix containing a string describing the type of value repre-
sented in each cell of the table body; namely, the first element of the vector returned by function
class() as applied to each element of x. For rowhead and colhead, type is a character vector with
one element per header variable (i.e., per column of rowhead or row of colhead). Since tabular
objects do not retain the classes of the variables that define row and column dimensions of a table,
type will be set to NA.

Components of the returned object will also have an attribute justification. It will be a character
matrix or vector of the same size and shape as the component; a value of NA means that the type
of justification is not specified. Values for the table body and row and column headers will be taken
from x. Values for table annotation will be NA.

Value

An object with S3 class textTable. See the documentation for the generic function for a description
of the structure of this object.

See Also

tables::tabular, tables::format.tabular, plot.textTable

Examples

# 'iris2_tab' is a 'tabular' object created using 'tables::tabular'.
class(iris2_tab)
# 'tables' package provides a 'print' method for such objects:
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if (requireNamespace("tables", quietly=TRUE)) {
print(iris2_tab)
}
# This package provides 'textTable' and 'plot' methods for such objects:
ttbl <- textTable(iris2_tab)
plot(ttbl)
# ... or just
#plot(iris2_tab) # same

textTable.xtable Create a texttable from an xtable Object

Description

Create a textTable from an xtable object produced by the xtable package. The textTable can
then be styled and plotted.

Usage

## S3 method for class 'xtable'
textTable(x, title, subtitle=character(0), foot=character(0),

row.names="", na="", mathExponents=TRUE, ...)

Arguments

x An xtable object as produced by the xtable package.

title Optional character vector containing title lines for the table. May be empty
(character(0)). The default is to use the first element of the caption attribute
of x, if present.

subtitle, foot Optional character vectors providing additional annotation for the table. May be
empty (i.e., character(0), the default).

row.names A logical scalar or a character string. If FALSE, the row names of x are not
included in the table. If TRUE, the row names are included as row headers, with
a row header label of "row.names". If a character string, row names are included
as row headers, and if the string is not empty, it is used as the row header label.

na String to be used to represent missing values in x. The default value is the empty
string "".

mathExponents Logical scalar. If TRUE, then numerical values in x that are formatted into
scientific notation (i.e., strings like "3.14e-02", specified by values of e or E in
the display attribute of x) will be plotted in math style, with the power of 10
shown as a superscript.

... Additional named arguments passed to formatC, when converting values in x to
character strings. They must not include digits or format, which are specified
within x itself.
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Details

This function was designed based on the structure of objects produced by version 1.8-4 of the
xtable package.

An xtable object is a data frame that contains the columns of the table and attributes that specify
how those columns are to be formatted. This function uses those attributes to created formatted
character strings for each table entry, and assembles them into a textTable object, which may then
be styled and plotted.

Formatting is done by formatC using the digits and display attributes of x. The align attribute
is used to set the justification attributes in the returned textTable. (Vertical rule characters, |,
within align are ignored; use an hvruleStyle or the addHvrule function to insert vertical rules
into the plotted table, as shown in the examples.)

Value

An object with S3 class textTable. See the documentation for the generic for details about its
structure.

Examples

# 'tli_xtab' is an 'xtable' object created using 'xtable::xtable':
class(tli_xtab)
# This package provides a 'textTable' method for such objects:
ttbl <- textTable(tli_xtab)
plot(ttbl)

if (requireNamespace("xtable", quietly=TRUE)) withAutoprint({
data(tli, package="xtable")

# ANOVA table.
fm1 <- aov(tlimth ~ sex + ethnicty + grade + disadvg, data = tli)
plt1 <- plot(textTable(fm1.table <- xtable::xtable(fm1),

title="xtable: ANOVA table"))

# Table of linear regression results.
fm2 <- lm(tlimth ~ sex*ethnicty, data = tli)
plt2 <- plot(textTable(fm2.table <- xtable::xtable(fm2),

title="xtable: Linear regression"))

# Time series table.
temp.ts <- ts(cumsum(1 + round(rnorm(100), 0)), start = c(1954, 7),

frequency = 12)
plt3 <- plot(textTable(xtable::xtable(temp.ts, digits = 0),

title="xtable: Time series"))

# Math style for scientific notation.
plt4 <- plot(textTable(xtable::xtable(data.frame(text = c("foo","bar"),

googols = c(10e10,50e10),
small = c(8e-24,7e-5),
row.names = c("A","B")),

display = c("s","s","g","g")),
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mathExponents = TRUE,
title=c("xtable:", "Math style for scientific notation")))

print(plt1, position=c(0.1, 0.9))
print(plt2, position=c(0.1, 0.5), newpage=FALSE)
print(plt3, position=c(0.1, 0.1), newpage=FALSE)
print(plt4, position=c(0.9, 0.9), newpage=FALSE)

# By default vertical rules specified by '|' characters in 'align' are
# ignored. They can be added afterward using the 'addHvrule' function
# as follows:
tli.table <- xtable::xtable(tli[1:10, ])
xtable::align(tli.table) <- "|rrl|l|lr|"
plt <- plot(textTable(tli.table,

title="xtable: Vertical rules derived from 'align'"))
pipe_posn <- which(unlist(strsplit(attr(tli.table, "align"), "")) == "|")
vrule_acol <- pipe_posn - seq_along(pipe_posn) + 0.5
for (ac in vrule_acol) plt <- addHvrule(plt, direction="vrule", acols=ac,

arows=arow(plt, "colhead_and_body"),
props=element_hvrule(linetype=1,

color="black"))
plt

})

textTable.xtableList Create a texttable from an xtablelist Object

Description

Create a textTable from an xtableList object produced by the xtable package. Such an object
represents a set of subtables that are to be stacked into a single table, with "subheadings" sepa-
rating the subtables. The textTable that is produced by this function uses the subheadings as an
additional, outer row header layer. That layer can optionally be moved inside the table by setting
rowheadInside=TRUE when the table is plotted.

Usage

## S3 method for class 'xtableList'
textTable(x, title, subtitle=character(0), foot, ...)

Arguments

x An xtableList object as produced by the xtable package. All the subtables in
x must have the same column names.

title Optional character vector containing title lines for the table. May be empty
(character(0)). The default is to use the first element of the caption attribute
of x, if present.

subtitle, foot Optional character vectors providing additional annotation for the table. May be
empty (i.e., character(0)). The default for foot is the message attribute of x.
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... Additional arguments passed to textTable.xtable for each of the subtables in
x. See the documentation for that function.

Details

This function was designed based on the structure of objects produced by version 1.8-4 of the
xtable package.

If x has a message attribute, it is used as the default value of the foot component of the returned
textTable.

If components of x have no subheading attribute, then the subtables are simply stacked, with no
additional row header layer to separate or distinguish them. It is an error if only some of the
components have a subheading attribute.

Value

An object with S3 class textTable. See the documentation for the generic for details about its
structure.

Examples

# 'mtcars_xtab' is an 'xtableList', following an example in the
# "listOfTablesGallery" vignette of the 'xtable' package. (See '?mtcars_xtab'
# for the code to create it.)
plot(textTable(mtcars_xtab), rowheadInside=TRUE,

title="Example of plotting an 'xtableList'",
subtitle="(With 'rowheadInside=TRUE')")

tli_xtab Table of Test Scores and Demographics for 20 Students

Description

This is a table of the first 20 observations from the data frame tli from package xtable. The
observations include demographic data and math scores, from the Texas Assessment of Academic
Skills, for 20 students.

Usage

tli_xtab

Format

An xtable object as produced by version 1.8-4 of the xtable package (https://CRAN.R-project.org/package=xtable).
The table was produced with the following code:
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data("tli", package="xtable")
tli_xtab <- xtable::xtable(tli[1:20, ])
xtable::display(tli_xtab)[c(2,6)] <- "f"
xtable::digits(tli_xtab) <- matrix(0:4, nrow = 20, ncol = ncol(tli)+1)

Source

• Texas Education Agency, <URL: http://www.tea.state.tx.us>

Examples

str(tli_xtab)

update.pltdTable Update a pltdtable (Plotted Table) Object

Description

Update a pltdTable (plotted table) object with new styles or scaling.

Usage

## S3 method for class 'pltdTable'
update(object, entryStyle=NULL, blockStyle=NULL, hvruleStyle=NULL,

scale=NULL, plot.margin=attr(object, "plot.margin"),
sizeAdjust=attr(object, "sizeAdjust"), ...)

Arguments

object A pltdTable object, containing a plotted table.

entryStyle, blockStyle, hvruleStyle

Optional styleObj objects, specifying new styles for assigning graphical prop-
erties to table entries, blocks, or hvrules. The default value of NULL leaves the
corresponding style of object unchanged.

scale Optional numeric multiplier used to increase or decrease the displayed size of
table elements, relative to the natural size implied by their (possibly updated)
styles. If it has length two, the first element applies to entries and blocks, and
the second to hvrules. The default is to use the existing scale value(s) in object.

plot.margin, sizeAdjust

See the documentation for plot.textTable. The default is to use the same
values that were used to create object.

... Ignored, with a warning. (Included for compatibility with the generic.)
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Details

Updating a plotted table is limited to changing its style or scale–changes that do not affect the
augmented row-column grid of the table. (See adim for a description of that grid.) For other
changes, start with a textTable object, and edit it and/or replot it using different arguments (e.g.,
rowheadInside, rowgroupSize, mergeRuns, or annotation).

Updating does not change the enabled field for any entries, blocks, or existing hvrules.

When argument hvruleStyle is provided, hvrules are regenerated by applying the style to the
blocks component of object. These new hvrules replace any existing hvrules with the same ID.
However existing hvrules with other ID’s are left unchanged.

Value

An object of S3 class pltdTable, inheriting from ggplot. See plot.textTable for details about
this object.

See Also

plot.textTable, styleObj

Examples

# Plot using 'factory-fresh' entry style:
plt <- plot(textTable(iris2_tab), entryStyle=styles_pkg$entryStyle_pkg_1)
# Change to a generic style that uses the same graphical properties for
# all entries:
plt2 <- update(plt, entryStyle=styles_pkg$entryStyle_pkg_base)
plt2
# Also make the plot smaller:
plt3 <- update(plt2, scale=0.8)
plt3

update.textTable Update a texttable Object

Description

Update a textTable object with new annotation or rowheadLabels.

Usage

## S3 method for class 'textTable'
update(object, title=NULL, subtitle=NULL, foot=NULL,

rowheadLabels=NULL, ...)
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Arguments

object A textTable object, representing a 2D table with all cells formatted as character
strings.

title, subtitle, foot

Optional character vectors of annotation for the table. NULL means to leave the
current annotation unchanged (the default); character(0) means to omit/remove
it.

rowheadLabels Optional character vector or 1-row matrix specifying labels for the row header
columns of the table. NULL means to leave the current value unchanged (the
default); character(0) means to omit/remove it.

... Ignored, with a warning. (Present for compatibility with the generic.)

Details

To indicate that a string in title, subtitle, foot, or rowheadLabels is to be interpreted as a
plotmath expression, prefix it with MATH_. To indicate that it contains markdown or HTML tags,
prefix it with MKDN_.

Value

A textTable object with annotation set or changed based on the provided arguments.

See Also

textTable

Examples

ttbl <- textTable(iris2_tab, title="The iris data",
foot="sd = standard deviation")

# Change annotation:
ttbl <- update(ttbl, title=c("The iris data", "Summary statistics by species"),

foot=character(0))
plot(ttbl)
# Change row header labels:
ttbl <- update(ttbl, rowheadLabels=c("Species", "Summary\nstatistic"))
plot(ttbl)

[.textTable Extract a Subset of a texttable Object

Description

Extract a subset of a textTable object, creating a new table with fewer and/or rearranged rows and
columns.
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Usage

## S3 method for class 'textTable'
x[i, j, drop=FALSE]

Arguments

x An object of S3 class textTable, representing a 2D table.

i, j Logical or numeric indexing arguments used as subscripts with respect to the
augmented row-column grid of the table. See DETAILS.

drop Ignored (always treated as FALSE).

Details

This function extracts, deletes, or rearranges subsets of the rows and columns of a table. It is similar
to subsetting an ordinary matrix, but with restrictions required to ensure that the resulting object is
still a valid textTable:

1. Indexing is with respect to the augmented row-column grid of the table, in which all parts of the
table (body, headers, and annotation) are included. See ?textTable for a description of table parts,
and ?adim for a description of the augmented grid. The summary method for a textTable shows
the dimensions of each part.

2. The first index argument, i, cannot itself be a matrix.

3. Indexing cannot be used to move rows or columns between different parts of the table (e.g.
between body and headers, or between headers and annotation).

Helper functions arow and acol can be used to get the augemented row and column numbers
spanned by different table parts. See the examples.

Value

An object of S3 class textTable.

See Also

textTable, adim, arow, acol

Examples

ttbl <- textTable(iris2_tab)
plot(ttbl)

# Remove the first column header row ("Flower part"), and reverse the
# order of the "Sepal" and "Petal" sets of columns:
subttbl <- ttbl[-1, c(1,2,5,6,3,4)]
plot(subttbl)

# Use helper functions 'arow', 'acol' to specify indices based on
# table structure:
i <- arow(ttbl, "colhead")[1] # row number of first column header row
j1 <- acol(ttbl, "rowhead") # column numbers for row header
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j2 <- acol(ttbl, "colhead") # column numbers for column header
subttbl2 <- ttbl[-i, c(j1, j2[c(3,4,1,2)])]
identical(subttbl, subttbl2)
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